首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Allosteric and Non-Allosteric Regulation of Rubidium Influx in Barley Roots   总被引:1,自引:0,他引:1  
Uptake of Rb+ was investigated in 6–8-day-old intact barley plants (Hordeum vulgare cv. Kristina), which had been cultivated or pretreated in nutrient solutions with various K+ concentrations. The relationship between Rb+ influx and the K+ concentration of roots appeared to be sigmoidal for plants grown in solutions containing K+, indicating regulation of Rb+ uptake by allosteric inhibition of the uptake mechanism. Pretreatment of the roots in K+-free solutions changed the pattern of uptake and caused the Rb+ influx to become linearly related to the chemical Rb+ potential of the uptake solution. Pretreatment in K+-free solutions probably abolishes the allosteric inhibition of a carrier system.  相似文献   

2.
Root cells take up K+ from the soil solution, and a fraction of the absorbed K+ is translocated to the shoot after being loaded into xylem vessels. K+ uptake and translocation are spatially separated processes. K+ uptake occurs in the cortex and epidermis whereas K+ translocation starts at the stele. Both uptake and translocation processes are expected to be linked, but the connection between them is not well characterized. Here, we studied K+ uptake and translocation using Rb+ as a tracer in wild‐type Arabidopsis thaliana and in T‐DNA insertion mutants in the K+ uptake or translocation systems. The relative amount of translocated Rb+ to the shoot was positively correlated with net Rb+ uptake rates, and the akt1 athak5 T‐DNA mutant plants were more efficient in their allocation of Rb+ to shoots. Moreover, a mutation of SKOR and a reduced plant transpiration prevented the full upregulation of AtHAK5 gene expression and Rb+ uptake in K+‐starved plants. Lastly, Rb+ was found to be retrieved from root xylem vessels, with AKT1 playing a significant role in K+‐sufficient plants. Overall, our results suggest that K+ uptake and translocation are tightly coordinated via signals that regulate the expression of K+ transport systems.  相似文献   

3.
Uptake of Rb+ was investigated in 12-day-old intact plants of sunflower (Helianthus annum L. var. californicus) which had been cultivated or pretreated in nutrient solutions with various K+ concentrations. The relationship between Rb+ influx and K+ concentration of the roots indicated regulation of Rb+ uptake by allosteric inhibition of the uptake mechanism. A constant passive influx occurred contemporaneously with the active uptake as shown by experiments at 0°C or with 2,4-dinitrophenol. The allosteric regulation of ion carrier activity occurred after a time lag of up to 1 h after the change of external solution. In experiments involving Rb+ treatments of K+-deficient plants, the synthesis of carriers for transport of Rb+ could be demonstrated. A model including allosteric regulation of Rb+ uptake in roots is discussed.  相似文献   

4.
Su Q  Feng S  An L  Zhang G 《Biotechnology letters》2007,29(12):1959-1963
High-affinity K+ transporters play an important role in K+ absorption of plants. We isolated a HAK gene from Aeluropus littoralis, a graminaceous halophyte. The amino acid sequence of AlHAK showed high homology with HAK transporters obtained from Oryza sativa (82%) and Hordeum vulgare (82%). When expressed in Saccharomyces cereviae WΔ3, AlHAK performed high-affinity K+ uptake with a Km value of 8 μM, and the growth of transformants was dramatically inhibited by 150 mM Rb+ and 150 mM Cs+ but less affected by 300 mM Na+. AlHAK may thus improve the capacity of plants to maintain a high cytosolic K+/Na+ ratio at high salinity.  相似文献   

5.
《Life sciences》1993,52(24):PL273-PL278
3H-ouabain binding and ouabain-inhibitable 86Rb+ (K+) uptake were investigated as a means to identify a third isoform of Na+, K+-ATPase in crude synaptosome preparations. The specific binding of low concentrations (10 nM and 1 uM) of 3H-ouabain, in crude synaptosome preparations, was markedly inhibited by K+ (0.5–5 mM). Accordingly, 86Rb+ (K+) uptake, in the presence of 5 mM K+ was not sensitive to inhibition by low concentrations (10−11–10−7 M) of ouabain. Higher concentrations (10−6–10−2.6 M) of ouabain resulted in a biphasic inhibition of K+ uptake, which distinguished the activities of the presumed alpha 2 and alpha 1 isozymes of Na+, K+-ATPase. Reduction of K+ (1.25 mM and 0.5 mM) in the incubation, resulted in the observation of a third component of ouabain- sensitive K+ uptake. This Na+, K+-ATPase activity, which was defined, pharmacologically, as very sensitive (VS) to ouabain, exhibited IC50s of 3.6 nM and 92 nM at 1.25 mM K+ and 0.5 mM K+, respectively. Inhibition of ouabain binding and VS-dependent K+ uptake, at a high, physiological cocentration (5 mM) of K+, suggests that VS may be an inactive isoform of brain Na+, K+-ATPase under resting conditions.  相似文献   

6.
Summary The effect of abscisic acid (ABA) on uptake of potassium (86Bb+ or 42K+) by Avena sativa L. coleoptile sections was investigated. ABA lowered the potassium uptake rate within 30 min after its application and inhibition reached a maximum (ca. 75%) after 2 h. The inhibition of K+ uptake increased with ABA concentration over a range of 0.03 to 10 g/ml ABA. At a higher K+ concentration (20 mM) the percentage inhibition decreased. The percentage inhibition of K+ uptake by ABA remained constant with external K+ varied from 0.04 to 1.0 mM. After a loading period in 20 mM K+ (86Rb+), apparent efflux of potassium was only slightly increased by ABA. Experiments in which growth was greatly reduced by mannitol or by omission of indole-3-acetic acid from the medium indicated there was no simple quantitative correspondence between ABA inhibition of coleoptile elongation and ABA inhibition of K+ uptake. Chloride uptake was also inhibited by ABA but to a smaller degree than was K+ uptake. No specificity for counterions was observed for K+ uptake. Uptake of 3,0-methylglucose and proline were inhibited by ABA to a much smaller extent (14 and 11%) than that of K+, a result which suggests that ABA acts on specific ion uptake mechanisms.  相似文献   

7.
The K+ uptake pathways in yeast mitochondria are still undefined. Nonetheless, the K+-mediated mitochondrial swelling observed in the absence of phosphate (PO4) and in the presence of a respiratory substrate has led to propose that large K+ movements occur in yeast mitochondria. Thus, the uptake of K+ by isolated yeast mitochondria was evaluated. Two parallel experiments were conducted to evaluate K+ transport; these were mitochondrial swelling and the uptake of the radioactive K+ analog 86Rb+. The opening of the yeast mitochondrial unspecific channel (YMUC) was regulated by different PO4 concentrations. The high protein concentrations used to measure 86Rb+ uptake resulted in a slight stabilization of the transmembrane potential at 0.4 mM PO4 but not at 0 or 4 mM PO4. At 4 mM PO4 swelling was inhibited while, in contrast, 86Rb+ uptake was still observed. The results suggest that an energy-dependent K+ uptake mechanism was unmasked when the YMUC was closed. To further analyze the properties of this K+ uptake system, the Mg2+ and quinine sensitivity of both swelling and 86Rb+ uptake were evaluated. Under the conditions where the unspecific pore was closed, K+ transport sensitivity to Mg2+ and quinine increased. In addition, when Zn2+ was added as an antiport inhibitor, uptake of 86Rb+ increased. It is suggested that in yeast mitochondria, the K+ concentration is highly regulated by the equilibrium of uptake and exit of this cation through two specific transporters.  相似文献   

8.
Two modes of rubidium uptake in sunflower plants   总被引:6,自引:0,他引:6       下载免费PDF全文
The Rb+-uptake kinetics in K+-starved sunflower (Helianthus annuus) plants can be explained by the addition of two Michaelis-Menten equations. In contrast, Rb+ uptake can be described by a single Michaelis-Menten equation in normal-K+ plants. Differences in the Kms and in the Arrhenius plots of Rb+ uptake in the two types of plants suggest two uptake modes.  相似文献   

9.
The influx of Rb+ into the roots of two barley varieties (Hordeum vulgare L. cv. Salve and cv. Ingrid) from a K+-free 86Rb-labelled nutrient solution with 2.0 mM Rb+, was checked at intervals from day 6 to day 18. The control plants were continuously grown in complete nutrient solution containing 5.0 mM K+, while two other groups of plants were grown in K+-free nutrient solution starting on day 6 and between day 6 and day 9, respectively. The pattern of Rb+ influx was similar for both varieties, although their efficiencies in absorbing Rb+ were different. The relationship between Rb+ influx and K+ concentration of the root could be interpreted in terms of negative feedback through allosteric control of uptake across the plasmalemma of the root cells. Hill plots were bimodal, but in the opposite direction. The Hill coefficients, reflecting the minimum number of interacting allosteric binding sites for K+ (Rb+), were low (≤–3.0). It is discussed whether the threshold value, that is the breaking point in the Hill plot, is indicative of a changed efficiency of transporting units for K+ (Rb+) transport to the xylem. Moreover, feedback regulation might be involved in transport of K+ between root and shoot. The variation in K+ concentrations in the roots and shoots of control plants were cyclic but in phase opposition despite an exponential growth. The average K+ concentration varied only slightly with age.  相似文献   

10.
The short-term effects of auxin (indole-3-acetic acid) and fusicoccin (FC) on Rb+ uptake and malate accumulation in Avena sativa L. coleoptile sections have been investigated. FC stimulates 86Rb+ uptake within 1 min while auxin-enhanced uptake begins after a 15–20-min lag period. Auxin has little or no effect on 86Rb+ uptake at external pHs of 6.0 or less, but substantial auxin effects can be observed in the range of pH 6.5 to 7.5. Competition studies indicate that the uptake mechanism is specific for Rb+ and K+. After 3 h of auxin treatment the total amount of malate in the coleoptile sections is doubled compared to control sections. FC causes a doubling of malate levels within 60 min of treatment. Auxin-induced malate accumulation exhibits a sensitivity to inhibitors and pH which is similar to that observed for the H+-extrusion and Rb+-uptake responses. Both auxin- and FC-enhanced malate accumulation are stimulated by monovalent cations but this effect is not specific for K+.Abbreviations FC fusicoccin - IAA indole-3-acetic acid  相似文献   

11.
Errata     
1. (1) The significance of the specific (ouabain-sensitive) 86Rb+ or 42K+ uptake by cardiac muscle preparations which are not ‘sodium-loaded’ was studied.
2. (2) In left atrial preparations of guinea-pig heart, resting 86Rb+ uptake was relatively low. It was markedly increased by electrical stimulation. This stimulated uptake was further enhanced by isoproterenol and inhibited by verapamil.
3. (3) In rat atria, the resting 86Rb+ uptake was somewhat higher than in guinea-pig atria, and the increase in uptake caused by electrical stimulation was smaller. In guinea-pig right ventricular papillary muscle, the resting uptake was highest among those tissues studied, and the response to electrical stimulation was smallest. In the latter tissue, verapamil produced only a minimal inhibition of the specific 86Rb+ uptake.
4. (4) The effect of the frequency of electrical stimulation on 86Rb+ uptake paralleled its influence on the force of contraction, suggesting the involvement of intracellular sodium in both events.
5. (5) In both left atrial and right papillary muscle preparations of guinea-pig heart, specific 42K+ uptake observed with 5.8 mM K+ was relatively high, and was increased only slightly by electrical stimulation. This electrical stimulation, however, increased ouabain-induced inhibition of 42K+ uptake, suggesting that the stimulation increases the amount of Na+ available to the sodium pump.
6. (6) When the K+ concentration was 1 mM, the resting 42K+ uptake was low, and could be enhanced by electrical stimulation.
Keywords: Rb+ uptake; K+ uptake; Electrical stimulation; Na+ influex; (Cardiac muscle)  相似文献   

12.
The contribution of K+ accumulation to cell turgor pressurewas investigated in the gas-vacuolate blue-green alga Anabaenaflos-aquae. The cell turgor pressure, measured by the gas vesiclemethod, drops in cells suspended in culture medium depletedof K+ but rapidly rises again, by 100 kPa or more, when K+ isresupplied. A similar though rather slower rise in turgor pressureis supported by an equivalent concentration of Rb+. The internalK+ concentration rose from 66 to 91 mM when K+ was suppliedat an external concentration of 0.4 mM. This rise was light-dependent.Greater increases in internal K+ concentration and turgor pressureoccurred when K+ was supplied at a higher concentration, 3.6mM. In both cases over 60% of the observed turgor pressure risecould be accounted for by accumulation of K+. The turgor pressurerise supported by light-stimulated K+ uptake can cause collapseof enough of the alga's gas vesicles to destroy its buoyancy.The effect of K+ availability on buoyancy regulation by planktonicblue-green algae is discussed.  相似文献   

13.
Diethard Köhler 《Planta》1968,84(2):158-165
Summary Five to 6 day old dark-adapted dwarf and tall pea seedlings grown in water culture were illuminated for ten minutes with red light and/or ten minutes with far-red light, and 90 to 170 minutes later their roots were immersed in a 0.2 mM K+ solution containing labeled 86Rb+. After two hours uptake the fresh-weights and radioactivities of the shoot organs were determined. It was found that red light inhibits K+uptake into internodes and promotes uptake into the plumula. The red-light effect on K+transport precedes the red-light induced growth inhibition of internodes and growth promotion of leaves and is abolished by far-red light given immediately after red. The red-light effect on K+transport is independent of the concentration of K+ given to the roots in the range between 0.2 to 125 mM.  相似文献   

14.
The apparent Km of Rb+ uptake and the zeta potential of yeast cells are appreciably affected by changes in the pH, variation of the concentration of the buffer cation Tris+ and addition of Ca2+ to the suspending medium. Irrespective of the way in which the zeta potential is affected, a direct relationship between the apparent Km of the Rb+ uptake and the zeta potential is observed. A reduction of 8 mV in the zeta potential is accompanied by a 20-fold increase in the apparent Km, which illustrates that electrostatic effects in ion uptake cannot be ignored. Measured zeta potentials are, to a good approximation, linearly related to surface potentials evaluated from a kinetic analysis of the Rb+ uptake. This shows the practical use of the zeta potential as a measure of the surface potential in studies of electrostatic effects in ion uptake by yeast. It is concluded that Tris+ and the aikaline earth cations inhibit the Rb+ uptake in yeast exclusively via a reduction in the surface potential. Protons, in addition, exert a competitive inhibition.  相似文献   

15.
We report here on the putative coupling between a high affinity K+ uptake system which operates at low external K+ concentrations (Km = 10-20 micromolar), and H+ efflux in roots of intact, low-salt-grown maize plants. An experimental approach combining electrophysiological measurements, quantification of unidirectional K+(86Rb+) influx, and the simultaneous measurement of net K+ and H+ fluxes associated with individual cells at the root surface with K+- and H+-selective microelectrodes was utilized. A microelectrode system described previously (IA Newman, LV Kochian, MA Grusak, and WJ Lucas [1987] Plant Physiol 84: 1177-1184) was used to quantify net ion fluxes from the measurement of electrochemical potential gradients for K+ and H+ ions within the unstirred layer at the root surface. No evidence for coupling between K+ uptake and H+ efflux could be found based on: (a) extremely variable K+:H+ flux stoichiometries, with K+ uptake often well in excess of H+ efflux; (b) dramatic time-dependent variability in H+ extrusion when both fluxes were measured at a particular location along the root over time; and (c) a lack of pH sensitivity by the high affinity K+ uptake system (to changes in external pH) when net K+ uptake, unidirectional K+(86Rb+) influx, and K+-induced depolarizations of the membrane potential were determined in uptake solutions buffered at pH values from pH 4 to 8. Based on the results presented here, we propose that high affinity active K+ absorption into maize root cells is not mediated by a K+/H+ exchange mechanism. Instead, it is either due to the operation of a K+-H+ cotransport system, as has been hypothesized for Neurospora, or based on the striking lack of sensitivity to changes in extracellular pH, uptake could be mediated by a K+-ATPase as reported for Escherichia coli and Saccharomyces.  相似文献   

16.
H+-pumping adenosinetriphosphatases (ATPases, EC 3.6.1.3) were demonstrated in sealed microsomal vesicles of tobacco callus. Quinacrine fluorescence quenching was induced specifically by MgATP and stimulated by EGTA and Cl?. Fluorescence quenching reflected a relative measure of pH gradient formation (inside acid), as it could be reversed by gramicidin (an H+/cation conductor) or 10 mM NH4Cl (an uncoupler). H+ pumping was inhibited by tributyltin (an ATPase inhibitor) and sodium vanadate, but it was insensitive to oligomycin or fusicoccin. The vanadate concentration required to inhibit pH gradient formation was similar to that needed to inhibit KCl-stimulated Mg2+-ATPase activity and generation of a membrane potential (measured by ATP-dependent 35SCN? uptake). About 45% of all three activities (ATPase, pH gradient, membrane potential generation) were vanadate-insensitive, supporting the idea that non-mitochondrial membranes of plants have at least two types of electrogenic H+ pump.A vanadate-insensitive, H+-pumping ATPase previously shown by methylamine accumulation was characterized to be anion-sensitive and possibly enriched in vacuolar membranes (Churchill, K.A. and Sze, H. (1983) Plant Physiol. 71, 610–617). Yet, pH gradient formation determined by quinacrine fluorescence quenching was decreased by monovalent cations with a sequence K+, Rb+, Na+ > Cs+,Li+> choline, bisTris-propane. Since K+ stimulated ATPase activity more than Bistris-propane, K+ appeared to collapse formation of the pH gradient by an H+/K+ countertransport. The sensitivity to vanadate and K+ provides evidence that the plasma-membrane ATPase is an electrogenic H+ pump.  相似文献   

17.
Two ionophores, monensin and salinomycin, increased total cell Na+ and ouabain-sensitive 86Rb+ uptake in cultures of smooth muscle cells from rat aorta. Monensin was used to produced graded increases in cell Na+ in order to assess the Na+ dependence of the Na+/K+ pump in the intact cell. The relationship between internal Na+ and ouabain-sensitive 86Rb+ uptake was hyperbolic (K1Na = 3 mM). Monensin did not stimulate 86Rb+ uptake in the absence of external Na+. Loading the cells with Na+ by exposing cultures to a K+-free medium for 3 hr maximally increased cell Na+ and ouabain-sensitive 86Rb+ uptake to the same extent as monensin. Total cell Na+ and pump activity in monensin-treated cells returned to the initial values after removing the ionophore. Monensin was then able to increase total cell Na+ and ouabain-sensitive 86Rb+ uptake to the same extent as the initial treatment with the ionophore.  相似文献   

18.

Background and aims

Salinity is an increasing problem for agricultural production worldwide. Understanding how Na+ enters plants is important if reducing Na+ influx, a key component of the regulation of Na+ accumulation in plants and improving salt tolerance of crop plants, is to be achieved. Our previous work indicated that two distinct low-affinity Na+ uptake pathways exist in the halophyte Suaeda maritima. Here, we report the external NaCl concentration at which uptake switches from pathway 1 to pathway 2 and the kinetics of the interaction between external K+ concentration and Na+ uptake and accumulation in S. maritima in order to determine the roles of K+ transporters or channels in low-affinity Na+ uptake.

Methods

Na+ influx, Na+ and K+ accumulations in S. maritima exposed to various concentrations of NaCl (0–200 mM) were analyzed in the absence and presence of the inhibitors TEA and Ba+ (5 mM TEA or 3 mM Ba2+) or KCl (0, 10 or 50 mM).

Results

Our earlier proposal was confirmed and extended that there are two distinct low-affinity Na+ uptake pathways in S. maritima: pathway 1 might be mediated by a HKT-type transporter under low salinity conditions and pathway 2 by an AKT1-type channel or a KUP/HAK/KT type transporter under high salinity conditions. The external NaCl concentration at which two distinct low-affinity Na+ uptake switches from pathway 1 to pathway 2, the ‘turning point’, is between 90 and 95 mM. Over a short period (12 h) of Na+ and K+ treatments, a low concentration of K+ (10 mM) facilitated Na+ uptake by S. maritima under high salinity (100–200 mM NaCl), whether or not the plants had been subjected to a longer (3 d) period of K+ starvation. The kinetics suggests that low concentration of K+ (10 mM) might activate AKT1-type channels or KUP/HAK/KT-type transporters under high salinity (100–200 mM NaCl).

Conclusions

The turning-point of external NaCl concentrations for the two low-affinity Na+ uptake pathways in Suaeda maritima is between 90 and 95 mM. A low concentration of K+ (10 mM) might activate AKT1 or KUP/HAK/KT and facilitate Na+ uptake under high salinity (100–200 mM NaCl). The kinetics of K+ on Na+ uptake and accumulation in S maritima are also consistent with there being two low-affinity Na+ uptake pathways.  相似文献   

19.
The effects of ouabain on the growth of murine lymphoblasts in vitro have been studied. Exposure of cells to ouabain (0.1 mM) initially inhibited 86Rb+ uptake rate, reduced the intracellular potassium concentration, and decreased population growth rates. Continued exposure to the same ouabain concentration resulted in an increase of 86Rb+ uptake rate, intracellular potassium content and population growth rates to control values (adaptation). When treated cells were resuspended in medium free of ouabain after 12 to 15 hours of ouabain treatment, 86Rb+ uptake rates and intracellular potassium levels exceeded those of untreated cells. Adaptation was inhibited by cycloheximide (3 μg/ml) and by actinomycin D (0.05 μg/ml). Kinetic analysis of transport suggested that while the total capacity of the Na+, K+ transport system increased, the affinity for both the cation (86Rb+) and ouabain decreased.  相似文献   

20.
Lepe BG  Avila EJ 《Plant physiology》1975,56(4):460-463
It has been shown that plants can accumulate K+ through an energy-dependent process. The effect of alkylguanidines, in particular octylguanidine on the uptake of 86Rb+ by excised barley roots (Hordeum vulgare var. Apizaco LV-72), has been studied. 86Rb+ was used as tracer of K+. The uptake of 86Rb+ which is linear with time and shows saturation kinetics is inhibited by octylguanidine. Half-maximal inhibition of 86Rb+ uptake is attained at 50 μM octylguanidine. Octylguanidine induces a decrease in the Vmax of the process and increases the Km of the system for Rb+. When the effects of various alkylguanidines were studied, the following order of effectiveness was encountered; octylguanidine = hexilguanidine > butylguanidine > ethylguanidine > guanidine. This suggests that guanidines inhibit Rb+ uptake by interacting through its positively charged guanidinium group with a Rb+ carrier while the alkyl chain interacts with the hydrophobic milieu of the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号