首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The paper reports the tin(II) chloride catalyzed reactions of diazodiphenylmethane with the cis- and trans-1,2-cyclohexanediols and R,S-1,2-propanediol in 1,2-dimethoxyethane and the identification of the monodiphenylmethyl ethers formed. The catalyst is shown to work for both the cis- and trans-cyclohexanediols, but the catalyst is unstable at high reagent concentrations, especially in the case of the trans-isomer. Conditions where catalyst destruction is negligible show that the rate of the reaction with the trans-isomer is larger than with the cis-isomer. The reactions with 1,2-propanediol show small difference between the selectivity for the primary and secondary hydroxyl groups. This is in contrast with the tin(II) chloride catalyzed reactions of diazomethane and diazophenylmethane in methanol with carbohydrates, glycerol and ribonucleosides, where the primary hydroxyl group does not react.  相似文献   

2.
The formation of ferryl heme (Fe(IV) = O) species, i.e., compound I and compound II, has been identified as the main intermediates in heme protein peroxidative reactions. We report stopped-flow kinetic measurements which illustrate that the reaction of hemoglobin I (HbI) from Lucina pectinata with hydrogen peroxide produce ferryl intermediates compound I and compound II. Compound I appears relatively stable displaying an absorption at 648 nm. The rate constant value (k'(2)) for the conversion of compound I to compound II is 3.0 x 10(-2) s(-1), more than 100 times smaller than that reported for myoglobin. The rate constant value for the oxidation of the ferric heme (k'(12) + k'(13)) is 2.0 x 10(2) M(-1) s(-1). These values suggest an alternate route for the formation of compound II (by k'(13)) avoiding the step from compound I to compound II (k'(2)). In HbI from L. pectinata the stabilization of compound I is attribute to the unusual collection of amino acids residues (Q64, F29, F43, F68) in the heme pocket active site of the protein.  相似文献   

3.
5-Ethylphenazine-poly(ethylene glycol)-NAD+ conjugate (EP+-PEG-NAD+) was prepared by linking 1-(3-carboxypropyloxy)-5-ethylphenazine (I) to poly(ethylene glycol)-bound NAD+ (PEG-NAD+) and its kinetic properties were studied. As a reference compound, poly(ethylene glycol)-bound 5-ethylphenazine derivative (III) was also prepared and the effects of poly(ethylene glycol) on the reaction rate of the 5-ethylphenazine moiety with NADH was investigated. The second-order rate constant, k1, of the reaction of III with NADH is 2.78 mM-1 s-1 and is about 1.7 times that of 1-(3-ethoxycarbonylpropyloxy)-5-ethylphenazine (II) with NADH. A similar effect of the attached poly(ethylene glycol) was observed for the reaction of PEG-NADH with I or II. The second-order rate constants, k2 and k3, of the reactions of the reduced form of III with oxygen and with 3-(4',5'-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium ion, respectively, were k2 = 1.22 mM-1 s-1 and k3 = 32 mM-1 s-1; the k2 value is not changed but the k3 value is decreased by the attachment of the polymer. EP+-PEG-NAD+ works as a unique catalyst having an intramolecular reaction step within its turnover cycle in a coupled multi-step reaction system containing malate dehydrogenase, malate, EP+-PEG-NAD+, a tetrazolium salt and oxygen. The first-order rate constant, k4, of the intramolecular reaction was 1.1 s-1. The effects of the covalent linking of the 5-ethylphenazine and the NAD+ moieties were estimated by comparing the value of k4 with that of k1 for the reaction of III with NADH; the effective concentration of the NADH moiety for the 5-ethylphenazine moiety on the same EP+-PEG-NADH molecule (or vice versa) was calculated to be 0.40 mM from the ratio of k4/k1. The values of the rate constants in the coupled multi-step reaction system enable us to understand the dynamic features of the system and the characteristics of EP+-PEG-NAD+ as a catalyst are discussed.  相似文献   

4.
Photochemical processes involving redox reactions between metal ions and organic substrates possess the versatile potential for having harnessed solar energy for prebiotic organic synthesis. The present study in our Laboratory has shown that ultraviolet irradiation of transition metal ions such as of Ni, Co, Fe, Cu and Ti dissolved in primary or secondary alcohols causes photoreduction of the metal ions with the concomitant oxidation of the alcohol to aldehyde or ketone. An observed accompaniment of this novel 'light' reaction has been the known 'dark' pinacol reaction, whereby the carbonyl derivative underwent bimolecular coupling to the diol by the photogenerated reduced transition metal reagent. These tandem 'light-dark' processes possess the potential for the stepwise synthesis of dimeric 1,2-diols from simpler alcohols under conditions that might have prevailed on the prebiotic earth. Experiments reported here have demonstrated that such a tandem 'light-dark' conversion of methanol into ethylene glycol, via formaldehyde, does in fact occur, when nickel(II) acetylacetonate solutions in methanol undergo prolonged irradiation at 185-254 nm. Since ethylene glycol can be considered as the simplest sugar alcohol, these findings may provide novel insight into the prebiotic oligomerization of formaldehyde into higher sugar alcohols or even sugars.  相似文献   

5.
The effect of changes in the bulk dielectric constant on the DNA torsional properties was evaluated from plasmid circularization reactions. In these reactions, pUC18 previously linearized by EcoRI digestion was recircularized with T4 DNA ligase. The bulk dielectric constant of the reaction medium was decreased by the addition of different concentrations of neutral solutes: ethylene glycol, glycerol, sorbitol, and sucrose, or increased by the addition of glycine. The topoisomers generated by the ligase reaction were resolved by agarose-gel electrophoresis. The DNA twist energy parameter (kappa), which is an apparent torsional constant, was determined by linearization of the Gaussian topoisomers' distribution. It was observed that the twist energy parameter for the given solutes is almost linearly dependent on the bulk dielectric constant. In the reaction buffer, the twist energy parameter was determined to be 1100 +/- 100. By decreasing the dielectric constant to 74 with the addition of sorbitol, the value of the parameter reaches kappa = 900 +/- 100, whereas the addition of ethylene glycol leads to kappa = 400 +/- 50. Upon addition of glycine, which resulted in a dielectric constant equal to 91, the value of the twist energy parameter increased to kappa = 1750 +/- 100.  相似文献   

6.
Superoxide and myeloperoxidase (MPO) are essential for the oxidative killing of bacteria by neutrophils. Previously, we developed a kinetic model to demonstrate that within the confines of neutrophil phagosomes, superoxide should react exclusively with MPO and be converted to hypochlorous acid. The model consists of all known reactions and rate constants for reactions of superoxide, hydrogen peroxide, and chloride ions with MPO, except for the reaction of superoxide with compound I, which could only be estimated. Compound I is a transitory redox intermediate of MPO that is responsible for oxidizing chloride ions to hypochlorous acid. To tackle the challenge of observing the reaction between two transient species, we combined stopped-flow spectrophotometry with pulse radiolysis. Using this technique, we directly observed the reduction of compound I by superoxide. The rate constant for the reaction was determined to be 5.6±0.3×10(6)M(-1)s(-1). This value establishes superoxide as one of the best substrates for compound I. Based on this value, the rate constant for reduction of compound II by superoxide was determined to be 1.2±0.1×10(6)M(-1)s(-1). Within phagosomes, the reduction of compound I by superoxide will compete with the oxidation of chloride ions so that the relative concentrations of these two substrates will affect the yield of hypochlorous acid. Characterization of this reaction confirms that superoxide is a physiological substrate for MPO and that their interactions are central to an important host defense mechanism.  相似文献   

7.
Heterogeneous ultrasound-promoted palladium-catalyzed carbonyl allylation by γ-substituted allylic alcohols with tin(II) chloride in non-polar solvents such as diethyl ether, diisopropyl ether and toluene was carried out stepwise (first, the formation of allylic tin intermediates by ultrasonication, followed by the allylation of aldehydes by the intermediates) to produce 1,4-disubstituted 3-buten-1-ols regioselectively in moderate yields. The regioselectivity (-selection) in the ultrasound-promoted reaction is the inverse of that (γ-selection) in the homogeneous palladiumcatalyzed carbonyl allylation in polar solvents such as 1,3-dimethyl-2-imidazolidinone, DMF, DMSO and ethylene glycol. The more bulky the γ-substituent, the higher is the -regioselectivity.  相似文献   

8.
Arrhenius parameters for the reactions of oxidizing hydroxyl radicals and reducing hydrated electrons with cisplatin, transplatin and carboplatin in aqueous solution have been determined using pulsed electron radiolysis and absorption spectroscopy techniques. Under physiological pH and chloride concentration conditions, hydroxyl radical reaction rate constants of (9.99 +/- 0.20) x 10(9), (8.38 +/- 0.55) x 10(9), and (6.03 +/- 0.08) x 10(9) M(-1) s(-1) at 24.0, 20.7 and 24.0 degrees C, respectively, with corresponding activation energies of 12.79 +/- 0.57, 13.88 +/- 1.14, and 14.35 +/- 0.56 kJ mol(-1) for these three reactions, were determined. These oxidations of cisplatin and transplatin to form a Pt(III) transient are significantly faster than reported previously at room temperature. The lower rate constant for carboplatin is consistent with hydroxyl radical reaction partitioning between reaction at the platinum center and the cyclobutanedicarboxylate ligand. The equivalent reductive hydrated electron reaction rate constants measured were (1.99 +/- 0.04) x 10(10) (24.0 degrees C), (1.77 +/- 0.08) x 10(10) (22.0 degrees C), and (8.92 +/- 0.06) x 10(9) M(-1) s(-1) (24.0 degrees C), with corresponding activation energies of 15.75 +/- 1.00, 19.74 +/- 1.82, and 19.99 +/- 0.34 kJ mol(-1). Again, the values determined for cisplatin and transplatin are faster than reported; however, all three values are consistent with direct reduction of the platinum center to form a Pt(I) moiety.  相似文献   

9.
Addition of ethylene glycol (10% v/v) has a beneficial effect on the synthesis of 2'-deoxynucleosides catalysed by crude preparations of N-deoxyribosyltransferases from Lactobacillus leichmannii. In the absence of added organic solvent decomposition of products and starting materials by deamination or hydrolysis occurs giving rise to poor yields of products if the transfer reaction is slow. The glycosyl transfer reaction is unaffected by addition of organic solvent but decomposition of products and starting materials is largely suppressed. The organic solvent appears to inhibit selectively contaminating enzymes in the crude N-deoxyribosyltransferase preparation as the purified transferase does not possess hydrolytic or deaminating activity. Different concentrations of ethylene glycol and other organic solvents have been examined as inhibitors of the side reactions but 10% (v/v) appears to be the most effective. Using the N-deoxyribosyltransferase in the presence of ethylene glycol, a number of 2'-deoxynucleosides of 6-substituted nucleosides have been obtained in high yield on a preparative scale.  相似文献   

10.
By using the chemical-in-plug method, we found that glycerol and ethylene glycol caused negative chemotaxis in wild-type cells of Escherichia coli; the threshold concentration was about 10(-3) M for both chemicals. As with other known repellents, the addition of glycerol or ethylene glycol induced a brief tumble response in wild-type cells but not in generally nonchemotactic mutants. Experiments with mutants defective in various methyl-accepting chemotaxis proteins (MCPs) revealed that the presence of any one of three kinds of MCPs (MCP I, MCP II, or MCP III) was necessary to give a tumble response to these repellents. Consistently, it was found that the methylation-demethylation system of MCPs was involved in the adaptation of the cells to these repellents. The effect of glycerol or ethylene glycol was not enhanced by lowering the pH of the medium, and glycerol did not alter the membrane potential of the cells. All of these results suggest that glycerol and ethylene glycol are members of a new class of repellents which produce a tumble response in the cells by perturbing the MCPs in the membrane.  相似文献   

11.
The viscosity dependence of enzymatic catalysis was examined in subtilisin BPN' catalyzed hydrolysis of N-succinyl-Ala-Ala-Pro-Phe-p-nitroanilide and N-succinyl-Ala-Ala-Pro-Phe-thiobenzyl ester. The viscosity of the reaction medium was varied by added glycerol, ethylene glycol, sucrose, glucose, fructose, poly(ethylene glycol) and Ficoll-400. Responses of the Michaelis-Menten parameters associated with hydrolysis were calculated from data obtained by spectrophotometric techniques. The reactions with these two substrates have catalytic rates well below the diffusion-controlled limit and thus enable us to study the viscosity effects on catalytic steps of non-transport nature. It was found that the Km values for both amide and ester reactions remained relatively independent of cosolvents. On the other hand, while the kcat values for amide were insensitive to cosolvents, those for ester were substantially attenuated except in the case of poly(ethylene glycol). The observed rate attenuations cannot be explained by changes in proton activity, water activity, dielectric constant of the reaction medium or shifts of any kinetically important pKa. Instead, the results can be adequately described by microviscosity effects on the unimolecular deacylation step with a coupling constant of 0.65 +/- 0.11. In addition, the different viscosity dependence in the acylation vs deacylation step can be rationalized in terms of fluctuation-dependent chemical dynamics of proton transfers in the context of the Bogris-Hynes model.  相似文献   

12.
In a cytosolic extract from rat liver, the number and the concentration of ADP-binding sites as well as their dissociation constants were determined by using the rate-of-dialysis technique. Interfering cytosolic adenylate kinase was extracted from the cytosol by affinity chromatography on Ap5A-agarose, and remaining traces of enzyme activity were inhibited with (+)-catechin. Binding of ADP to cytosolic proteins was increased by poly(ethylene glycol) and decreased by EDTA. The effect of 0.1 mM-EDTA could be reversed by addition of equimolar concentrations of Mn2+ or Mg2+. In presence of 5% poly(ethylene glycol), added to increase local protein concentration, two binding sites for ADP were observed, with KD values of 1.9 microM (site I) and 10.8 microM (site II). The concentration of these binding sites, when extrapolated to cellular protein concentrations, were 30 microM (site I) and 114 microM (site II). It is concluded that a minimum of about 50% of total cytosolic ADP is bound to proteins, and that the ratio of free ATP/free ADP is at least twice that of total ATP/total ADP.  相似文献   

13.
Survival of vitrified sheep embryos in vitro and in vivo   总被引:2,自引:0,他引:2  
The effects of the composition of vitrification media, the duration of exposure to the media and the stage of development were examined on the survival of vitrified Day-6 sheep embryos. Vitrification media that contained two cryoprotectants in equal molar concentrations were used. In Experiment 1, the effects of the types (glycerol + propylene glycol or glycerol + ethylene glycol) and concentrations (3.5 + 3.5 or 4.5 + 4.5 M) of cryoprotectants and the level of BSA supplementation (0.4 or 20%) were investigated in a 2 x 2 x 2 design. The embryos were exposed to vitrification media for 30 sec at 18 to 24 degrees C before vitrification. The in vitro survival rate was not affected by the level of BSA supplementation, but there was an interaction between the types and concentrations of cryoprotectants used (P<0.01). Embryos cryopreserved in mixtures of glycerol + propylene glycol survived better when the concentration of cryoprotectants was 3.5 M while the survival of embryos cryopreserved in mixtures of glycerol + ethylene glycol was higher at 4.5 M cryoprotectant concentration. In Experiments 2 and 3, the effect of the duration of exposure (15, 30, 60 or 120 sec) to vitrification media at 4 to 12 degrees C was investigated on the survival rate in vivo. Vitrification media contained 3.5 M glycerol + 3.5 M propylene glycol or 4.5 M glycerol + 4.5 M ethylene glycol in Experiments 2 and 3, respectively. The survival rate in vivo, increased when the duration of exposure to vitrification media was increased from 15 to 30 sec, but the viability declined when the duration of exposure was further increased to 60 (Experiment 3) or to 120 sec (Experiment 2). The effect of the stage of development was significant only in Experiment 1 (P = 0.032), but in all three experiments the rate of survival increased with advancing stages of development from late morulae to late blastocysts. The best result was achieved in Experiment 2, when embryos were exposed to a mixture of 3.5 M glycerol + 3.5 M propylene glycol for 30 or 60 sec. Under these conditions 52% (22 42 ) of rapidly cryopreserved sheep embryos developed into lambs. This result shows that a simple rapid procedure for the cryopreservation of sheep embryos can produce a survival rate comparable to that obtained using more complex traditional procedures.  相似文献   

14.
Destruction of ethylene glycol and diethylene glycol by Pseudomonas putida BS-2 culture under conditions of its batch cultivation has been studied for its physiological regularities. The specific rate of the biomass growth in the region of limiting substrate concentrations depends on the diethylene glycol concentration in the medium and follows the Mono equation. A semisaturation constant for diethylene glycol is 209 +/- 17 mg/d. The specific rate of the culture growth is independent of the ethylene glycol concentration in the medium within a wide range from 0.08 to 10 g/l. Kinetics of the bacteria growth inhibition by excess of substrates is a complex character and obeys none of the known models of the substrate inhibition.  相似文献   

15.
Poly(ethylene glycol) activated with tresyl chloride has been covalently linked to albumin as a result of a 2-h incubation in 0.05 M sodium phosphate buffer, pH 7.5, containing 0.125 M sodium chloride (0.344 OSM). The coupling of poly(ethylene glycol) to albumin was demonstrated by the increase in the partition coefficient of the protein in poly(ethylene glycol)-dextran aqueous two-phase systems. A linear relationship between the log of the partition coefficient of the poly(ethylene glycol)-albumin conjugate and the degree of modification (measured as the amino groups consumed during the coupling step) has been demonstrated. Countercurrent distribution in the two-phase system showed that poly(ethylene glycol)-albumin was heterogeneous with respect to its partitioning behavior, indicating that the albumin was not uniformly modified with poly(ethylene glycol).  相似文献   

16.
1. The oscillations in the peroxidase-oxidase reaction in an open system with NADH as the hydrogen donor are caused by the reaction starting and stopping at critical concentrations of the substrates O2 and NADH. The existence of such critical concentrations is typical of branched chain reactions. 2. The critical concentrations of O2 and NADH that determine the initiation of the reaction are mutually dependent. 3. The branching reactions that determine these critical concentrations involve compounds I and II. 4. Superoxide may be involved in the branching reactions by reacting with NADH and ferriperoxidase. At pH 5.1 the rate constant for the latter reaction is determined as 1.5 . 10(5) M-1 . s-1, whereas for the former reaction only an upper limit for the rate constant of 3.5 . 10(4) M-1 . s-1 could be estimated. These relatively low rate constants suggest that alternative branching reactions may also be involved.  相似文献   

17.
K Graves-Woodward  R F Pratt 《Biochemistry》1999,38(32):10533-10542
Kinetics studies in homogeneous aqueous solution showed that solubilized penicillin-binding protein 2a (sPBP2a) of methicillin-resistant Staphylococcus aureus (a bacterial DD-peptidase) was inhibited by the amphiphilic glycolipid antibiotic moenomycin. Inhibition at the peptidase site was determined by competition experiments between moenomycin and the chromophoric beta-lactam nitrocefin. Under conditions of high salt concentration (1 M NaCl), pseudo-first-order rate constants for the reaction of moenomycin with sPBP2a leading to inhibition of acylation by nitrocefin varied with moenomycin concentration in a biphasic fashion. At low moenomycin concentration (<20 microM) little inhibition occurred, but at higher concentrations a linear increase in rate constant with moenomycin concentration was observed, yielding a second-order rate constant of inhibition of 120 s(-)(1) M(-)(1). Since the cmc of moenomycin under these conditions was shown to be ca. 20 microM, the inhibition was concluded to arise from reaction of sPBP2a with a moenomycin micelle. Protein fluorescence studies showed a pseudo-first-order decrease in fluorescence on reaction of the protein with moenomycin. The variation of this rate constant with moenomycin concentration was consistent with reaction of a moenomycin monomer with the protein with a second-order rate constant of 650 s(-)(1) M(-)(1). This monomer reaction did not occur at the DD-peptidase site since its rate was unaffected by prior acylation of the enzyme by benzylpenicillin; nor did it inhibit reaction at that site by beta-lactams. Under low salt conditions (0.175 M NaCl) where reaction could be studied over a greater range of monomer concentrations since the cmc was ca. 120 microM, similar reactions were involved. Under these circumstances, inhibition was concerted with the reaction of moenomycin monomers, although fast premicellar aggregation of moenomycin with the protein also occurred. All moenomycin interactions with sPBP2a were reversible, as revealed by detergent-extraction chromatography. Lower limits to moenomycin off-rates and equilibrium dissociation constants were 7.7 x 10(-)(4) s(-)(1) and 1.2 microM, respectively. Other amphiphiles did not react in exactly the same manner as moenomycin, indicating some degree of specificity in reactions of the latter. sPBP2a did not have detectable affinity for lipid surfaces (Triton X-114 and phosphatidylglycerol vesicles). A general scheme for reaction of moenomycin with sPBP2a is proposed.  相似文献   

18.
Contribution of water to free energy of hydrolysis of pyrophosphate   总被引:2,自引:0,他引:2  
The energy of hydrolysis of phosphate compounds varies depending on whether they are in solution or bound to the catalytic site of enzymes. With the purpose of simulating the conditions at the catalytic site, the observed equilibrium constant for pyrophosphate hydrolysis (Kobsd) was measured in aqueous mixtures of dimethyl sulfoxide, ethylene glycol, or polymers of ethylene glycol. The reaction was catalyzed by yeast inorganic pyrophosphatase at 30 degrees C. All the cosolvents used promoted a decrease of Kobsd. Polymers of ethylene glycol were more effective than dimethyl sulfoxide or ethylene glycol in decreasing Kobsd. The higher the molecular weight of the polymer, the lower the value of Kobsd. A decrease in Kobsd from 346 M (delta G degree obsd = -3.5 kcal mol-1) to 0.1 M (delta G degree obsd = 1.3 kcal mol-1) was observed after the addition of 50% (w/v) poly(ethylene glycol) 8000 to a solution containing 0.9 mM MgCl2 and 1 mM Pi at pH 8.0. The association constants of Pi and pyrophosphate for H+ and Mg2+ were measured in presence of different ethylene glycol concentrations in order to calculate the Keq for hydrolysis of different ionic species of pyrophosphate. A decrease in all the Keq was observed. The results are interpreted according to the concept that the energy of hydrolysis of phosphate compounds depends on the different solvation energies of reactants and products.  相似文献   

19.
Lipase from Candida rugosa immobilized on a nylon support has been used to synthesize lovastatin, a drug which lowers serum cholesterol levels, by the regioselective acylation of a diol lactone precursor with 2-methylbutyric acid in mixtures of organic solvents. Analogs of lovastatin having a different side chain were also obtained through this method by reacting the diol substrate with different carboxylic acids. The selection of reaction conditions that maximize the initial reaction rate is investigated. Since the diol substrate has very low solubility in non-polar solvents, reaction solvents consisting of mixtures of hexane with a different, more polar cosolvent are considered. For each of the cosolvent mixtures studied, the reaction rate is maximum for an intermediate percentage of cosolvent in hexane. With total concentrations of the diol lactone in the range 6.25-12.5 mM, maximum initial rates correspond approximately to those cosolvent concentrations that permit a complete solubilization of the substrate. At higher cosolvent concentrations, lower rates are obtained. When considering the same dissolved substrate concentration, the reaction rate was found to increase with increasing values of logP(mix) and decreasing values of the dielectric constant, when varying the composition of a binary solvent mixture. However, when comparing different cosolvents, no general trend with respect to these properties was observed. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56:671-680, 1997.  相似文献   

20.
Properties of the reactions of cis-dichlorodiammine Pt(II) and related complexes with zinc metallothionein or apometallothionein have been investigated. During these reactions, platinum binds stoichiometrically to protein sulfhydryl groups and zinc, if present, is displaced. The ammine ligands are also lost in the process, suggesting that Pt(II) has tetrathiolate coordination in metallothionein. This conclusion is supported by extended x-ray absorption-fine structure studies which indicate that there are 4 sulfurs in the first coordination sphere of the platinum centers. The product contains 10 +/- 2 Pt(II) per mol of protein and migrates over Sephadex G-75 as a structure of similar size to zinc metallothionein. The kinetics of reaction are biphasic as monitored by the formation of Pt-thiolate bonds or by the release of zinc from the protein. Both methods yield identical rate laws for the reaction. The first step is independent of Pt(II) concentration but involves the binding of as many as four platinum atoms to the protein with little Pt-sulfhydryl bond formation and without much loss of zinc. The second rate process is first order in both zinc or sulfhydryl binding sites and Pt(II). Neither kinetic step is sensitive to the chloride ion concentration over the range 0-0.5 M. However, the reaction is sensitive to pH between 5.5 and 8.0. trans-Dichlorodiammineplatinum(II) reacts with zinc metallothionein with similar kinetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号