首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chromogranin A (CGA) has been localized to the large dense cored vesicles (LDV) of sympathetic neurons. SDS-PAGE and immunoblotting of soluble LDV proteins from ox and dog adrenergic neuronal cell bodies, axons and nerve terminals, revealed an increasing number of CGA-immunoreactive forms, consistent with proteolytic processing during axonal transport. Splenic nerve electrical stimulation (10 Hz, 2 min) revealed that, apart from CGA, these CGA-processing products are released from the sheep spleen. The secretion of CGA-derived fragments from sympathetic neurons might suggest a role in the regulation of synaptic transmission.  相似文献   

2.
Abstract: Rats were injected with a large dose of reserpine known to stimulate the adrenal medulla. Various times after drug treatment the mRNA levels of several constituents of large dense-core vesicles were determined by northern blot analysis and in situ hybridization. The latter method allowed detection of changes in mRNA levels not only in chromaffin cells, but also in the ganglion cells found in adrenal medulla. Levels of the mRNAs of secretory components of large dense-core vesicles (chromogranins A and B., secretogranin II, VGF, and neuropeptide Y) increased in chromaffin cells by 215–857% after 1–3 days of drug treatment. For partly membrane-bound components (dopamine β-hydroxylase, prohormone convertase 2, carboxypeptidase H., and peptidylglycine α-amidating monooxygenase) the changes ranged from 182 to 315%, whereas for glycoprotein III and for intrinsic membrane proteins (cytochrome b 661 and vesicle monoamine transporter 2) no change occurred. In ganglion cells the mRNAs that could be detected for VGF, neuropeptide Y., secretogranin II, carboxypeptidase H., and vesicle monoamine transporter 1 showed an analogous pattern of change, with significant increases for the secretory proteins and no change for the membrane components. From these and previous results we suggest the following concept: Long-lasting stimulation of chromaffin cells or neurons does not induce the biosynthesis of a larger number of vesicles but rather leads to the formation of vesicles containing higher secretory quanta of chromogranins and neuropeptides. Key Words : ChromograninSecretogranin II—Monoamine transporter—Prohormone convertase 2—Carboxypeptidase H—Cytochrome b 661-Clusterin.  相似文献   

3.
Knowledge of the vesicular origin of circulating dopamine beta-hydroxylase (DbetaH) is indispensable for any attempts to explain the parallelism or lack of it between circulating enzyme and catecholamines as they may relate to physiological stress, forms of hypertension, neurological disorders, and the response to pharmacological agents. The present study represents an effort to evaluate and to place in proper perspective data based on the DbetaH activity found in the region of the light vesicle peak of noradrenaline (NA), which is used as a quantitative measure of a population of small terminal vesicles. Distributions of vesicles and subvesicular components are compared with DbetaH and NA in sucrose-D2O density gradients used to prepare relatively pure fractions of large dense cored vesicles (LDV) from bovine splenic nerve. Although NA in sedimentable particles of the light vesicle peak is likely to be a valid measure of a small vesicle population, the following is demonstrated: (1) A substantial fraction (25%-37%) of the total sedimentable DbetaH activity can be proven to distribute in the region of the light vesicle peak from a tissue with an insignificant small vesicle population. Based on studies of vesicles from sequential nerve segments, this enzyme activity probably corresponds to a population of "immature" LDV which are undergoing axoplasmic transport and have not synthesized their full complement of transmitter. (2) Physical lysis which depletes the matrix of LDV causes redistribution of DbetaH activity from the heavy vesicle peak into the region of the light vesicle peak. Analogously, DbetaH associated with exocytosed LDV and retrograde transport particles is also likely to contaminate the region of the light vesicle peak. (3) Based on available data, it can be calculated that each small dense cored vesicle could contain only 0.1-0.5 molecules of DbetaH and that a contamination of only 0.016% LDV can account for all of the DbetaH reported to occur in the light vesicle peak of normal rat vas deferens preparations.  相似文献   

4.
Synaptic vesicles recycle repeatedly in order to maintain synaptic transmission. We have previously proposed that upon exocytosis the vesicle components persist as clusters, which would be endocytosed as whole units. It has also been proposed that the vesicle components diffuse into the plasma membrane and are then randomly gathered into new vesicles. We found here that while strong stimulation (releasing the entire recycling pool) causes the diffusion of the vesicle marker synaptotagmin out of synaptic boutons, moderate stimulation (releasing ~19% of all vesicles) is followed by no measurable diffusion. In agreement with this observation, synaptotagmin molecules labeled with different fluorescently tagged antibodies did not appear to mix upon vesicle recycling, when investigated by subdiffraction resolution stimulated emission depletion (STED) microscopy. Finally, as protein diffusion from vesicles has been mainly observed using molecules tagged with pH‐sensitive green fluorescent protein (pHluorin), we have also investigated the membrane patterning of several native and pHluorin‐tagged proteins. While the native proteins had a clustered distribution, the GFP‐tagged ones were diffused in the plasma membrane. We conclude that synaptic vesicle components intermix little, at least under moderate stimulation, possibly because of the formation of clusters in the plasma membrane. We suggest that several pHluorin‐tagged vesicle proteins are less well integrated in clusters.  相似文献   

5.
Inhibition of murein biosynthesis in Streptococcus pneumoniae by either penicillin or bacitracin leads to an increase in the amount of protein secreted into the medium. This process was studied in wild-type cells grown under lysis-permissive conditions as well as in an autolysin-deficient mutant. The time course of secretion did not follow cellular lysis but commenced immediately after the addition of the cell wall inhibitor in a manner similar to that described recently for cell wall and membrane components in various tolerant streptococci. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that this increase was not due to the stimulation of release of three protein components which are secreted under normal growth conditions; rather, a complex set of cellular proteins escaped from the antibiotic-treated pneumococci. The proteins released during bacitracin treatment was slightly different from those observed when penicillin was used. Analysis on sucrose gradients indicated that the secreted proteins were membrane bound rather than soluble. Membrane vesicles could indeed be detected by electron microscopy of negative-stained secreted material.  相似文献   

6.
The bovine splenic nerve trunk contains mast cells, ganglion cells, small intensely fluorescent (SIF) cells, and varicosities which exhibit a brilliant fluorescence characteristic for noradrenaline (NA) and dopamine (DA) after formaldehyde exposure. All these catecholamine-rich structures could contribute particles to isolated nerve vesicle fractions. Mast cells are recognized ultrastructurally by their large (300-800 nm) dense granules. SIF cells may be represented by cells and processes containing dense cored vesicles (120-140 nm) which are larger than the typical vesicles in axons and terminals. Terminal-like areas with typical large dense cored vesicles (LDV, 75 nm) and small dense cored vesicles (SDV, 45-55 nm) probably correspond to the fluorescent varicosities. The LDV constitute about 40% of all vesicles in terminal-like areas and terminals. Their staining properties indicate the presence of protein, phospholipids, and ATP. Tyramine depletes NA without loss of matrix density. The LDV can fuse with the terminal membrane, and released material outside omega profiles is interpreted to depict exocytosis. Large and small vesicles are easily distinguished from the very large mast cell granules and the moderately dense Schwann cell vesicles. Neither appear to contaminate the LDV fractions but the latter may contain a small population of SIF cell vesicles. Golgi vesicles from the Schwann cells mainly occur in the lighter zones of the gradient.  相似文献   

7.
The bovine splenic nerve trunk contins mast cells, ganglion cells, small intensely flurescent (SIF) cells, and varicosities which exhibit a brilliant fluorescence characteristic for noradrenaline (NA) and dopamine (DA) after formaldehyde exposure. All these catecholamine-rich structure could contribute particles to isolated nerve vesicle fractions. Mast cells are recognized ultrastructurally by their large (300–800nm) dense granules. SIF cells may be represented by cells and processes containing dense cored vesicles (120–140 nm) which are larger than the typical vesicles in axons and terminals. Terminal-like areas with typical large dense cored vesicles (LDV, 75 nm) and small dense cored vesicles (SDV, 45–55 nm) probably correspond to the fluorescent varicosities. The LDV constitute about 40% of all vesicle in terminal-like areas and terminals. Their staining properties indicate the presence of protein, phospholipids, and ATP. Tyramine depletes NA without loss of matrix density. The LDV can fuse with the terminal membrane, and released material outside omega profiles is interpreted to depict exocytosis. Large and small vesicles are easily distinguished from the very large mast cell granules and the moderately dense Schwann cell vesicles. Neither appear to contaminate the LDV fractions but the latter may contain a small population of SIF cell vesicles. Golgi vesicles from the Schwann cells mainly occur in the lighter zones of the gradient.  相似文献   

8.
Inositol starvation of auxotrophic yeast interrupts glycolipid biosynthesis and prevents lipid modification of a normally glycosyl phosphatidylinositol (GPI)-linked protein, Gas1p. The unanchored Gas1p precursor undergoes progressive modification in the endoplasmic reticulum (ER), but is not modified by Golgi-specific glycosylation. Starvation-induced defects in anchor assembly and protein processing are rapid, and occur without altered maturation of other proteins. Cells remain competent to manufacture anchor components and to process Gas1p efficiently once inositol is restored. Newly synthesized Gas1p is packaged into vesicles formed in vitro from perforated yeast spheroplasts incubated with either yeast cytosol or the purified Sec proteins (COP II) required for vesicle budding from the ER. In vitro synthesized vesicles produced by inositol-starved membranes do not contain detectable Gas1p. These studies demonstrate that COP II components fulfill the soluble protein requirements for packaging a GPI-anchored protein into ER-derived transport vesicles. However, GPI anchor attachment is required for this packaging to occur.  相似文献   

9.
Knowledge of the vesicular origin of circulating dopamine β-hydroxylase (DβH) is indispensable for any attempts to explain the parallelism or lack of it between circulating enzyme and catecholamines as they may relate to physiological stress, forms of hypertension, neurological disorders, and the response to pharmacological agents. The present study represents an effort to evaluate and to place in proper perspective data based on the DβH activity found in the region of the light vesicle peak of noradrenaline (NA), which is used as a quantitative measure of a population of small terminal vesicles. Distributions of vesicles and subvesicular components are compared with DβH and NA in sucrose-D2O density gradients used to prepare relatively pure fractions of large dense cored vesicles (LDV) from bovine splenic nerve. Although NA in sedimentable particles of the light vesicle peak is likely to be a valid measure of a small vesicle population, the following is demonstrated: (1) A substantial fraction (25%–37%) of the total sedimentable DβH acitivity can be proven to distribute in the region of the light vesicle peak from a tissue with an insignificant small vesicle population. Based on studies of vesicles from sequential nerve segments, this enzyme activity probably corresponds to a population of “immature” LDV which are undergoing axoplasmic transport and have not synthesized their full complement of transmitter. (2) Physical lysis which depletes the matrix of LDV causes redistribution of DβH activity from the heavy vesicle peak into the region of the light vesicle peak. Analogously, DβH associated with exocytosed LDV and retrograde transport particles is also likely to contaminate the region of the light vesicle peak. (3) Based on available data, it can be calculated that each small dense cored vesicle could contain only 0.1–0.5 molecules of DβH and that a contamination of only 0.016% LDV can account for all of the DβH reported to occur in the light vesicle peak of normal rat vas deferens preparations.  相似文献   

10.
Disulfide bonds were found to link the nonglycosylated envelope protein VP-2/M (19 kDa), encoded by open reading frame 6, and the major envelope glycoprotein VP-3 (25 to 42 kDa), encoded by open reading frame 5, of lactate dehydrogenase-elevating virus (LDV). The two proteins comigrated in a complex of 45 to 55 kDa when the virion proteins were electrophoresed under nonreducing conditions but dissociated under reducing conditions. Furthermore, VP-2/M was quantitatively precipitated along with VP-3 in this complex by three neutralizing monoclonal antibodies to VP-3. The infectivity of LDV was rapidly and irreversibly lost during incubation with 5 to 10 mM dithiothreitol (> 99% in 6 h at room temperature), which is known to reduce disulfide bonds. LDV inactivation correlated with dissociation of VP-2/M and VP-3. The results suggest that disulfide bonds between VP-2/M and VP-3 are important for LDV infectivity. Hydrophobic moment analyses of the predicted proteins suggest that VP-2/M and VP-3 both possess three adjacent transmembrane segments and only very short ectodomains (10 and 32 amino acids, respectively) with one and two cysteines, respectively. Inactivation of LDV by dithiothreitol and dissociation of the two envelope proteins were not associated with alterations in LDV's density or sedimentation coefficient.  相似文献   

11.
The biosynthesis of proteins, ribosomal RNA and other components of the rat liver protein-synthesizing system during the reparation and subsequent activation of translation inhibited by a sublethal dose cycloheximide (CHI, 3 mg/kg) was studied. It was found that the incorporation of labeled precursors into proteins and ribosomal rRNA isolated from free and membrane-bound polysomes is repaired already 3 hours after CHI injection. 6-9 hours thereafter, the level of component labeling reaches control values, whereas the total protein biosynthesis is retarded. After 12-24 hours, marked stimulation of ribosome biosynthesis and the integration of ribosomes into polysomes are observed together with an asymmetric accumulation of excessive amounts of newly synthesized 40S subunits into polysomes 12 hours after CHI infection. The putative mechanisms of the activation of expression of the part of the genome responsible for protein and ribosomal rRNA synthesis as well as for the synthesis of other components of the protein-synthesizing system are discussed.  相似文献   

12.
CAPS-1 and CAPS-2 are essential synaptic vesicle priming proteins   总被引:5,自引:0,他引:5  
Before transmitter-filled synaptic vesicles can fuse with the plasma membrane upon stimulation they have to be primed to fusion competence. The regulation of this priming process controls the strength and plasticity of synaptic transmission between neurons, which in turn determines many complex brain functions. We show that CAPS-1 and CAPS-2 are essential components of the synaptic vesicle priming machinery. CAPS-deficient neurons contain no or very few fusion competent synaptic vesicles, which causes a selective impairment of fast phasic transmitter release. Increases in the intracellular Ca(2+) levels can transiently revert this defect. Our findings demonstrate that CAPS proteins generate and maintain a highly fusion competent synaptic vesicle pool that supports phasic Ca(2+) triggered release of transmitters.  相似文献   

13.
The cell wall, a crucial cell compartment, is composed of a network of polysaccharides and proteins, providing structural support and protection from external stimuli. While the cell wall structure and biosynthesis have been extensively studied, very little is known about the transport of polysaccharides and other components into the developing cell wall. This review focuses on endomembrane trafficking pathways involved in cell wall deposition. Cellulose synthase complexes are assembled in the Golgi, and are transported in vesicles to the plasma membrane. Non-cellulosic polysaccharides are synthesized in the Golgi apparatus, whereas cellulose is produced by enzyme complexes at the plasma membrane. Polysaccharides and enzymes that are involved in cell wall modification and assembly are transported by distinct vesicle types to their destinations; however, the precise mechanisms involved in selection, sorting and delivery remain to be identified. The endomembrane system orchestrates the delivery of Golgi-derived and possibly endocytic vesicles carrying cell wall and cell membrane components to the newly-formed cell plate. However, the nature of these vesicles, their membrane compositions, and the timing of their delivery are largely unknown. Emerging technologies such as chemical genomics and proteomics are promising avenues to gain insight into the trafficking of cell wall components.  相似文献   

14.
The effect of acute infection with lactic dehydrogenase virus (LDV) on the development of contact sensitivity to DNFB was studied in Balb/c mice. LDV infection inhibited contact sensitivity to DNFB. The extent of inhibition observed depended on the timing of LDV infection relative to the first (sensitization) and last (challenge) antigenic stimulation. The possibility that the observed inhibition of contact sensitivity to DNFB could be due to a depletion of the T-dependent areas of lymphoid tissues during acute LDV infection was considered. Lymph nodes, spleen and thymus from normal animals, and from mice infected with LDV 1 or 2 days previously, were examined histologically. Also, the proportion of T cells to Ig positive cells in cell suspensions of these tissues was determined. Results did not suggest a T cell depletion during acute infection with LDV.  相似文献   

15.
Summary Antidiuretic hormone (ADH) increases the apical (external facing) membrane water permeability of granular cells that line the toad urinary bladder. In response to ADH, cytoplasmic vesicles called aggrephores fuse with the apical plasma membrane and insert particle aggregates which are visualized by freeze-fracture electron microscopy. Aggrephores contain particle aggregates within their limiting membranes. It is generally accepted that particle aggregates are or are related to water channels. High rates of transepithelial water flow during ADH stimulation and subsequent hormone removal decrease water permeability and cause the endocytosis of apical membrane and aggrephores which retrieve particle aggregates. We loaded the particle aggregate-rich endocytic vesicles with horseradish peroxidase (HRP) during ADH stimulation and removal. Epithelial cells were isolated and homogenized, and a subcellular fraction was enriched for sequestered HRP obtained. The HRP-enriched membrane fraction was subjected to a density shifting maneuver (Courtoy et al.,J. Cell Biol. 98:870, 1984), which yielded a purified membrane fraction containing vesicles with entrapped HRP. The density shifted vesicles were composed of approximately 20 proteins including prominent species of 55, 17 and 7 kD. Proteins of these molecular weights appear on the apical surface of ADH-stimulated bladders, but not the apical surface of control bladders. Therefore, we believe these density shifted vesicles contain proteins involved in the ADH-stimulated water permeability response, possibly components of particle aggregates and/or water channels.  相似文献   

16.
Sarcoplasmic reticulum vesicles isolated by conventional techniques usually contain, in addition to the recognized sarcoplasmic reticulum components, several other proteins (phosphorylase, myosin, glyceraldehyde-3-phosphate dehydrogenase, etc.) in variable amounts; these proteins complicate the interpretation of chemical modification data. Incubation of sarcoplasmic reticulum vesicles with Affi-Gel blue particles for 1-4 h at 2 degrees C, followed by sedimentation of the Affi-Gel in a clinical centrifuge, simplifies the protein composition by selective adsorption of the accessory proteins, and improves the consistency of the preparations. The Affi-Gel blue treatment is recommended as part of the standard procedure for the isolation of sarcoplasmic reticulum vesicles.  相似文献   

17.
Lactate dehydrogenase-elevating virus (LDV) was purified from culture fluid of infected primary cultures of various mouse tissues (peritoneal macrophage, bone marrow, spleen, and embryo) and from plasma of infected mice. Electron microscopy of negatively stained virus and positively stained sections of LDV revealed spherical particles of uniform size with a diameter of about 55 nm, containing an electron-dense core with a diameter of about 30 nm. During sample preparation the envelope had a tendency to slough off and disintegrate to form aggregates of various sizes and small hollow particles with a diameter of 8 to 14 nm. Two strains of LDV exhibited a density of 1.13 g/cm3 in isopycnic sucrose density gradient centrifugation whether propagated in primary cultures of the various mouse tissues or isolated from plasma of infected mice. A brief incubation of LDV in a solution containing 0.01% Nonidet P-40 or Triton X was sufficient to release the viral nucleocapsid, whereas a similar treatment had no effect on Sindbis virus. The nucleocapdis of LDV exhibited a density of 1.17 g/cm3, was devoid of phosphatidylcholine, and contained only the smallest of the viral proteins, VP-1, which had a molecular weight of about 15,000. The envelope contained two proteins. VP-2 with a molecular weight of 18,000 and a glycoprotein, VP-3, which migrated heterogenously (24,000 to 44,000 daltons) during polyacrylamide gel electrophoresis. When compared to the sedimentation rate of 29S rRNA, the RNAs of LDV and Sindbis virus sedimented at 48 and 45S, respectively, whether analyzed by zone sedimentation in sucrose density gradients containing low or high salt concentrations or denatured by treatment with formaldehyde. Our results indicate that LDV should be classified as a togavirus, but that LDV is sufficiently different from alpha and flaviviruses to be excluded from these groups.  相似文献   

18.
The sorting of proteins into the inner vesicles of multivesicular bodies is required for many key cellular processes, which range from the downregulation of activated signalling receptors to the proper stimulation of the immune response. Recent advances in our understanding of the multivesicular-body sorting pathway have resulted from the identification of ubiquitin as a signal for the efficient sorting of proteins into this transport route, and from the discovery of components of the sorting and regulatory machinery that directs this complex process.  相似文献   

19.
Monensin, a specific sodium ionophore, has been shown to reduce glucose-induced proinsulin biosynthesis by 30% and to completely inhibit the intracellular conversion of proinsulin to insulin. Autoradiography of monensin-treated cells demonstrated the presence of large quantities of newly synthesized proteins in amorphous vesicles close to the Golgi complex of B ceils. The results suggest profound effects of monensin on biosynthesis and intracellular processing of proinsulin.  相似文献   

20.
We have examined the formation of the fertilization envelope in the lobsters Homarus americanus and H gammarus. Oocytes were fixed for electron microscopy either in the ovary or following extrusion from the gonopore. Mature ovarian oocytes are surrounded by a coat (envelope 1), which is comprised of small electron-dense granules and structures resembling “bottlebrushes.” At least part of this coat is synthesized by the follicle cells of the ovary. The cortex of ovarian oocytes contains four types of vesicles that we refer to as high-density vesicles (HDV), low-density vesicles (LDV), moderately dense vesicles (MDV), and ring vesicles (RV). Oocytes that were electrically extruded from the gonopore and fixed immediately had an envelope identical to that of ovarian oocytes. The cortex of gonopore oocytes contained the four types of vesicles found in ovarian oocytes. When unfertilized gonopore oocytes were allowed to incubate in sea water, the oocyte cortex appeared unaltered, but envelope 1 swelled and the bottlebrushes dispersed. When recently fertilized oocytes were fixed during natural spawning or following in-vitro fertilization, each type of vesicle was released in sequence from the cortex of the oocyte. The contents of the HDV and LDV appeared first in the perivitelline space, but their fate could not be determined at later times. The ring-shaped elements of the RV and the moderately electron-dense material of the MDV were released exocytotically somewhat later; these materials coalesced in the perivitelline space to form a new coat (envelope 2). Envelope 1 subsequently condensed to its original thickness and appeared firmly attached to envelope 2. Our results show that the fertilized lobster egg is surrounded by two discrete coats. The outer coat, which is formed in the ovary, undergoes a swelling/condensation cycle at spawning. The inner coat originates from a complex cortical reaction. Together these coats comprise the fertilization envelope of the lobster egg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号