首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Porphyromonas gingivalis, a gram-negative anaerobic oral bacterium, causes periodontal disease by binding to saliva-coated oral surfaces. The FimA protein from P. gingivalis is a crucial pathogenic component of the bacterium and a target for vaccine development against periodontal disease. Complementary DNAs encoding the heavy and light chains of two monoclonal antibodies that bind specifically to the FimA protein were cloned into a plant expression vector under the control of the duplicated Cauliflower Mosaic Virus 35S promoter, and agroinfiltration was used to allow the vectors to infiltrate tobacco plants. The expressions of the heavy and light chains in the leaf tissue were detected using antibodies specific to each antibody chain. Western blot analysis showed the specific binding of the plant-derived monoclonal antibodies to the native FimA protein purified from P. gingivalis. Our finding that plant-derived monoclonal antibodies bound specifically to the native FimA protein indicates that plantderived monoclonal antibodies can protect against P. gingivalis invasion.  相似文献   

2.
The FtsZ protein is a GTPase that is essential for cell division. We have cloned, sequenced, and expressed the FtsZ (PgFtsZ) gene from the Porphyromonas gingivalis, an oral, anaerobic, rod-shaped bacterium implicated in progressive periodontal disease. The PgFtsZ gene consisted of 1374 bp and coded for an acidic protein with a calculated molecular mass of 50,253 Da. The deduced amino acid sequence exhibited a significant homology with E. coli FtsZ (54% identical residues). Like other prokaryotic FtsZs, PgFtsZ possessed the clear motifs for GTP binding (GGGTGTG) and hydrolysis (NLDFADV). When PgFtsZ was overexpressed in E. coli, cell division was inhibited. Recombinant PgFtsZ was purified to homogeneity and characterized. The purified PgFtsZ exhibited GTPase activity even in the absence of Mg2+, and completely retained its activity with EDTA. Furthermore, Na+ and K+ ions inhibited its GTPase activity in a dose-dependent manner. These results suggest that PgFtsZ contains an atypical GTPase activity that has not been previously described. Received: 25 May 2001 / Accepted: 8 August 2001  相似文献   

3.
4.
Periodontitis is one of the most common oral diseases in humans. This caused by infection by the oral bacterium Porphyromonas gingivalis. Our strategy to prevent this infection is to establish a passive immunization system in which endogenous antibodies can be applied directly to neutralize virulent factors associated with this bacterium. We focused our attention on the P. gingivalis 35 kDa surface protein, or HBP35, since this protein is involved not only in the coaggregation with oral miroflora but also in hemin binding. In addition, nucleotide sequencing of the gene, hbp35, coding for this protein revealed the presence of a catalytic center for thioredoxin, and we further attempted to characterized the protein by amino acid substitution. A total of four Cys residues were substituted for Ser residues by combining the simple method for site-directed mutagenesis and the heterodimer system, an approach designed to construct chimeric plasmids readily. Native and mutagenized hbp35 were introduced into the Eschericha coli dsbA mutant strain, JCB 572, defective in both alkaline phosphatase and motile activities due to inefficient disulfide bond formation. Transformant harboring the native hbp35 could complement the dsbA mutation, suggesting a role of disulfide bond formation of this protein in P. gingivalis cells. Possible roles of the Cys residues in complementation are discussed.  相似文献   

5.
Periodontal disease caused by the gram-negative oral anaerobic bacterium Porphyromonas gingivalis is thought to be initiated by the binding of P. gingivalis fimbrial protein to saliva-coated oral surfaces. To assess whether biologically active fimbrial antigen can be synthesized in edible plants, a cDNA fragment encoding the C-terminal binding portion of P. gingivalis fimbrial protein, fimA (amino acids 266–337), was cloned behind the mannopine synthase promoter in plant expression vector pPCV701. The plasmid was transferred into potato (Solanum tuberosum) leaf cells by Agrobacterium tumefaciens in vivo transformation methods. The fimA cDNA fragment was detected in transformed potato leaf genomic DNA by PCR amplification methods. Further, a novel immunoreactive protein band of ~6.5 kDa was detected in boiled transformed potato tuber extracts by acrylamide gel electrophoresis and immunoblot analysis methods using primary antibodies to fimbrillin, a monomeric P. gingivalis fimbrial subunit. Antibodies generated against native P. gingivalis fimbriae detected a dimeric form of bacterial-synthesized recombinant FimA(266–337) protein. Further, a protein band of ~160 kDa was recognized by anti-FimA antibodies in undenatured transformed tuber extracts, suggesting that oligomeric assembly of plant-synthesized FimA may occur in transformed plant cells. Based on immunoblot analysis, the maximum amount of FimA protein synthesized in transformed potato tuber tissues was approximately 0.03% of total soluble tuber protein. Biosynthesis of immunologically detectable FimA protein and assembly of fimbrial antigen subunits into oligomers in transformed potato tuber tissues demonstrate the feasibility of producing native FimA protein in edible plant cells for construction of plant-based oral subunit vaccines against periodontal disease caused by P. gingivalis.  相似文献   

6.
Heat-shock proteins of Porphyromonas gingivalis were demonstrated and two of them were purified and further characterized. The amplified de novo synthesis of two different proteins, with apparent molecular weights of 75 kDa and 68 kDa, was observed by autofluorography when a P. gingivalis culture incubated in a 14C-labeled amino acid mixture was shifted from 37°C to 44°C. Both proteins possessed ATP-binding abilities and were purified to almost homogeneity employing affinity chromatography on ATP-agarose followed by preparative SDS-PAGE. Purified 75 kDa and 68 kDa proteins had isoelectric points of 4.4 and 4.6, respectively. They were shown to be immunoreactive with commercial anti-DnaK and anti-GroEL polyclonal antibodies, respectively. Immunoblotting analysis of whole cells using antiserum raised against each purified protein from P. gingivalis, confirmed elevated synthesis of both proteins during thermal shock. A GroEL protein reacted strongly with antiserum against the 68 kDa protein. However, a DnaK protein reacted weakly with antiserum to the 75 kDa protein. Analysis of the N-terminal amino acid sequence of the DnaK-like protein (75 kDa) showed a high degree of homology with those of the HSP70 family including both prokaryotic and eukaryotic cells. The N-terminal amino acid analysis of the GroEL-like protein (68 kDa) indicated that it was identical to those of cloned GroEL homologues from P. gingivalis.  相似文献   

7.
The extracellular phospholipase D (PLD) gene fromStreptomyces antibioticus was cloned, sequenced, and expressed inEscherichia coli. Analysis of DNA sequence data revealed a putative ribosome-binding site and an open reading frame encoding a 556-amino-acid protein that included amino acid sequences obtained from the purified enzyme. The protein was expressed in an insoluble form inE. coli, but reacted with antibody against PLD. After solubilization of the protein with guanidine-HCI and 2-mercaptoethanol, subsequent dialysis restored the PLD activity. Comparison of the nucleotide sequence data with the N-terminal protein sequence indicates that this secreted protein is synthesized as a larger precursor with a 47-amino-acid N-terminal extension to the mature enzyme of 509 amino acids. The amino acid sequence of the S.antibioticus PLD was extensively compared with other PLDs and phospholipase C (PLC). The deduced amino acid sequence of the cloned PLD was highly homologous to PLDs from S. acidomyceticus andStreptomyces sp., and contained a conserved region with S.chromofuscus PLD. From comparisons of the structural similarity and properties of the various PLDs, a classification of PLDs into two subgroups has been proposed and the highly conserved region designated tentatively region XPLD, which may be important in the catalytic function, has been identified. The homology comparison between our PLD and phosphatidylinositol-specific phospholipase C (PI-PLC) is also discussed.  相似文献   

8.

Background  

Periodontitis is a bacterial infection of the periodontal tissues. The Gram-negative anaerobic bacterium Porphyromonas gingivalis is considered a major causative agent. One of the virulence factors of P. gingivalis is capsular polysaccharide (CPS). Non-encapsulated strains have been shown to be less virulent in mouse models than encapsulated strains.  相似文献   

9.
A cDNA copy for carboxymethylcellulase (CMCase 1) of the yeast Cryptococcus flavus was cloned by screening an expression cDNA library with anti-CMCase 1 antibody. The sequence of the cDNA had an open reading frame of 1023 bp that encoded a preprotein of 341 amino acids with a molecular weight of 35,698. The putative precursor begins with a hydrophobic segment that possibly acts as a signal sequence for secretion, which is followed by a presumed prosequence and a sequence consistent with the N-terminal amino acid sequence of secreted CMCase 1. No potential N-glycosylation site was found in the sequence of putative pro-CMCase 1. Comparison of the deduced protein sequence shows that the C. flavus CMCase 1 is partially homologous to the Trichoderma reesei endoglucanase EGIII. Alignment of the cDNA copy and the chromosomal DNA showed seven putative introns of 45 to 134 bp. When introduced into E. coli, the cDNA directed the synthesis of CMCase 1 as seen by CMCase activity and Western blotting using anti-CMCase 1 antibody.  相似文献   

10.
We characterized, identified, and cloned a major protein which comprised 16% of the total proteins from Cytophaga sp. cell lysate. After French pressing, the fraction of cell envelope was treated with 0.2% Triton X-100 to remove cell membranes. Subsequent SDS-PAGE analysis of the Triton X-100-insoluble cell wall revealed a protein of 120 kDa with a pI of 5.4, which was identified by gold immunostaining as the surface (S)-layer protein of this soil bacterium. The nucleotide sequence of the cloned S-layer protein gene (slp) encoding this protein consisted of 3144 nucleotides with an ORF for 1047 amino acids, which included a typical 32-amino acid leader peptide sequence. Amino acid sequence alignment revealed 29–48% similarity between this protein and the S-layer proteins from other prokaryotic organisms. The 120-kDa protein from the Cytophaga sp. cell lysate has been characterized as a member of the S-layer proteins, and the slp gene was cloned and expressed in Escherichia coli. E. coli harboring the plasmid containing the 600- or 800-bp DNA fragment upstream of the initiation codon of the slp gene, in the presence of the reporter gene rsda (raw starch digesting amylase), showed amylase activity in starch containing plate. The putative promoter region of slp located 600 bp upstream of the initiation codon might be used for foreign gene expression.  相似文献   

11.
The genes encoding thioredoxin and thioredoxin reductase of Clostridium litorale were cloned and sequenced. The thioredoxin reductase gene (trxB) encoded a protein of 33.9 kDa, and the deduced amino acid sequence showed 44% identity to the corresponding protein from Escherichia coli. The gene encoding thioredoxin (trxA) was located immediately downstream of trxB. TrxA and TrxB were each encoded by two gene copies, both copies presumably located on the chromosome. Like other thioredoxins from anaerobic, amino-acid-degrading bacteria investigated to date by N-terminal amino acid sequencing, thioredoxin from C. litorale exhibited characteristic deviations from the consensus sequence, e.g., GCVPC instead of WCGPC at the redox-active center. Using heterologous enzyme assays, neither thioredoxin nor thioredoxin reductase were interchangeable with the corresponding proteins of the thioredoxin system from E. coli. To elucidate the molecular basis of that incompatibility, Gly-31 in C. litorale thioredoxin was substituted with Trp (the W in the consensus sequence) by site-directed mutagenesis. The mutant protein was expressed in E. coli and was purified to homogeneity. Enzyme assays using the G31W thioredoxin revealed that Gly-31 was not responsible for the observed incompatibility with the E. coli thioredoxin reductase, but it was essential for activity of the thioredoxin system in C. litorale. Received: 19 September 1996 / Accepted: 21 May 1997  相似文献   

12.
A thermostable glycerol kinase (FGK) was purified 34-fold to homogeneity from Flavobacterium meningosepticum. The molecular masses of the enzyme were 200 kDa by gel filtration and 50 kDa by SDS-PAGE. The Km for glycerol and ATP were 0.088 and 0.030 mM, respectively. The enzyme was stable at 65°C for 10 min and at 37°C for two weeks. The enzyme gene was cloned into Escherichia coli and its complete DNA was sequenced. The FGK gene consists of an open reading frame of 1494-bp encoding a protein of 498 amino acids. The deduced amino acid sequence of the gene had 40-60% similarity to those of glycerol kinases from other origins and the amino acid sequence of the putative active site residue reported for E. coli GK is identical to the corresponding sequence of FGK except for one amino acid residue.  相似文献   

13.
We have cloned the xynA gene coding for xylanase A, a major component of the xylanase family, from Aspergillus kawachii. The cDNA was isolated from an A. kawachii cDNA library by immunoscreening using antibody raised against the purified xylanase A protein. Nucleotide sequence analysis of the cDNA showed a 981-bp open reading frame that encoded a protein of 327 amino acid residues. The signal peptide was composed of 25 amino acid residues and the N-terminus of the mature protein was pyroglutamic acid. The transformed yeast with a cloned cDNA produced xylanase. The genomic DNA was arranged as ten exons and nine introns.  相似文献   

14.
A monoclonal antibody obtained by immunization of mice with heat-killed cells of Listeria monocytogenes serotype 4d showed reactivity towards a protein (P45) from L. monocytogenes with an apparent molecular mass of 45 kDa. This protein was detected in the culture supernatant and at the cell surface of L. monocytogenes. Proteins cross-reacting with the monoclonal antibody were present in all Listeria strains investigated, except L. grayi. The structural gene was cloned in Escherichia coli and sequenced. Translation of the gene starts at a TTG initiation codon. The gene was found to code for a protein of 402 amino acid residues with a predicted molecular mass of 42.7 kDa. It has a signal peptide of 27 amino acid residues, resulting in a molecular mass for the mature polypeptide of 39.9 kDa. Protein database searches showed that this protein has 55% similarity and 38% identity to protein p60 of L. monocytogenes and exhibits significant sequence similarities to p54 from Enterococcus faecium and Usp45 from Lactococcus lactis. P45 was shown to have peptidoglycan lytic activity and the encoding gene was named spl (secreted protein with lytic property). Revision received: 11 August 1999 / Accepted: 8 September 1999  相似文献   

15.
Summary A DNA fragment that codes for the 364 amino-terminal amino acid residues of a putative Bacillus subtilis SecA homologue has been cloned using the Escherichia coli SecA gene as a probe. The deduced amino acid sequence showed 58% identity to the aminoterminus of the E. coli SecA protein. A DNA fragment which codes for 275 amino-terminal amino acid residues of the B. subtilis SecA homologue was expressed in E. coli and the corresponding gene product was shown to be recognized by anti-E. coli SecA antibodies. This polypeptide, although only about 30% the size of the E. coli SecA protein, also restored growth of E. coli MM52 (secA ts) at the non-permissive temperature and the translocation defect of proOmpA in this mutant was relieved to a substantial extent.  相似文献   

16.
A gene (CAC2657) encoding a ferredoxin (EFR1) from the strictly anaerobic soil bacterium Clostridium acetobutylicum was cloned and expressed in Escherichia coli. The ferredoxin gene encodes a polypeptide of 27 kDa that incorporates 2[4Fe–4S] clusters. An extended N-terminal region of 187 amino acid (aa) residues precedes ferredoxin domain. The EFR1 expressed in E. coli is a trimeric protein. The iron and sulfur content of the reconstituted protein agrees with that expected of a trimeric form of the protein. The ferredoxin domain of EFR1 is closely related to ferredoxin of C. pasteurianum; and can be fitted to the X-ray crystal structure with a root mean square deviation of 0.62 As for the Cα atoms of the generated 3D simulation model. In cultures of C. acetobutylicum the efr1 gene shows higher relative expression on induction with Trinitrotoluene (TNT) compared to that from uninduced control cultures.  相似文献   

17.
We have previously cloned the gene encoding the cell division protein FtsZ, designated PgFtsZ, from Porphyromonas gingivalis, an oral anaerobic bacterium implicated in advanced periodontal disease. In the present study, we have shown that overexpression of ZΔC02, a mutant form of PgFtsZ in which 128 amino acid residues have been removed from the C-terminus, caused an inhibition of cell division in E. coli cells. However, overexpression of ZΔC03, missing 177 residues from the C-terminus, did not inhibit cell division, suggesting that the 49 residues between 281 and 329 are required for cell division. Sequence comparison of the known prokaryotic FtsZs revealed that this region contained a highly conserved domain, designated A-domain, in which Ala320 of PgFtsZ was conserved throughout a broad variety of species. Therefore, we analyzed the role of Ala320 by site-directed mutagenesis. We found that overexpression of ZA320H and ZA320R resulted in the normal phenotype, unlike the wild type. Immunoblot analysis showed that these mutant proteins were expressed at similar levels. These results suggest that Ala320 is highly conserved and is crucial for cell division. Received: 6 November 2001 / Accepted: 15 February 2002  相似文献   

18.
A bifunctional alcohol/acetaldehyde dehydrogenase (AdhE) gene (adhE) was cloned from Leuconostoc mesenteroides C7 (LMC7), which is the dominant lactic acid bacterium produced during heterofermentation of kimchi. The nucleotide sequence of the DNA fragment containing putative adhE, which is 2685 bp long and encodes an 886 amino acid polypeptide, exhibits 99% homology with Leu. mesenteroides sp. cremoris. The deduced AdhE comprises two conserved domains: alcohol dehydrogenase (Adh) and acetaldehyde dehydrogenase (Aldh). Moreover, two NAD-binding sites were observed, based on the presence of the GXGXXG motif. A pADHE containing the adhE gene expressed AdhE at the translational level in Escherichia coli BL21, which was at a higher level than in E. coli DH5 and E. coli JM109. The AdhE of LMC7 showed Adh and Aldh activities that, when expressed in E. coli. BL21, were 7.5 and 5.7 U mg-1 , respectively.  相似文献   

19.
The gram-negative anaerobic bacterium Porphyromonas gingivalis is a major causative agent of chronic periodontitis. Porphyromonas gingivalis strains have been classified into virulent and less-virulent strains by mouse subcutaneous soft tissue abscess model analysis. Here, we present the whole genome sequence of P. gingivalis ATCC 33277, which is classified as a less-virulent strain. We identified 2090 protein-coding sequences (CDSs), 4 RNA operons, and 53 tRNA genes in the ATCC 33277 genome. By genomic comparison with the virulent strain W83, we identified 461 ATCC 33277-specific and 415 W83-specific CDSs. Extensive genomic rearrangements were observed between the two strains: 175 regions in which genomic rearrangements have occurred were identified. Thirty-five of those genomic rearrangements were inversion or translocation and 140 were simple insertion, deletion, or replacement. Both strains contained large numbers of mobile elements, such as insertion sequences, miniature inverted-repeat transposable elements (MITEs), and conjugative transposons, which are frequently associated with genomic rearrangements. These findings indicate that the mobile genetic elements have been deeply involved in the extensive genome rearrangement of P. gingivalis and the occurrence of many of the strain-specific CDSs. We also describe here a very unique feature of MITE400, which we renamed MITEPgRS (MITE of P. gingivalis with Repeating Sequences).Key words: Porphyromonas gingivalis, whole genome sequence, genome rearrangement, conjugative transposon, MITE  相似文献   

20.
The gene encoding an endo-β-1,4-xylanase from an Indonesian indigenous Bacillus licheniformis strain I5 was amplified using PCR, cloned, and expressed in Escherichia coli. The nucleotide sequence of a 642 bp DNA fragment was determined, revealing one open reading frame that encoded a xylanase. Based on the nucleotide sequence, calculated molecular mass of the enzyme was 23 kDa. This xylanase has a predicted typical putative signal peptide; however, in E. coli, the active protein was located mainly in intracellular form. Neither culture supernatant of recombinant E. coli nor periplasmic fraction has significantly detectable xylanase activity. The deduced amino acid of the gene has 91% identity with that of Bacillus subtilis endoxylanase. Optimal activity of the recombinant enzyme was at pH 7 and 50°C  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号