首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The abilities of seven bifidobacterial isolates ( Bifidobacterium adolescentis , B. bifidum (two strains), B. catenulatum , B. infantis , B. longum , B. pseudolongum ) to utilize 15 different carbohydrate sources (eight oligosaccharide products, and a variety of monosaccharides and disaccharides) were studied, with regard to maximum specific growth rates and production of bacterial cell mass. Results showed that substrate utilization was highly variable and that considerable interspecies and interstrain differences existed. Galactooligosaccharides and oligofructose, with a low degree of polymerization, supported best growth of the test micro-organisms. In contrast, xylooligosaccharides and pyrodextrins were almost invariably poor bifidobacterial substrates. In many species, maximum specific growth rates and bacterial cell yields were higher on oligosaccharides compared to their monosaccharide constituents, particularly with respect to fructooligosaccharides. Bifidobacterium pseudolongum , B. longum and B. catenulatum were the most nutritionally versatile isolates studied in relation to the range of oligosaccharide products utilized, and the extent to which bacteria could grow on these substrates.  相似文献   

2.
母乳低聚糖(human milk oligosaccharides,HMOs)是一类存在于人乳中复杂的混合低聚糖,是母乳中的重要成分,在婴幼儿生长发育中起到重要作用。母乳低聚糖可作为影响肠道微生物群组成的益生元,可选择性地促进母乳喂养婴儿肠道双歧杆菌的生长。婴儿肠道内相关的双歧杆菌具有糖苷酶和转运蛋白等分子工具,使其能够代谢HMOs,且代谢过程具有菌株特异性。本文对2′ 岩藻糖基乳糖、3′ 岩藻糖基乳糖、3′ 唾液酸乳糖、6′ 唾液酸乳糖、乳糖 N 四糖、乳糖 N 新四糖等常见HMOs的结构和特点进行总结,并讨论不同双歧杆菌对不同HMOs的利用特点和机制,为开发针对不同双歧杆菌的特异性益生元提供相应的理论指导。  相似文献   

3.
The bifidogenic effect of human milk oligosaccharides (HMOs) has long been known, yet the precise mechanism underlying it remains unresolved. Recent studies show that some species/subspecies of Bifidobacterium are equipped with genetic and enzymatic sets dedicated to the utilization of HMOs, and consequently they can grow on HMOs; however, the ability to metabolize HMOs has not been directly linked to the actual metabolic behavior of the bacteria. In this report, we clarify the fate of each HMO during cultivation of infant gut-associated bifidobacteria. Bifidobacterium bifidum JCM1254, Bifidobacterium longum subsp. infantis JCM1222, Bifidobacterium longum subsp. longum JCM1217, and Bifidobacterium breve JCM1192 were selected for this purpose and were grown on HMO media containing a main neutral oligosaccharide fraction. The mono- and oligosaccharides in the spent media were labeled with 2-anthranilic acid, and their concentrations were determined at various incubation times using normal phase high performance liquid chromatography. The results reflect the metabolic abilities of the respective bifidobacteria. B. bifidum used secretory glycosidases to degrade HMOs, whereas B. longum subsp. infantis assimilated all HMOs by incorporating them in their intact forms. B. longum subsp. longum and B. breve consumed lacto-N-tetraose only. Interestingly, B. bifidum left degraded HMO metabolites outside of the cell even when the cells initiate vegetative growth, which indicates that the different species/subspecies can share the produced sugars. The predominance of type 1 chains in HMOs and the preferential use of type 1 HMO by infant gut-associated bifidobacteria suggest the coevolution of the bacteria with humans.  相似文献   

4.
Lactation is a common feeding strategy of eutherian mammals, but its functions go beyond feeding the neonates. Ever since Tissier isolated bifidobacteria from the stool of breast-fed infants, human milk has been postulated to contain compounds that selectively stimulate the growth of bifidobacteria in intestines. However, until relatively recently, there have been no reports to link human milk compound(s) with bifidobacterial physiology. Over the past decade, successive studies have demonstrated that infant-gut-associated bifidobacteria are equipped with genetic and enzymatic toolsets dedicated to assimilation of host-derived glycans, especially human milk oligosaccharides (HMOs). Among gut microbes, the presence of enzymes required for degrading HMOs with type-1 chains is essentially limited to infant-gut-associated bifidobacteria, suggesting HMOs serve as selected nutrients for the bacteria. In this study, I shortly discuss the research on bifidobacteria and HMOs from a historical perspective and summarize the roles of bifidobacterial enzymes in the assimilation of HMOs with type-1 chains. Based on this overview, I suggest the co-evolution between bifidobacteria and human beings mediated by HMOs.  相似文献   

5.
6.
Specific growth rate of bifidobacteria cultured on different sugars   总被引:1,自引:0,他引:1  
The ability of six bifidobacterial strains (3 of human origin and 3 isolates from fermented milk products) to utilize glucose, lactose, melezitose, sucrose, raffinose, and stachyose was determined. Dairy-related bifidobacterial strains were identified asBifidobacterium animalis (2 strains) or asB. pseudolongum (1 strain). Human strains includedB. longum (2 strains) andB. breve (1 strain). All strains fermented lactose, sucrose, raffinose, and stachyose. Melezitose was utilized only byB. longum. B. pseudolongum did not ferment either glucose or melezitose. All isolates had a higher specific growth rate on raffinose and stachyose than on glucose. Dairy strains grew slowly on glucose compared to human strains.  相似文献   

7.
Four strains of bifidobacteria (B. bifidum 93,B. infantis ATCC 17 930,B. longum ATCC 15 707, andB. longum JR) cultivated in MRS broth modified by the addition of cysteine-hydrochloride (0.05 %) were serially subcultured in unsupplemented cow milk alone or in combination withKluyveromyces marxianus var.marxianus 269 under aerobic conditions. In monoculture, bifidobacteria did not multiply after the second subculture. In contrast, in coculture with yeast bifidobacteria reached counts about 8 log CFU/g even during 15 subcultures. In addition,K. marxianus var.marxianus 269 significantly prolonged the survival of bifidobacteria in milk at 4 °C. The most susceptible strains (B. longum Jr andB. infantis ATCC 17 930) completely lost their viability within 5 and 12 d of storage, respectively, while in coculture with yeasts all bifidobacteria cultures tested survived for at least 40 d. The results could be useful in producing kefir-like fermented milks containing bifidobacteria. The study was supported by grant no. 238/10/12596/0 of theInternal Grant Agency of Czech University of Agriculture ion Prague.  相似文献   

8.
9.
Human milk oligosaccharides (HMO), which constitute a major component of human milk, promote the growth of particular bacterial species in the infant's gastrointestinal tract. We hypothesized that HMO also interact with the bacterial communities present in human milk. To test this hypothesis, two experiments were conducted. First, milk samples were collected from healthy women (n = 16); culture-independent analysis of the bacterial communities was performed, HMO content was analyzed, and the relation between these factors was investigated. A positive correlation was observed between the relative abundance of Staphylococcus and total HMO content (r = 0.66). In a follow-up study, we conducted a series of in vitro growth curve experiments utilizing Staphylococcus aureus or Staphylococcus epidermidis and HMO isolated from human milk. HMO exhibited stimulatory effects on bacterial growth under various nutritional conditions. Analysis of culture supernatants from these experiments revealed that HMO did not measurably disappear from the culture medium, indicating that the growth-enhancing effects were not a result of bacterial metabolism of the HMO. Instead, stimulation of growth caused greater utilization of amino acids in minimal medium. Collectively, the data provide evidence that HMO may promote the growth of Staphylococcus species in the lactating mammary gland.  相似文献   

10.
There has been a clear trend towards decreased reliance upon animal studies and increased emphasis upon experiments with human-derived tissues. Nonetheless, we continue to need investigations of interspecies differences for two principal reasons: (1) to prospectively design experiments so that the animal species most similar to humans can be chosen, on a case-by-case basis, for each drug; (2) to properly evaluate and interpret data obtained from the experiments ("risk assessment"). Four core examples derived from the work in our FDA laboratory are used to illustrate these points. For paclitaxel, different metabolites were formed in humans and rats, which makes metabolic drug-drug interaction studies in rats irrelevant. For zidovudine (AZT), rapid glucuronidation in humans produced a much shorter half-life than expected from studies in animals, which have negligible glucuronidation. The toxicology and efficacy of both parent drug and metabolite need to be assessed in cases such as iododeoxydoxorubicin, in which the parent molecule is the dominant circulating species in mice, but patients have more than 10-fold greater exposure to the metabolite compared with the parent. While rats have highly-active arylamine N-acetyltransferases, dogs totally lack this enzyme family, and humans have intermediate amounts. For some situations, we've suggested that it can be desirable to inhibit NAT to make the human exposure more similar to dogs. In conclusion, although the ratio of animal:human data is decreasing, our ability to use animal data effectively for drug development has actually increased. Continued focus should be placed upon the application of comparative interspecies data for prospective design of animal experiments and retrospective interpretation of animal findings in terms of the potential for human risk and benefit.  相似文献   

11.
Han NS  Kim TJ  Park YC  Kim J  Seo JH 《Biotechnology advances》2012,30(6):1268-1278
Human milk contains a large variety of oligosaccharides (HMOs) that have the potential to modulate the gut flora, affect different gastrointestinal functions, and influence inflammatory processes. This review introduces the recent advances in the microbial and coupled enzymatic methods to produce HMOs with grouping them into trisaccharides (sialyllactose and fucosyllactose) and complex oligosaccharides (lacto-N-biose derivatives). The high purity and low cost of HMOs should make their use possible in new fields such as the food or pharmaceutical industries.  相似文献   

12.
Human milk provides peptides highly stimulating the growth of bifidobacteria.   总被引:12,自引:0,他引:12  
The large intestine of breast-fed infants is colonized predominantly by bifidobacteria, which have a protective effect against acute diarrhea. In this study we report for the first time the identification of human milk peptides that selectively stimulate the growth of bifidobacteria. Several bifidogenic peptides were purified chromatographically from pepsin-treated human milk and identified as proteolytically generated fragments from the secretory component of the soluble polyimmunoglobulin receptor and lactoferrin; both of these proteins exhibit antimicrobial effects. Hydrolysis of the identified peptides with the gastrointestinal proteases pepsin, trypsin and chymotrypsin did not lead to the loss of bifidogenic activity, indicating their potential function in vivo. Sequential comparison revealed a similar structural motif within the identified peptides. A correspondingly designed small peptide (prebiotic lactoferrin-derived peptide-I, PRELP-I) was found to stimulate the growth of bifidobacteria as effectively as the native peptides. The combination of antimicrobial and bifidobacterial growth stimulatory activity in human milk proteins leads to highly specific compounds capable of regulating the microbial composition of infants' large intestine.  相似文献   

13.
We have isolated four novel oligosaccharides with the sialyl-Lea structure from human milk using a monoclonal antibody, MSW 113. These oligosaccharides were purified by affinity chromatography on a column of the immobilized monoclonal antibody and by high-performance liquid chromatography. The results of structural analyses, i.e., 500-MHz 1H NMR spectroscopy, fast atom bombardment mass spectrometry, and binding to specific anticarbohydrate antibodies, are consistent with the following structures. (formula; see text)  相似文献   

14.
For healthy infants, which were born normally and fully breastfed, the dominant component of the intestinal microflora are bifidobacteria. However, infants born by caesarean section possess clostridia as a dominant intestinal bacterial group. The aim of the present study was to determine whether bifidobacteria and clostridia are able to grow on human milk oligosaccharides (HMOs) and other carbon sources - lactose, cow milk (CM) and human milk (HM). Both bifidobacteria and clostridia grew on lactose and in CM. Bifidobacteria grew in HM and on HMOs. In contrast, 3 out of 5 strains of clostridia were not able to grow in HM. No clostridial strain was able to utilise HMOs. While both bifidobacterial strains were resistant to lysozyme, 4 out of 5 strains of clostridia were lysozyme-susceptible. It seems that HMOs together with lysozyme may act as prebiotic-bifidogenic compounds inhibiting intestinal clostridia.  相似文献   

15.
Oligosaccharides in human milk inhibit enteric pathogens in vitro and in vivo. Neutral milk oligosaccharides vary among individuals and over the course of lactation. To study such variation in the acidic milk oligosaccharides, a sensitive, convenient, quantitative method is needed. High-performance capillary electrophoresis of underivatized acidic oligosaccharides with detection by UV absorbance at 205 nm proved to be sensitive to the femtomole level. Eleven standard oligosaccharides ranging from tri- to nonasaccharide (3'-sialyllactose, 6'-sialyllactose, 3'-sialyllactosamine, 6'-sialyllactosamine, disialyltetraose, 3'-sialyl-3-fucosyllactose, sialyllacto-N-tetraose-a, sialyllacto-N-tetraose-b, sialyllacto-N-neotetraose-c, disialyllacto-N-tetraose, and disialomonofucosyllacto-N-neohexaose) were resolved; baseline resolutions of 3'-sialyllactose, 6'-sialyllactose, and other structural isomers were achieved. Peak areas were linear from 30 to 2000 pg and were reproducible with a coefficient of variation between 4 and 9%. There was no evidence of quantitative interference of one oligosaccharide with another. In studies using pooled human milk, addition of increasing amounts of authentic standard oligosaccharides produced the expected positive increments in detected values, indicating quantitative recovery without interference by other milk components. The identities of the major sialylated acidic oligosaccharides of pooled human milk agreed with the results of previous studies employing other analytical methods. Comparison of oligosaccharide profiles of milk samples from different donors revealed extensive variation, especially in the structural isomers of sialyllacto-N-tetraose. This sensitive, highly reproducible method requires only simple sample workup and is useful in defining variations in human milk acidic oligosaccharides and investigating their possible relationship with diseases of infants.  相似文献   

16.
An ion-exchange chromatographic system was used to isolate several human milk oligosaccharides, the elution being carried out with a linear gradient of a sodium borate buffer. Lacto-N-tetraose, lacto-N-neotetraose, lacto-N-fucopentaose I, II and III, lacto-N-difucohexaose I and 2'-alpha-fucosyllactose can be separated by this method.  相似文献   

17.
The binding of recombinant fragments of the C-terminal cell-binding domains of the two large exotoxins, toxin A (TcdA) and toxin B (TcdB), expressed by Clostridium difficile and a library consisting of the most abundant neutral and acidic human milk oligosaccharides (HMOs) was examined quantitatively at 25°C and pH 7 using the direct electrospray ionization mass spectrometry (ES-MS) assay. The results of the ES-MS measurements indicate that both toxin fragments investigated, TcdB-B1 and TcdA-A2, which possess one and two carbohydrate binding sites, respectively, bind specifically to HMOs ranging in size from tri- to heptasaccharides. Notably, five of the HMOs tested bind to both toxins: Fuc(α1-2)Gal(β1-4)Glc, Gal(β1-3)GlcNAc(β1-3)Gal(β1-4)Glc, Fuc(α1-2)Gal(β1-3)GlcNAc(β1-3)Gal(β1-4)Glc, Gal(β1-3)[Fuc(α1-4)]GlcNAc(β1-3)Gal(β1-4)Glc and Gal(β1-4)[Fuc(α1-3)]GlcNAc(β1-3)Gal(β1-4)Glc. However, the binding of the HMOs is uniformly weak, with apparent affinities ≤10(3?)M(-1). The results of molecular docking simulations, taken together with the experimental binding data, suggest that a disaccharide moiety (lactose or lactosamine) represents the core HMO recognition element for both toxin fragments. The results of a Verocytotoxicity neutralization assay reveal that HMOs do not significantly inhibit the cytotoxic effects of TcdA or TcdB. The absence of protection is attributed to the very weak intrinsic affinities that the toxins exhibit towards the HMOs.  相似文献   

18.
Lactoferrin (LF) is a Fe3+-transferring glycoprotein and is contained in human barrier fluids, blood, and milk. LF is an acute phase protein, is involved in nonspecific defense, and displays a unique set of biological functions. Small-angle X-ray scattering and light scattering experiments demonstrated that DNA and oligosaccharides added to LF with various levels of initial oligomerization increased the oligomerization rate. Almost complete dissociation into monomers was observed when 1 M NaCl was added to LF oligomers obtained in the presence of DNA, oligosaccharides, and nucleotides, previously identified as oligomerization effectors. LF complexes obtained with different oligomerization effectors differed in stability. Incubation with 50 mM MgCl2 completely destructed LF complexes formed in the presence of ATP and oligosaccharides but only partly destructed AMP- and d(pT)10-dependent complexes, which was followed by the formation of new complexes with a higher salt stability. A possible role of oligomerization in various LF functions is discussed.  相似文献   

19.
Sialylated human milk oligosaccharides (SHMOs) are important components of human milk oligosaccharides. Sialic acids are typically found on the nonreducing end and are known binding sites for pathogens and aid in neonates' brain development. Due to their negative charge and hydrophilic nature, they also help modulate cell-cell interactions. It has also been shown that sialic acids are involved in regulating the immune response and aid in brain development. In this study, the enriched SHMOs from pooled milk sample were analyzed by HPLC-Chip/QTOF MS. The instrument employs a microchip-based nano-LC column packed with porous graphitized carbon (PGC) to provide excellent isomer separation for SHMOs with highly reproducible retention time. The precursor ions were further examined with collision-induced dissociation (CID). By applying the proper collision energy, isomers can be readily differentiated by diagnostic peaks and characteristic fragmentation patterns. A set of 30 SHMO structures with retention times, accurate masses, and MS/MS spectra was deduced and incorporated into an HMO library. When combined with previously determined neutral components, a library with over 70 structures is obtained allowing high-throughput oligosaccharide structure identification.  相似文献   

20.
Human milk contains about 7% lactose and 1% human milk oligosaccharides (HMOs) consisting of lactose with linked fucose, N-acetylglucosamine and sialic acid. In infant formula, galactooligosaccharides (GOSs) are added to replace HMOs. This study investigated the ability of six strains of lactic acid bacteria (LAB), Lactobacillus acidophilus, Lactobacillus plantarum, Lactobacillus fermentum, Lactobacillus reuteri, Streptococcus thermophilus and Leuconostoc mesenteroides subsp. cremoris, to digest HMO components, defined HMOs, and GOSs. All strains grew on lactose and glucose. N-acetylglucosamine utilization varied between strains and was maximal in L. plantarum; fucose utilization was low or absent in all strains. Both hetero- and homofermentative LAB utilized N-acetylglucosamine via the Embden-Meyerhof pathway. Lactobacillus acidophilus and L. plantarum were the most versatile in hydrolysing pNP analogues and the only strains releasing mono- and disaccharides from defined HMOs. Whole cells of all six LAB hydrolysed oNP-galactoside and pNP-galactoside indicating β-galactosidase activity. High β-galactosidase activity of L. reuteri, L. fermentum, S. thermophilus and L. mesenteroides subsp. cremoris whole cells correlated to lactose and GOS hydrolysis. Hydrolysis of lactose and GOSs by heterologously expressed β-galactosidases confirmed that LAB β-galactosidases are involved in GOS digestion. In summary, the strains of LAB used were not capable of utilizing complex HMOs but metabolized HMO components and GOSs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号