共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Ultrastructure and orientation of ommatidia in the dorsal rim area of the locust compound eye 总被引:1,自引:0,他引:1
In many insect species, a dorsal rim area (DRA) in the compound eye is adapted to analyze the sky polarization pattern for compass orientation. In the desert locust Schistocerca gregaria, these specializations are particularly striking. The DRA of the locust consists of about 400 ommatidia. The facets have an irregular shape, and pore canals are often present in the corneae. Screening pigment is missing in the region of the dioptric apparatus suggesting large receptive fields. The rhabdoms are shorter, but about four times larger in cross-section than the rhabdoms of ordinary ommatida. Eight retinula cells contribute to the rhabdom. The microvilli of retinula cell 7 and of cells 1, 2, 5, 6, 8 are highly aligned throughout the rhabdom and form two blocks of orthogonal orientation. The microvilli in the minute rhabdomeres of retinula cells 3 and 4, in contrast, show no particular alignment. As in other insect species, microvillar orientations are arranged in a fan-like pattern across the DRA. Photoreceptor axons project to distinct areas in the dorsal lamina and medulla. The morphological specializations in the DRA of the locust eye most likely maximize the polarization sensitivity and suggest that the locust uses this eye region for analysis of the sky polarization pattern. 相似文献
3.
Physiological characterization of the compound eye in monarch butterflies with focus on the dorsal rim area 总被引:4,自引:0,他引:4
Julia Stalleicken Thomas Labhart Henrik Mouritsen 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》2006,192(3):321-331
The spectral, angular and polarization sensitivities of photoreceptors in the compound eye of the monarch butterfly (Danaus plexippus) are examined using electrophysiological methods. Intracellular recordings reveal a spectrally homogenous population of UV receptors with optical axes directed upwards and ≥10° to the contralateral side. Based on optical considerations and on the opsin expression pattern (Sauman et al. 2005), we conclude that these UV receptors belong to the anatomically specialized dorsal rim area (DRA) of the eye. Photoreceptors in the main retina with optical axes <10° contralateral or ipsilateral have maximal sensitivities in the UV (λmax≤340 nm), the blue (λmax=435 nm) or in the long-wave range (green, λmax=540 nm). The polarization sensitivity (PS) of the UV receptors in the DRA is much higher (PS=9.4) than in the UV cells (PS=2.9) or green cells (PS=2.8) of the main retina. The physiological properties of the photoreceptors in the DRA and in the main retina fit closely with the anatomy and the opsin expression patterns described in these eye regions. The data are discussed in the light of present knowledge about polarized skylight navigation in Lepidopterans. 相似文献
4.
M. Blum T. Labhart 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》2000,186(2):119-128
We made intracellular recordings from the photoreceptors of the polarisation-sensitive dorsal rim area of the cricket compound eye combined with dye marking. By measuring visual field sizes and optical axes in different parts of the dorsal rim area, we assessed the optical properties of the ommatidia. Due to the large angular sensitivities (median about 20°) and the high sampling frequency (about 1 per degree), the visual fields overlap extensively, such that a given portion of the sky is viewed simultaneously by a large number of ommatidia. By comparing the dye markings in the retina and in the optic lobe, the axon projections of the retinula cells were examined. Receptors R1, R2, R5 and R6 project to the lamina, whereas R7 projects to the medulla. The microvilli orientation of the two projection types differ by 90° indicating the two analyser channels that give antagonistic input to polarisation-sensitive interneurons. Using the retinal marking pattern as an indicator for the quality of the intracellular recordings, the polarisation sensitivity of the photoreceptors was re-examined. The polarisation sensitivity of recordings from dye-coupled cells was much lower (median: 4.5) than that of recordings in which only one cell was marked (median: 9.8), indicating that artefactual electrical coupling between photoreceptors can significantly deteriorate polarisation sensitivity. The physiological value of polarisation sensitivity in the cricket dorsal rim area is thus typically about 10. Accepted: 4 November 1999 相似文献
5.
Gertrud Kolb 《Zoomorphology》1986,106(4):244-246
Summary The ommatidia in the two dorsal rows at the rim of the eye of Aglais urticae differ from all the other ommatidia of the large dorsal area, in rhabdom structure, length, and configuration of the ninth retinula cell. The type of rhabdom in this dorsal rim zone provides the structural prerequisites for the reception of polarized light; functional subdivision of the retina into two parts is indicated. 相似文献
6.
7.
We have examined the fine structure of dorsal rim ommatidia in the compound eye of the three odonate species Sympetrum striolatum, Aeshna cyanea and Ischnura elegans. These ommatidia exhibit several specializations: (1) the rhabdoms are very short, (2) there is no rhabdomeric twist, and (3) the rhabdoms contain only two, orthogonally-arranged microvillar orientations. The dorsal rim ommatidia of several other insect species are known to be anatomically specialized in a similar way and to be responsible for polarization vision. We suggest that the dorsal rim area of the odonate compound eye plays a similar role in polarization vision. Since the Odonata are a primitive group of insects, the use of polarized skylight for navigation may have developed early in insect phylogeny. 相似文献
8.
Summary Structurally specialized ommatidia at the dorsal rim of the compound eyes of honey bees have been shown to be indispensable for polarized skylight navigation. In this study numerous other hymenopteran genera belonging to various superfamilies are shown to exhibit similar specializations in this part of the eye: (1) The cornea is penetrated by pore canals, which affect the optics of the ommatidia by scattering the light falling into the eye. In Andrena and Ammophila the cornea contains extensive cavities. (2) Each retinula contains 9 long receptor cells as opposed to 8 long ones in the adjacent dorsal area, and the rhabdom area is increased by a factor of up to 2. In all ant species examined there are no corneal but only retinal specializations at the dorsal rim of the eye. They include a specially shaped rhabdom as in Cataglyphis, in which polarization vision has also been demonstrated. 相似文献
9.
10.
Specialized ommatidia of the polarization-sensitive dorsal rim area in the eye of monarch butterflies have non-functional reflecting tapeta 总被引:1,自引:0,他引:1
Many insects exploit sky light polarization for navigation or cruising-course control. The detection of polarized sky light
is mediated by the ommatidia of a small specialized part of the compound eye: the dorsal rim area (DRA). We describe the morphology
and fine structure of the DRA in monarch butterflies (Danaus plexippus). The DRA consists of approximately 100 ommatidia forming a narrow ribbon along the dorsal eye margin. Each ommatidium contains
two types of photoreceptor with mutually orthogonal microvilli orientations occurring in a 2:6 ratio. Within each rhabdomere,
the microvilli are well aligned. Rhabdom structure and orientation remain constant at all retinal levels, but the rhabdom
profiles, as seen in tangential sections through the DRA, change their orientations in a fan-like fashion from the frontal
to the caudal end of the DRA. Whereas these properties (two microvillar orientations per rhabdom, microvillar alignment along
rhabdomeres, ommatidial fan array) are typical for insect DRAs in general, we also report and discuss here a novel feature.
The ommatidia of monarch butterflies are equipped with reflecting tapeta, which are directly connected to the proximal ends
of the rhabdoms. Although tapeta are also present in the DRA, they are separated from the rhabdoms by a space of approximately
55 μm effectively inactivating them. This reduces self-screening effects, keeping polarization sensitivity of all photoreceptors
of the DRA ommatidia both high and approximately equal. 相似文献
11.
Summary The fine structure of the cornea in an anatomically and functionally specialized part of the honey bee's compound eye (dorsal rim area) was examined by light microscopy, transmission electron and scanning electron microscopy. Under incident illumination the cornea appears grey and cloudy, leaving only the centers of the corneal lenses clear. This is due to numerous pore canals that penetrate the cornea from the inside, ending a few m below the outer surface. They consist of (1) a small cylindrical cellular evagination of a pigment cell (proximal), and (2) a rugged-walled, pinetree-shaped extracellular part (distal). The functional significance of these pore canals is discussed. It is concluded that their light scattering properties cause the wide visual fields of the photoreceptor cells measured electrophysiologically in the dorsal rim area, and that this is related to the way this eye region detects polarization in skylight. 相似文献
12.
F. Zufall M. Schmitt R. Menzel 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1989,164(5):597-608
Summary Retinula cells in the compound eye of the cricket (Gryllus bimaculatus) were recorded intracellularly and stained with Lucifer yellow. Two different methods were used to determine the spectral sensitivity of these cells: a) the spectral scanning method, and b) the conventional flash method. Three spectral types, with S()-curves close to the rhodopsin-absorption functions, were found with
max at 332 nm (UV), 445 nm (blue) and 515 nm (green), respectively.Blue receptors were only recorded in the anatomically specialized dorsal rim area (DRA), and UV and green receptors in the dorsal region of the pigmented part of the eye, whereby green receptors were only found in the ventral eye. On the basis of these results, model calculations are presented for di- and trichromatic colour vision in the cricket.The fluorescence markings revealed green receptors whose axons project with short visual fibres to the lamina, and a UV receptor with a long visual fibre which projects through the lamina to the medulla. The blue receptors send their axons either to the lamina and medulla (long visual fibres) or only to the lamina (short visual fibres).The temporal dynamics of the three receptor types were examined. The blue receptors lack a phasic component of the receptor potential, and the time from stimulus on-set to peak potential is strongly increased compared to the UV and green receptors. Light adaptation reduces the latency to less than half of the dark adapted state.Spectral adaptation experiments revealed an unidirectional coupling between UV and green receptors, and it was found that polarization sensitivity (PS) in blue cells was much higher (PS= 6.5±1.5) than that of UV (PS=1.76±0.05) and green (2.26±0.57) receptors. The functional aspects of the three receptor types are discussed with respect to the presented physiological and morphological data.Abbreviations
DA
dorsal area
-
DRA
dorsal rim area
-
PS
polarization sensitivity 相似文献
13.
14.
Summary The structure of ommatidia at the dorsal eye margin of the fly, Calliphora erythrocephala is specialized for the detection of the e-vector of polarized light. Marginal zone ommatidia are distinguished by R7/R8 receptor cells with large-diameter, short, untwisted rhabdomeres and long axons to the medulla. The arrangement of the R7 microvillar directions along the marginal zone is fan-shaped. Ommatidia lining the dorsal and frontal edge of the eye lack primary screening pigments and have foreshortened crystalline cones. The marginal ommatidia from each eye view a strip that is 5 °–20 ° contralateral to the fly's longitudinal axis and that coincides with the outer boundaries of the binocular overlap.Cobalt injection into the retina demonstrates that photoreceptor axons arising from marginal ommatidia define a special area of marginal neuropil in the second visual neuropil, the medulla. Small-field neurons arising from the marginal medulla area define, in turn, a special area of marginal neuropil in the two deepest visual neuropils, the lobula and the lobula plate. From these arise local assemblies of columnar neurons that relay the marginal zones of one optic lobe to equivalent areas of the opposite lobe and to midbrain regions from which arise descending neurons destined for the the thoracic ganglia.Optically, the marginal zone of the retina represents the lateral edge of a larger area of ommatidia involved in dorsofrontal binocular overlap. This binocularity area is also represented by special arrangements of columnar neurons, which map the binocularity area of one eye into the lobula beneath the opposite eye. Another type of binocularity neuron terminates in the midbrain.These neuronal arrangements suggest two novel features of the insect optic lobes and brain: (1) Marginal neurons that directly connect the left and right optic lobes imply that each lobe receives a common input from areas of the left and right eye, specialized for detecting the pattern of polarized light. (2) Information about the e-vector pattern of sky-light polarization may be integrated with binocular and monocular pathways at the level of descending neurons leading to thoracic motor neuropil. 相似文献
15.
K. Y. Ukhanov F. G. Gribakin H. L. Leertouwer D. G. Stavenga 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1996,179(4):545-552
- The optics of the corneal facet lenses from the dorsal rim area (DRA) and from the dorso-lateral areas (DA) of the compound eye of the cricket Gryllus bimaculatus were studied.
- The DRA of the cricket eye contains quite normally shaped facet lenses. The diameter of the facet lens in the DA is 2-fold larger compared to that in the DRA. The radius of curvature of the front surface is distinctly less in the DA facet lenses, as the surface of the facet lenses in the DRA are virtually flat.
- The averaged axial refractive index of the facet lenses of Gryllus bimaculatus, measured by interference microscopy, was 1.496 ± 0.008 (n = 42) in the DRA and 1.469 ± 0.004 (n = 39) in the DA. The geometrical thickness of the lenses was calculated to be 77 ± 3 μm (n = 42) in the DRA and 56 ± 1 μm (n = 39) in the DA.
- Analysis of the diffraction pattern obtained with a point light source revealed distinct focusing properties of both the DRA and the DA facet lenses; striking Airy-like diffraction patterns were obtained in both cases.
- Focal distances measured directly at the backfocal plane were 40 ± 8 μm (n = 84) in the DRA of all the animals studied, and 60–90 μm (n = 62) in DA depending on the animal. Analysis of the diffraction of the point light source yielded very similar focal distances: 40 ± 5 μm (n = 10) in DRA and 81 ± 8 μm (n = 11) in DA. In the DRA, focal distance of the facet lenses was smaller than the cone length, 58 ± 3 μm (n = 9) while in the DA the focal distance matched the effective cone length, 71 ± 5 μm (n = 16).
16.
Raymon M. Glantz John P. Schroeter 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》2007,193(3):371-384
In decapod crustaceans, the dorsal light reflex rotates the eyestalk so that the dorsal retina faces the brightest segment
of dorsal visual space. Stepwise displacements of white stripes elicit eyestalk rotations in the same direction as that of
the stripe. Conversely, stepwise displacements of black stripes on a white background elicit eyestalk rotations in the opposite
direction as that of the stripe. The reversal of the response with contrast inversion distinguishes the dorsal light reflex
from an optokinetic reflex. When the visual scene is composed of polarized light, segmented by variations in e-vector orientation,
displacement of segments containing near vertical e-vectors elicit responses similar to those elicited by a white stripe.
Displacement of polarized stripes containing near horizontal e-vectors elicit eyestalk rotations similar to those elicited
by a black stripe. The results are consistent with the use of polarized light in orientation. The stimulus conditions described
above were also applied to visual interneurons (sustaining fibers) and oculomotor neurons and the results were generally in
accord with the behavior. In the neural studies, it was possible to show that responses to polarized stripe displacements
are predictable from the receptive field location and the neuron’s polarization tuning function.
John P. Schroeter deceased on September 14, 2006. 相似文献
17.
J. H. van Hateren R. C. Hardie A. Rudolph S. B. Laughlin D. G. Stavenga 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1989,164(3):297-308
1. | In the compound eye of the maleChrysomyia megacephala the facets in the ventral part of the eye are only ca. 20 m in diameter, but increase abruptly to ca. 80 m above the equator of the eye. Correspondingly there is a large and abrupt increase in the rhabdomere diameter from 2 to as much as 5 urn. The far-field radiation pattern of the eye shows that, despite the large change in ommatidial dimensions, the resolution of the eye remains approximately constant across the equator: angular sensitivity of the photoreceptors and sampling raster are similar ventrally and dorsally. The main result of the large dorsal facets is a more than tenfold increase in light capture. Thus this eye provides a clear example of an insect where large dorsal facets have evolved not for higher acuity, but rather for higher light capture. |
2. | Sensitivity is increased even more by a seventh photoreceptor cell joining neural superposition, as reported before for the dorsal eye of male houseflies. All seven photoreceptors have the same spectral sensitivity. |
3. | Angular sensitivities in the dorsal eye are more Gaussian-shaped than the flat-topped profile expected for large rhabdomere diameters. This is explained by the anatomical finding that the dorsal rhabdomeres taper strongly. It is suggested that the combination of high photon capture and rounded angular sensitivities is advantageous for monitoring movement and position of small objects. |
4. | Finally some of the constraints involved in constructing specialized dorsal eye regions for detection of small objects are considered. |
18.
Summary The compound eye of female (diploid) Xyleborus ferrugineus beetles was examined with scanning and transmission electron microscopy. The eye is emarginate, and externally consists of roughly 70–100 facets. Each ommatidium is composed of a thickly biconvex lenslet with about 50 electron dense and rare layers. The lens facet overlies a crystalline cone of the acone type which is roughly hourglass-shaped. Pigment cells envelop the entire ommatidium, and pigment granules also are abundant throughout the cytoplasm of the 8 retinular cells. The rhabdomeres of 2 centrally situated photoreceptor cells effectively fuse into a rhabdom that extends from the base of the crystalline cone deeply into the ommatidium. Six distal peripheral retinular cells encircle the 2 central cells, and their rhabdomeres join laterally to form a rhabdomeric ring around the central rhabdom. The rhabdom and rhabdomeric ring are effectively separated by the cytoplasm of the two central retinular cells which contains the usual organelles and an abundance of shielding pigment granules. Eight axons per ommatidium gather in a tracheae-less fascicle before exiting the eye through the fenestrate basement membrane. No tracheation was observed among the retinular cells. Each Semper cell of each observed crystalline cone contained an abundance of virus-like particles near the cell nucleus. The insect is laboratory reared, and the visual system seems very amenable to photoreceptor investigations.This research was supported by the Director of the Research Division, C.A.L.S., University of Wisconsin, Madison; and in part by research grant No. RR-00779 from the Division of Research Resources, National Institutes of Health and by funds from the Schoenleber Foundation, Milwaukee, WI to D.M.N. 相似文献
19.
Jasmine E. Gokcen Donald C. McNaught 《Marine and Freshwater Behaviour and Physiology》2013,45(2-4):267-272
The swimming response of Daphnia pulicaria to polarized white light was examined. This response was employed as a behavioral bioassay to investigate the effects of sodium bromide (NaBr) on Daphnids physiology. The control response to linearly polarized white light involved an orientation at 90° to the e‐vector. With the addition of NaBr the response became more random. An EC50 (concentration which eliminates the response in 50% of the test individuals) of 1.31 x 10‐1 M NaBr was calculated using the statistic von Mises K. A possible mechanism to account for the toxicity of this mild sedative is the blocking by the bromide ion of chloride channels involved in transmitting nerve impulses. 相似文献
20.
ABSTRACTStomatopod crustaceans have highly mobile, independently moving compound eyes that are sensitive to both linearly and circularly polarized light. They rotate their eyes to predictable angles when viewing a linearly polarized target, and they scan their eyes frequently to sample the visual field. Angles of scans are roughly perpendicular to the plane of the midband (a set of specialized parallel rows of equatorial ommatidia). We investigated scanning eye movements in one Caribbean stomatopod species (Neogonodactylus oerstedii) in uniform visual fields that were vertically polarized, horizontally polarized, or depolarized. We found that mean eye rotation and scan angles differed significantly among these different treatments. Average scan angles differed by 12°, being more horizontal in a vertically polarized field than in a horizontally polarized one, and also more horizontal in a vertically polarized field than in a depolarized field. Thus, these stomatopods adjusted visual scanning to the polarization of the visual environment. 相似文献