首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Inhaled particulates and microbes are continually cleared by a complex array of lung innate immune determinants, including alveolar macrophages (AMs). AMs are unique cells with an enhanced capacity for phagocytosis that is due, in part, to increased activity of the macrophage mannose receptor (MR), a pattern recognition receptor for various microorganisms. The local factors that "shape" AM function are not well understood. Surfactant protein A (SP-A), a major component of lung surfactant, participates in the innate immune response and can enhance phagocytosis. Here we show that SP-A selectively enhances MR expression on human monocyte-derived macrophages, a process involving both the attached sugars and collagen-like domain of SP-A. The newly expressed MR is functional. Monocyte-derived macrophages on an SP-A substrate demonstrated enhanced pinocytosis of mannose BSA and phagocytosis of Mycobacterium tuberculosis lipoarabinomannan-coated microspheres. The newly expressed MR likely came from intracellular pools because: 1) up-regulation of the MR by SP-A occurred by 1 h, 2) new protein synthesis was not necessary for MR up-regulation, and 3) pinocytosis of mannose BSA via MR recycling was increased. AMs from SP-A(-/-) mice have reduced MR expression relative to SP-A(+/+). SP-A up-regulation of MR activity provides a mechanism for enhanced phagocytosis of microbes by AMs, thereby enhancing lung host defense against extracellular pathogens or, paradoxically, enhancing the potential for intracellular pathogens to enter their intracellular niche. SP-A contributes to the alternative activation state of the AM in the lung.  相似文献   

2.
Clusterin is, in its major form, a secreted heterodimeric disulfide-linked glycoprotein (75-80 kDa). It was first linked to cell death in the rat ventral prostate after androgen deprivation. Recent studies have demonstrated that overexpression of clusterin in prostatic cells protects them against tumor necrosis factor-alpha (TNFalpha)-induced apoptosis. However the details of this survival mechanism remain undefined. Here, we investigate how clusterin prevents cells from undergoing TNFalpha-induced apoptosis. We established a double-stable prostatic cell line for inducible clusterin by using the Tet-On gene expression system. We demonstrated that 50% of the cells overexpressing clusterin escaped from TNFalpha- and actinomycin D-induced cell death. Moreover we demonstrated that the incubation of MLL cells with conditioned medium containing the secreted clusterin or the supplementation of purified clusterin in the extracellular medium decreased the TNFalpha-induced apoptosis significantly. This extracellular action implicates megalin, the putative membrane receptor for clusterin to mediate survival. Indeed clusterin overexpression up-regulated the expression of megalin and induced its phosphorylation in a dose-dependent manner. We interestingly showed that clusterin overexpression is associated with the up-regulation of the phosphorylation of Akt. Activated Akt induced the phosphorylation of Bad and caused a decrease of cytochrome c release. These results enable us to pinpoint one mechanism by which secreted clusterin favors survival in androgen-independent prostate cancer cells, implicating its receptor megalin and Akt survival pathway.  相似文献   

3.
4.
IL-7 signaling culminates in different biological outcomes in distinct lymphoid populations, but knowledge of the biochemical signaling pathways in normal lymphoid populations is incomplete. We analyzed CD127/IL-7Ralpha expression and function in normal (nontransformed) human thymocytes, and human CD19(+) B-lineage cells purified from xenogeneic cord blood stem cell/MS-5 murine stromal cell cultures, to further clarify the role of IL-7 in human B cell development. IL-7 stimulation of CD34(+) immature thymocytes led to phosphorylation (p-) of STAT5, ERK1/2, AKT, and glycogen synthase kinase-3 beta, and increased AKT enzymatic activity. In contrast, IL-7 stimulation of CD34(-) thymocytes (that included CD4(+)/CD8(+) double-positive, and CD4(+) and CD8(+) single-positive cells) only induced p-STAT5. IL-7 stimulation of CD19(+) cells led to robust induction of p-STAT5, but minimal induction of p-ERK1/2 and p-glycogen synthase kinase-3 beta. However, CD19(+) cells expressed endogenous p-ERK1/2, and when rested for several hours following removal from MS-5 underwent de-phosphorylation of ERK1/2. IL-7 stimulation of rested CD19(+) cells resulted in robust induction of p-ERK1/2, but no induction of AKT enzymatic activity. The use of a specific JAK3 antagonist demonstrated that all IL-7 signaling pathways in CD34(+) thymocytes and CD19(+) B-lineage cells were JAK3-dependent. We conclude that human CD34(+) thymocytes and CD19(+) B-lineage cells exhibit similarities in activation of STAT5 and ERK1/2, but differences in activation of the PI3K/AKT pathway. The different induction of PI3K/AKT may at least partially explain the different requirements for IL-7 during human T and B cell development.  相似文献   

5.
The phosphatidylinositol (PI) 3-kinase pathway is an important regulator of cell survival. In human alveolar macrophages, we found that LPS activates PI 3-kinase and its downstream effector, Akt. LPS exposure of alveolar macrophages also results in the generation of ceramide. Because ceramide exposure induces apoptosis in other cell types and the PI 3-kinase pathway is known to inhibit apoptosis, we determined the relationship between LPS-induced ceramide and PI 3-kinase activation in alveolar macrophages. We found that ceramide exposure activated PI 3-kinase and Akt. When we blocked LPS-induced ceramide with the inhibitor D609, we blocked LPS-induced PI 3-kinase and Akt activation. Evaluating cell survival after ceramide or LPS exposure, we found that blocking PI 3-kinase induced a significant increase in cell death. Because these effects of PI 3-kinase inhibition were more pronounced in ceramide- vs LPS-treated alveolar macrophages, we also evaluated NF-kappaB, which has also been linked to cell survival. We found that LPS, to a greater degree than ceramide, induced NF-kappaB translocation to the nucleus. As a composite, these studies suggest that the effects of ceramide exposure in alveolar macrophages may be very different from the effects described for other cell types. We believe that LPS induction of ceramide results in PI 3-kinase activation and represents a novel effector mechanism that promotes survival of human alveolar macrophages in the setting of pulmonary sepsis.  相似文献   

6.
Rhinovirus (RV) is responsible for the majority of common colds and triggers exacerbations of asthma and chronic obstructive lung disease. We have shown that RV serotype 39 (RV39) infection activates phosphatidylinositol 3 (PI 3)-kinase and the serine threonine kinase Akt minutes after infection and that the activation of PI 3-kinase and Akt is required for maximal interleukin-8 (IL-8) expression. Here, we further examine the contributions of Src and PI 3-kinase activation to RV-induced Akt activation and IL-8 expression. Confocal fluorescent microscopy of 16HBE14o- human bronchial epithelial cells showed rapid (10-min) colocalization of RV39 with Src, p85alpha PI 3-kinase, p110beta PI 3-kinase, Akt and Cit-Akt-PH, a fluorescent Akt pleckstrin homology domain which binds PI(3,4,5)P(3). The chemical Src inhibitor PP2 {4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo [3,4-d]pyrimidine} and the PI 3-kinase inhibitor LY294002 each inhibited Akt phosphorylation and the colocalization of RV39 with Akt. Digoxigenin-tagged RV coprecipitated with a Crosstide kinase likely to be Akt, and inhibition of Src blocked kinase activity. Digoxigenin-tagged RV39 colocalized with the lipid raft marker ceramide. In 16HBE14o- and primary mucociliary differentiated human bronchial epithelial cells, inhibition of Src kinase activity with the Src family chemical inhibitor PP2, dominant-negative Src (K297R), and Src small interfering RNA (siRNA) each inhibited RV39-induced IL-8 expression. siRNA against p110beta PI 3-kinase also inhibited IL-8 expression. These data demonstrate that, in the context of RV infection, Src and p110beta PI 3-kinase are upstream activators of Akt and the IL-8 promoter and that RV colocalizes with Src, PI 3-kinase, and Akt in lipid rafts.  相似文献   

7.
8.
We have recently demonstrated that the gene encoding the osteopontin (OPN) protein is activated both by interleukin-3 and granulocyte-macrophage colony-stimulating factor signaling pathways and that, through binding to the cell surface receptor CD44, OPN contributes to the survival activities of interleukin (IL)-3 and GM-CSF (Lin, Y.-H., Huang, C.-J., Chao, J.-R., Chen, S.-T., Lee, S.-F., Yen, J. J.-Y., and Yang-Yen, H.-F. (2000) Mol. Cell. Biol. 20, 2734-2742). In this report, we demonstrate that the CD44-binding domain of OPN involves a region containing amino acid residues from 121 to 140 and that both threonine and serine at positions 137 and 147, respectively, are essential for the survival stimulatory effect of OPN. Substitution of either residue with alanine results into a dominant negative mutant that overrides the survival effect of IL-3. Upon binding to the CD44 receptor, the wild-type OPN but not the inactive mutant induces activation of phosphatidylinositol 3-kinase and Akt. Last, we demonstrate that two waves of Akt activation are detected in IL-3-treated cells and that the survival promoting effect of OPN is mediated predominantly through the phosphatidylinositol 3-kinase/Akt signaling pathway. Together, our results suggest that a positive autoregulatory loop is involved in the survival pathway of IL-3.  相似文献   

9.
Exposure of fully grown fish and amphibian oocytes to a maturation-inducing steroid (MIS) activates numerous signal transduction pathways to initiate the final stage of oocyte maturation. These events culminate in the activation of maturation-promoting factor and germinal vesicle breakdown (GVBD). In most species, exposure to MIS causes a transient decrease in oocyte cAMP levels. Whether this reduction in oocyte cAMP concentration is sufficient to induce GVBD is unclear. The current study tested the hypothesis that activation of cAMP-independent signal transduction pathways by the naturally occurring MIS, 17,20beta,21-trihydroxy-4-pregnen-3-one (20beta-S), is necessary for GVBD in Atlantic croaker (Micropogonias undulatus) oocytes. Results indicate that although 20beta-S treatment of oocyte membranes significantly reduced cAMP production, incubation of follicles with the cell-permeable cAMP-dependent protein kinase (Prka) inhibitors Rp-cAMP or KT5720 did not promote GVBD in the absence of 20beta-S. Additionally, treatment of follicles with the phosphodiesterase (Pde) inhibitors Cilostamide (Pde3) or Rolipram (Pde4) significantly reduced GVBD, but they were not able to completely block it. In contrast, pharmacologic inhibition of the cAMP-independent phosphatidylinositol 3-kinase (Pik3)/Akt signal transduction pathway using the Pik3 inhibitors Wortmannin or LY294002, or the Akt inhibitor ML-9, blocked 20beta-S-induced GVBD. Finally, mitogen-activated protein kinase (Mapk1/3) activity increased after treatment with 20beta-S; however, inhibition of Mapk1/3 activity using PD98059 or U0126 had no effect on GVBD. These results demonstrate that activation of cAMP-independent signaling pathways, especially the Pik3/Akt pathway, is necessary for 20beta-S-induced GVBD in Atlantic croaker oocytes.  相似文献   

10.
11.
In this study we found that Tat protected vincristine-treated Kaposi's sarcoma cells from apoptosis and from down-regulation of several anti-apoptotic genes such as AKT-1, AKT-2, BCL2, BCL-XL, and insulin-like growth factor I and induced the de novo expression of the interleukin-3 gene. Moreover, we found that Tat enhanced phosphorylation of AKT and BAD proteins. The inhibition of phosphatidylinositol 3-kinase with two unrelated pharmacological inhibitors, wortmannin and LY294002, abrogated both the anti-apoptotic effect and the phosphorylation of AKT induced by Tat. After treatment with Tat, the AKT enzymatic activity showed a biphasic increase: an early activation (15 min), independent from protein synthesis; and a delayed activation (24 h), which was significantly decreased upon blockage of protein synthesis. Experiments with a function blocking anti-vascular endothelial cell growth factor receptor-2 antibody suggested that both the early and delayed AKT activation and the protection from apoptosis were triggered by the interaction of Tat with vascular endothelial cell growth factor receptor-2. Moreover, experiments with function-blocking antibodies directed against insulin-like growth factor I/insulin-like growth factor I receptor or interleukin-3 indicated their involvement in the delayed activation of AKT and their contribution to the anti-apoptotic effect of Tat on vincristine-treated Kaposi's sarcoma cells.  相似文献   

12.
13.
14.
The Akt kinase plays a crucial role in supporting Trk-dependent cell survival, whereas the p75 neurotrophin receptor (p75NTR) facilitates cellular apoptosis. The precise mechanism that p75NTR uses to promote cell death is not certain, but one possibility is that p75NTR-dependent ceramide accumulation inhibits phosphatidylinositol 3-kinase-mediated Akt activation. To test this hypothesis, we developed a system for examining p75NTR-dependent apoptosis and determined the effect of p75NTR on Akt activation. Surprisingly, p75NTR increased, rather than decreased, Akt phosphorylation in a variety of cell types, including human Niemann-Pick fibroblasts, which lack acidic sphingomyelinase activity. The p75NTR expression level required to elicit Akt phosphorylation was much lower than that required to activate the JNK pathway or to mediate apoptosis. We show that p75NTR-dependent Akt phosphorylation was independent of TrkA signaling, required active phosphatidylinositol 3-kinase, and was associated with increased tyrosine phosphorylation of p85 and Shc and with reduced cytosolic tyrosine phosphatase activity. Finally, we show that p75NTR expression increased survival in cells exposed to staurosporine or subjected to serum withdrawal. These findings indicate that p75NTR facilitates cell survival through novel signaling cascades that result in Akt activation.  相似文献   

15.
Cannabinoids, the active components of marijuana and their endogenous counterparts, exert many of their actions on the central nervous system by binding to the CB(1) cannabinoid receptor. Different studies have shown that cannabinoids can protect neural cells from different insults. However, those studies have been performed in neurons, whereas no attention has been focused on glial cells. Here we used the pro-apoptotic lipid ceramide to induce apoptosis in astrocytes, and we studied the protective effect exerted by cannabinoids. Results show the following: (i) cannabinoids rescue primary astrocytes from C(2)-ceramide-induced apoptosis in a dose- and time-dependent manner; (ii) triggering of this anti-apoptotic signal depends on the phosphatidylinositol 3-kinase/protein kinase B pathway; (iii) ERK and its downstream target p90 ribosomal S6 kinase might be also involved in the protective effect of cannabinoids; and (iv) cannabinoids protect astrocytes from the cytotoxic effects of focal C(2)-ceramide administration in vivo. In summary, results show that cannabinoids protect astrocytes from ceramide-induced apoptosis via stimulation of the phosphatidylinositol 3-kinase/protein kinase B pathway. These findings constitute the first evidence for an "astroprotective" role of cannabinoids.  相似文献   

16.
Serine/threonine phosphorylation of insulin receptor substrate 1 (IRS-1) has been implicated as a negative regulator of insulin signaling. Prior studies have indicated that this negative regulation by protein kinase C involves the mitogen-activated protein kinase and phosphorylation of serine 612 in IRS-1. In the present studies, the negative regulation by platelet-derived growth factor (PDGF) was compared with that induced by endothelin-1, an activator of protein kinase C. In contrast to endothelin-1, the inhibitory effects of PDGF did not require mitogen-activated protein kinase or the phosphorylation of serine 612. Instead, three other serines in the phosphorylation domain of IRS-1 (serines 632, 662, and 731) were required for the negative regulation by PDGF. In addition, the PDGF-activated serine/threonine kinase called Akt was found to inhibit insulin signaling. Moreover, this inhibition required the same IRS-1 serine residues as the inhibition by PDGF. Finally, the negative regulatory effects of PDGF and Akt were inhibited by rapamycin, an inhibitor of the mammalian target of rapamycin (mTOR), one of the downstream targets of Akt. These studies implicate the phosphatidylinositol 3-kinase/Akt kinase cascade as an additional negative regulatory pathway for the insulin signaling cascade.  相似文献   

17.
The intestinal mucosa is a rapidly-renewing tissue characterized by cell proliferation, differentiation, and eventual apoptosis with progression up the vertical gut axis. The inhibition of phosphatidylinositol (PI) 3-kinase by specific chemical inhibitors or overexpression of the lipid phosphatase PTEN enhances enterocyte-like differentiation in human colon cancer cell models of intestinal differentiation. In this report, we examined the role of PI 3-kinase inhibition in the regulation of apoptotic gene expression in human colon cancer cell lines HT29, HCT-116, and Caco-2. Inhibition of PI 3-kinase with the chemical inhibitor wortmannin increased TNF-related apoptosis-inducing ligand (TRAIL; Apo2) mRNA and protein expression. Similarly, overexpression of the tumor suppressor protein PTEN, an antagonist of PI 3-kinase signaling, resulted in the increased expression of TRAIL. Activation of PI 3-kinase by pretreatment with IGF-1, a gut trophic factor, markedly attenuated the induction of TRAIL by wortmannin. Moreover, overexpression of active Akt, a downstream target of PI 3-kinase, or inhibition of GSK-3, a downstream target of active Akt, completely blocked the induction of TRAIL by wortmannin. Consistent with findings that TRAIL is induced by agents that enhance intestinal cell differentiation, TRAIL expression was specifically localized to the differentiated cells of the colon and small bowel. Adenovirus-mediated overexpression of TRAIL increased DNA fragmentation of HCT-116 cells, demonstrating the functional activity of TRAIL induction. Taken together, our findings demonstrate induction of the TRAIL by inhibition of PI 3-kinase in colon cancer cell lines. These results identify TRAIL, a novel TNF family member, as a downstream target of the PI 3-kinase/Akt/GSK-3 pathway and may have important implications for better understanding the role of the PI 3-kinase pathway in intestinal cell homeostasis.  相似文献   

18.
19.
Bacterial CpG-containing (CpG) DNA promotes survival of murine macrophages and triggers production of proinflammatory mediators. The CpG DNA-induced inflammatory response is mediated via TLR9, whereas a recent study reported that activation of the Akt prosurvival pathway occurs via DNA-dependent protein kinase (DNA-PK) and independently of TLR9. We show, in this study, that Akt activation and survival of murine bone marrow-derived macrophages (BMM) triggered by CpG-containing phosphodiester oligodeoxynucleotides or CpG-containing phosphorothioate oligodeoxynucleotides was completely dependent on TLR9. In addition, survival triggered by CpG-containing phosphodiester oligodeoxynucleotides was not compromised in BMM from SCID mice that express a catalytically inactive form of DNA-PK. CpG DNA-induced survival of BMM was inhibited by the PI3K inhibitor, LY294002, but not by the MEK1/2 inhibitor, PD98059. The effect of LY294002 was specific to survival, because treatment of BMM with LY294002 affected CpG DNA-induced TNF-alpha production only modestly. Therefore, CpG DNA activates macrophage survival via TLR9 and the PI3K-Akt pathway and independently of DNA-PK and MEK-ERK.  相似文献   

20.
Occupational exposure to asphalt fumes may pose a health risk. Experimental studies using animal and in vitro models indicate that condensates from asphalt fumes are genotoxic and can promote skin tumorigenesis. Enhanced activity of activator protein-1 (AP-1) is frequently associated with the promotion of skin tumorigenesis. The current study investigated the effect of exposure to asphalt fumes on AP-1 activation in mouse JB6 P+ epidermal cells and the skin of transgenic mice expressing the AP-1 luciferase reporter gene. Asphalt fumes were generated from a dynamic generation system that simulated road-paving conditions. Exposure to asphalt fumes significantly increased AP-1 activity in JB6 P+ cells as well as in cultured keratinocytes isolated from transgenic mice expressing AP-1 reporter. In addition, topical application of asphalt fumes by painting the tail skin of mice increased AP-1 activity by 14-fold. Exposure to asphalt fumes promoted basal as well as epidermal growth factor-stimulated anchorage-independent growth of JB6 P+ cells in soft agar. It activated phosphatidylinositol 3-kinase and induced phosphorylation of Akt at Ser-473/Thr-308, and concurrently activated downstream p70 S6 kinase as well as glycogen synthase kinase-3beta. Asphalt fumes transiently activated c-Jun NH2-terminal kinases without affecting extracellular signal-regulated kinases and p38 mitogen-activated protein kinases. Further study indicated that blockage of phosphatidylinositol 3-kinase activation eliminated asphalt fume-stimulated AP-1 activation and formation of anchorage-independent colonies in soft agar. This is the first report showing that exposure to asphalt fumes can activate AP-1 and intracellular signaling that may promote skin tumorigenesis, thus providing important evidence on the potential involvement of exposure to asphalt fumes in skin carcinogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号