首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The kinetics of CO binding by the cytochrome c oxidase of pigeon heart mitochondria were studied as a function of membrane energization at temperatures from 180 to 280 degrees K in an ethylene glycol/water medium. Samples energized by ATP showed acceleration of CO binding compared to those untreated or uncoupled by carbonylcyanide p-trifluoromethyoxyphenylhydrazone but only at relatively low temperatures and high CO concentrations. Experiments using samples in a "mixed valency" (partially oxidized) state showed that the acceleration of ligand binding is not due to the formation of a partially oxidized state via reverse electron transport. It is concluded that in the deenergized state one CO molecule can be closely associated with the cytochrome a3 heme site without actually being bound to the heme iron; in the energized state, two or more ligand molecules can occupy this intermediate position. The change in the apparent ligand capacity of a region near the heme iron in response to energization is evidence for an interaction between cytochrome oxidase and the ATPase system. Furthermore, these results suggest a control mechanism for O2 binding.  相似文献   

2.
Salicylhydroxamic acid inhibits myeloperoxidase activity.   总被引:3,自引:0,他引:3  
Salicylhydroxamic and benzohydroxamic acids were found to bind to the resting state of myeloperoxidase and inhibit ligand binding to the heme iron. An ionizable group on the enzyme with pKa = 4 affects salicylhydroxamic acid binding; binding occurs when this group is not protonated. The binding of the heme iron ligands (e.g. cyanide, nitrite, and chloride) is probably controlled by the same ionizable group. The equilibrium dissociation constant of the salicylhydroxamic acid-myeloperoxidase complex is about 2 x 10(-6) M, and the association rate constant is 7.4 x 10(6) M-1.s-1. Salicylhydroxamic acid serves as a donor to the higher oxidation state of myeloperoxidase and thereby inhibits guaiacol oxidation. Salicylhydroxamic acid was also found to bind to intestinal peroxidase and lactoperoxidase. Salicylhydroxamic acid binding to all three mammalian peroxidases was about 3 orders of magnitude stronger than benzohydroxamic acid binding. We conclude that the salicylhydroxamic and benzohydroxamic acids bind in the distal heme cavity of these peroxidases and interact with the heme ligand binding site.  相似文献   

3.
Nitrophorin 4 (NP4) is one of seven nitric oxide (NO) transporting proteins in the blood-sucking insect Rhodnius prolixus. In its physiological function, NO binds to a ferric iron centered in a highly ruffled heme plane. Carbon monoxide (CO) also binds after reduction of the heme iron. Here we have used Fourier transform infrared spectroscopy at cryogenic temperatures to study CO and NO binding and migration in NP4, complemented by x-ray cryo-crystallography on xenon-containing NP4 crystals to identify cavities that may serve as ligand docking sites. Multiple infrared stretching bands of the heme-bound ligands indicate different active site conformations with varying degrees of hydrophobicity. Narrow infrared stretching bands are observed for photodissociated CO and NO; temperature-derivative spectroscopy shows that these bands are associated with ligand docking sites close to the extremely reactive heme iron. No rebinding from distinct secondary sites was detected, although two xenon binding cavities were observed in the x-ray structure. Photolysis studies at approximately 200 K show efficient NO photoproduct formation in the more hydrophilic, open NP4 conformation. This result suggests that ligand escape is facilitated in this conformation, and blockage of the active site by water hinders immediate reassociation of NO to the ferric iron. In the closed, low-pH conformation, ligand escape from the active site of NP4 is prevented by an extremely reactive heme iron and the absence of secondary ligand docking sites.  相似文献   

4.
Hemoglobin and related heme proteins, generally referred to as 'globins', reversibly bind gaseous diatomic ligands (O2, NO, and CO) to a penta-coordinate heme iron atom, the ligand filling the sixth coordination site. Over the last decade, several new globins have been reported to display a functionally-relevant hexa-coordinate heme iron atom, whose sixth coordination site is taken by an endogenous protein ligand. The reversible intramolecular hexa- to penta-coordination process at the heme-Fe atom modulates exogenous ligand binding properties of hexa-coordinate globins. Here, we review current knowledge on hexa-coordinate globins in terms of their structural and functional properties.  相似文献   

5.
Heme oxygenase catalyzes the first step in the oxidative degradation of heme. The crystal structure of heme oxygenase-1 (HO-1) reported here reveals a novel helical fold with the heme sandwiched between two helices. The proximal helix provides a heme iron ligand, His 25. Conserved glycines in the distal helix near the oxygen binding site allow close contact between the helix backbone and heme in addition to providing flexibility for substrate binding and product release. Regioselective oxygenation of the alpha-meso heme carbon is due primarily to steric influence of the distal helix.  相似文献   

6.
H.J. Harmon  M. Sharrock 《BBA》1978,503(1):56-66
The kinetics of CO binding by the cytochrome c oxidase of pigeon heart mitochondria were studied as a function of membrane energization at temperatures from 180 to 280°K in an ethylene glycol/water medium. Samples energized by ATP showed acceleration of CO binding compared to those untreated or uncoupled by carbonylcyanide p-trifluoromethoxyphenylhydrazone but only at relatively low temperatures and high CO concentrations. Experiments using samples in a “mixed valency” (partially oxidized) state showed that the acceleration of ligand binding is not due to the formation of a partially oxidized state via reverse electron transport.It is concluded that in the deenergized state one CO molecule can be closely associated with the cytochrome a3 heme site without actually being bound to the heme iron; in the energized state, two or more ligand molecules can occupy this intermediate position.The change in the apparent ligand capacity of a region near the heme iron in response to energization is evidence for an interaction between cytochrome oxidase and the ATPase system. Furthermore, these results suggest a control mechanism for O2 binding.  相似文献   

7.
The pentaheme cytochrome c nitrite reductase (NrfA) of Escherichia coli is responsible for nitrite reduction during anaerobic respiration when nitrate is scarce. The NrfA active site consists of a hexacoordinate high-spin heme with a lysine ligand on the proximal side and water/hydroxide or substrate on the distal side. There are four further highly conserved active site residues including a glutamine (Q263) positioned 8 A from the heme iron for which the side chain, unusually, coordinates a conserved, essential calcium ion. Mutation of this glutamine to the more usual calcium ligand, glutamate, results in an increase in the K m for nitrite by around 10-fold, while V max is unaltered. Protein film voltammetry showed that lower potentials were required to detect activity from NrfA Q263E when compared with native enzyme, consistent with the introduction of a negative charge into the vicinity of the active site heme. EPR and MCD spectroscopic studies revealed the high spin state of the active site to be preserved, indicating that a water/hydroxide molecule is still coordinated to the heme in the resting state of the enzyme. Comparison of the X-ray crystal structures of the as-prepared, oxidized native and mutant enzymes showed an increased bond distance between the active site heme Fe(III) iron and the distal ligand in the latter as well as changes to the structure and mobility of the active site water molecule network. These results suggest that an important function of the unusual Q263-calcium ion pair is to increase substrate affinity through its role in supporting a network of hydrogen bonded water molecules stabilizing the active site heme distal ligand.  相似文献   

8.
The ubiquitous use of heme in animals poses severe biological and chemical challenges. Free heme is toxic to cells and is a potential source of iron for pathogens. For protection, especially in conditions of trauma, inflammation and hemolysis, and to maintain iron homeostasis, a high-affinity binding protein, hemopexin, is required. Hemopexin binds heme with the highest affinity of any known protein, but releases it into cells via specific receptors. The crystal structure of the heme-hemopexin complex reveals a novel heme binding site, formed between two similar four-bladed beta-propeller domains and bounded by the interdomain linker. The ligand is bound to two histidine residues in a pocket dominated by aromatic and basic groups. Further stabilization is achieved by the association of the two beta-propeller domains, which form an extensive polar interface that includes a cushion of ordered water molecules. We propose mechanisms by which these structural features provide the dual function of heme binding and release.  相似文献   

9.
We have examined the effects of active site residues on ligand binding to the heme iron of mouse neuroglobin using steady-state and time-resolved visible spectroscopy. Absorption spectra of the native protein, mutants H64L and K67L and double mutant H64L/K67L were recorded for the ferric and ferrous states over a wide pH range (pH 4-11), which allowed us to identify a number of different species with different ligands at the sixth coordination, to characterize their spectroscopic properties, and to determine the pK values of active site residues. In flash photolysis experiments on CO-ligated samples, reaction intermediates and the competition of ligands for the sixth coordination were studied. These data provide insights into structural changes in the active site and the role of the key residues His64 and Lys67. His64 interferes with exogenous ligand access to the heme iron. Lys67 sequesters the distal pocket from the solvent. The heme iron is very reactive, as inferred from the fast ligand binding kinetics and the ability to bind water or hydroxyl ligands to the ferrous heme. Fast bond formation favors geminate rebinding; yet the large fraction of bimolecular rebinding observed in the kinetics implies that ligand escape from the distal pocket is highly efficient. Even slight pH variations cause pronounced changes in the association rate of exogenous ligands near physiological pH, which may be important in functional processes.  相似文献   

10.
The multidomain fatty-acid hydroxylase flavocytochrome P450 BM3 has been studied as a paradigm model for eukaryotic microsomal P450 enzymes because of its homology to eukaryotic family 4 P450 enzymes and its use of a eukaryotic-like diflavin reductase redox partner. High-resolution crystal structures have led to the proposal that substrate-induced conformational changes lead to removal of water as the sixth ligand to the heme iron. Concomitant changes in the heme iron spin state and heme iron reduction potential help to trigger electron transfer from the reductase and to initiate catalysis. Surprisingly, the crystal structure of the substrate-free A264E heme domain mutant reveals the enzyme to be in the conformation observed for substrate-bound wild-type P450, but with the iron in the low-spin state. This provides strong evidence that the spin-state shift observed upon substrate binding in wild-type P450 BM3 not only is caused indirectly by structural changes in the protein, but is a direct consequence of the presence of the substrate itself, similar to what has been observed for P450cam. The crystal structure of the palmitoleate-bound A264E mutant reveals that substrate binding promotes heme ligation by Glu(264), with little other difference from the palmitoleate-bound wild-type structure observable. Despite having a protein-derived sixth heme ligand in the substrate-bound form, the A264E mutant is catalytically active, providing further indication for structural rearrangement of the active site upon reduction of the heme iron, including displacement of the glutamate ligand to allow binding of dioxygen.  相似文献   

11.
Crystals of cytochrome b5 reduced by sodium dithionite are isomorphous with the oxidized form. An electron density difference map between the two forms was calculated at 2.8 A resolution. There are no changes in main chain conformation or internal side chain orientation upon reduction. However, an ion becomes attached at the entrance of the heme crevice causing displacement of a surface lysine side chain on an adjacent molecule. The ion, identified as a cation by the nature of its coordinating ligands, appears to neutralize one of the heme propionate groups which is partially buried. It is proposed that the negatively charged propionate serves to neutralize the net formal positive charge on the heme iron in the oxidized cytochrome and that the neutralization of the heme iron upon reduction then leads to binding of a cation to the propionate.  相似文献   

12.
Neuroglobin, a recently discovered globin predominantly expressed in neuronal tissue of vertebrates, binds small, gaseous ligands at the sixth coordination position of the heme iron. In the absence of an exogenous ligand, the distal histidine (His64) binds to the heme iron in the ferrous and ferric states. The crystal structure of murine ferric (met) neuroglobin at 1.5 A reveals interesting features relevant to the ligand binding mechanism. Only weak selectivity is observed for the two possible heme orientations, the occupancy ratio being 70:30. Two small internal cavities are present on the heme distal side, which enable the His64(E7) side chain to move out of the way upon exogenous ligand binding. Moreover, a third, huge cavity (volume approximately 290 A3) connecting both sides of the heme, is open towards the exterior and provides a potential passageway for ligands. The CD and EF corners exhibit substantial flexibility, which may assist ligands in entering the protein and accessing the active site. Based on this high-resolution structure, further structure-function studies can be planned to elucidate the role of neuroglobin in physiological responses to hypoxia.  相似文献   

13.
We have previously shown [Badyal, S. K., et al. (2006) J. Biol. Chem. 281, 24512-24520] that the distal histidine (His42) in the W41A variant of ascorbate peroxidase binds to the heme iron in the ferric form of the protein but that binding of the substrate triggers a conformational change in which His42 dissociates from the heme. In this work, we show that this conformational rearrangement also occurs upon reduction of the heme iron. Thus, we present X-ray crystallographic data to show that reduction of the heme leads to dissociation of His42 from the iron in the ferrous form of W41A; spectroscopic and ligand binding data support this observation. Structural evidence indicates that heme reduction occurs through formation of a reduced, bis-histidine-ligated species that subsequently decays by dissociation of His42 from the heme. Collectively, the data provide clear evidence that conformational movement within the same heme active site can be controlled by both ligand binding and metal oxidation state. These observations are consistent with emerging data on other, more complex regulatory and sensing heme proteins, and the data are discussed in the context of our developing views in this area.  相似文献   

14.
Cytochrome P-450cam in the native, substrate-free state (Fe3+, S = 1/2) substantially reduces the NMR relaxation times, T1 and T2, of water protons. Temperature and frequency dependences of T1 and T2 were measured; they are consistent with a model of one or two protons exchanging between a binding site on a heme ligand and bulk water. The relevant parameters of this model have been deduced from the data. The spin relaxation time of the heme iron, tau S similar to 0.5 ns at 25 degrees C, is unusually long for a low spin ferric heme protein but is compatible with the line widths measured for paramagnetically shifted heme resonances. The proton residence time on the ligand, tau M similar to 1 microsecond at 25 degrees C, follows an Arrhenius law with activation energy EM similar to 15 kcal/mol. A scalar hyperfine interaction A/h = 2.2 MHz (3.1 MHz for one-proton exchange) of the found proton(s) with the heme iron is deduced from the difference between T1 and T2 observed in the fast exchange limit. The iron-proton distance is found to be 2.9 A (2.6 A for one-proton exchange). Variation of pH between pH 6.4 and 8.6 does not affect T1. The bearing of these results on the question of the axial heme ligand is discussed.  相似文献   

15.
Heme-Nitric oxide and/or OXygen binding (H-NOX) proteins are a family of diatomic gas binding hemoproteins that have attracted intense research interest. Here we employ X-ray absorption near-edge structure (XANES) spectroscopy to study the nitric oxide (NO) binding site of H-NOX. This is the first time this technique has been utilized to examine the NO/H-NOX signaling pathway. XANES spectra of wildtype and a point mutant (proline 115 to alanine, P115A) of the H-NOX domain from Thermoanaerobacter tengcongensis (Tt H-NOX) were obtained and analyzed for ferrous and ferric complexes of the protein. This work provides specific structural characterization of the solution state of several Tt H-NOX ferrous complexes (− unligated, − NO, and − CO) that were previously unavailable. Our iron K-edges indicate effective charge on the iron center in the various complexes and report on the electronic environment of heme iron. We analyzed the ligand field indicator ratio (LFIR), which is extracted from XANES spectra, for each complex, providing an understanding of ligand field strength, spin state of the central iron, movement of the iron atom upon ligation, and ligand binding properties. In particular, our LFIRs indicate that the heme iron is dramatically displaced towards the distal pocket during ligand binding. Based on these results, we propose that iron displacement towards the distal heme pocket is an essential step in signal initiation in H-NOX proteins. This provides a mechanistic link between ligand binding and the changes in heme and protein conformation that have been observed for H-NOX family members during signaling.  相似文献   

16.
We characterized heme binding in the bacterial iron response regulator (Irr) protein, which is a simple heme-regulated protein having a single "heme-regulatory motif", HRM, and plays a key role in the iron homeostasis of a nitrogen-fixing bacterium. The heme titration to wild-type and mutant Irr clearly showed that Irr has two heme binding sites: one of the heme binding sites is in the HRM, where (29)Cys is the axial ligand, and the other one, the secondary heme binding site, is located outside of the HRM. The Raman line for the Fe-S stretching mode observed at 333 cm(-1) unambiguously confirmed heme binding to Cys. The lower frequency of the Fe-S stretching mode corresponds to the weaker Fe-S bond, and the broad Raman line of the Fe-S bond suggests multiple configurations of heme binding. These structural characteristics are definitely different from those of typical hemoproteins. The unusual heme binding in Irr was also evident in the EPR spectra. The characteristic g-values of the 5-coordinate Cys-ligated heme and 6-coordinate His/His-ligated heme were observed, while the multiple configurations of heme binding were also confirmed. Such multiple heme configurations are not encountered for typical hemoproteins where the heme functions as the active center. Therefore, we conclude that heme binding to HRM in the heme-regulated protein, Irr, is quite different from that in conventional hemoproteins but characteristic of heme-regulated proteins using heme as the signaling molecule.  相似文献   

17.
Ligand binding reactions and the relation between redox state and ligand binding in the hexa-heme nitrite reductase of Wolinella succinogenes have been studied using laser flash photolysis. On a picosecond time scale, a rapid excursion was observed corresponding to the breaking and reforming of an iron histidine bond. With the CO derivative, a geminate reaction was observed with a rate of 3 ns-1. On a nanosecond time scale, no slower geminate reactions were observed. For the cyanide derivative, no geminate reactions were observed at either time scale. The second order reaction of CO with the enzyme had a time course consisting of two distinct components. This time course changed in form as the enzyme came to equilibrium with CO, and the slower rebinding component was replaced by a faster rebinding component. It is suggested that CO binding enhances reduction of a heme with an unusually low redox potential and opens the structure of the active site to allow a faster second order reaction of CO. The proportion of the geminate CO reaction was unchanged, consistent with changes relatively remote from the ligand binding site. The second order reactions of cyanide also showed that redox effects influence its rebinding reaction. Adding cyanide to the CO complex of nitrite reductase showed that the two ligands have distinct heme binding sites.  相似文献   

18.
Neuroglobin (Ngb) is a small globular protein that binds diatomic ligands like oxygen, carbon monoxide (CO) and nitric oxide at a heme prosthetic group. We have performed FTIR spectroscopy in the infrared stretching bands of CO and flash photolysis with monitoring in the electronic heme absorption bands to investigate structural heterogeneity at the active site of Ngb and its effects on CO binding and migration at cryogenic temperatures. Four CO stretching bands were identified; they correspond to discrete conformations that differ in structural details and CO binding properties. Based on a comparison of bound-state and photoproduct IR spectra of the wild-type protein, Ngb distal pocket mutants and myoglobin, we have provided structural interpretations of the conformations associated with the different CO bands. We have also studied ligand migration to the primary docking site, B. Rebinding from this site is governed by very low enthalpy barriers (∼1 kJ/mol), indicating an extremely reactive heme iron. Moreover, we have observed ligand migration to a secondary docking site, C, from which CO rebinding involves higher enthalpy barriers.  相似文献   

19.
The structure of the heme environment of horse heart ferric cytochrome c was examined in the presence of various nitrogenous bases at several temperatures with the aid of hyperfine shifted proton NMR spectra at 220 MHz. The resonance positions and line widths of the signals for the peripheral methyl groups of the heme exhibited distinctive features of its low-spin state characteristic of each external ligand. In the imidazole complex of ferric cytochrome c, remarkable line sharpening of the heme-linked proton signals was encountered on raising the temperature. This may be related to the apoprotein perturbation on the binding of external ligand to the heme iron. These spectral peculiarities were discussed in relation to the electronic structure of the heme, the basicity of the external ligand and the van der Waals contact interaction between heme side chains and apoprotein.  相似文献   

20.
The resonance Raman spectrum of turnip cytochrome f is similar to that of other c-type cytochromes with the exception of a single band at 1532 cm-1 which is shifted to lower frequency relative to its position (1542-1545 cm-1) in other c-type cytochromes. Comparison of the frequency of this band with that in alkylated cytochrome c at high pH suggests that the sixth heme iron ligand in cytochrome f is a deprotonated lysine amino group rather than a methionine sulfur. Comparison of the amino-acid sequences of cytochromes f and c1 suggests lysine-145 as a likely candidate for the sixth heme iron ligand in cytochrome f.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号