首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ribosomes and immature ribonucleoprotein particles were isolated from extracts of log-phase cells grown under various conditions. Quantitative measurements were made to determine the relative amounts of immature particles present in the extracts. The results indicate that the steady-state level of ribosomal precursors accounted for essentially a constant fraction of the total ribonucleic acid (RNA) of the cells. For cells with RNA-protein ratios between 0.43 and 0.65, about 1.6% of the total RNA occurred as immature ribonucleoprotein particles. Further, increased levels of immature particles were shown to be correlated with a reduced rate of RNA synthesis in cells recovering from chloramphenicol inhibition. The reduction was found to vary directly with the duration of pretreatment in chloramphenicol and, consequently, with the level of immature particles present in the cells.  相似文献   

2.
Ribosomal ribonucleic acid (RNA) synthesis and ribonucleoside triphosphate metabolism were studied in cultures of Escherichia coli subjected to starvation for inorganic nitrogen. In a strain that was under stringent control, a 50-fold reduction in the formation of both 16S and 23S RNA was accompanied by a severe restriction on nucleotide biosynthesis. These inhibitions were relieved in part by incubating the starved cells with amino acids. This result suggests that regulation by the functional RNA control (RC) gene is involved in the effect. This suggestion was confirmed by showing that the effector of the stringent response, guanosine-5'-diphosphate-2'- or 3'-diphosphate ((pp)G(pp)), accumulated at the onset of starvation and disappeared immediately when the amino acids were added. Ribosomal RNA synthesis was severely restricted and the same nucleotide, (pp)G(pp), accumulated at the onset of nitrogen starvation of a relaxed mutant too. These findings suggest that a control mechanism other than the one provided by the functional rel gene might operate to regulate RNA synthesis and that this mechanism is expressed through the synthesis of (pp)G(pp).  相似文献   

3.
Synthesis of viral ribonucleic acid (RNA) polymerase, maturation protein, and coat protein in Escherichia coli infected with bacteriophage R17 occurs mainly on polysomes containing four or more ribosomes. The 30S ribosomal subunits through trimer-size polysomes, which are associated with all of the R17-specific proteins and are predominant in the infected cell, synthesize only coat protein. These structures may accumulate as products derived from larger polysomes as a result of failure in the release of nascent polypeptides after termination of chain growth. Appreciable amounts of viral coat protein remain attached to ribosomes and polysomes during R17 bacteriophage replication, supporting the hypothesis of the repressor role of this protein. The time course of synthesis of virus-specific proteins obtained from the polysomes of infected cells demonstrated regulated R17 messenger RNA translation consistent with the idea that coat protein is preferentially synthesized whereas the synthesis of noncoat proteins is suppressed.  相似文献   

4.
The effect of low concentrations of nalidixic acid on ribonucleic acid (RNA) synthesis in Escherichia coli was examined. It was observed that RNA synthesis in exponentially growing cells was not significantly affected, in harmony with previous studies. However, RNA synthesis was markedly depressed by nalidixic acid during starvation for an amino acid or during chloramphenicol treatment. This effect was not caused by increased killing or inhibition of nucleoside triphosphate synthesis by nalidixic acid. The pattern of radioactive uracil incorporation into transfer RNA or ribosomes was not changed by the drug. The sensitivity of RNA synthesis to nalidixic acid in the absence of protein production may be useful in probing the amino acid control of RNA synthesis.  相似文献   

5.
Cultures of Escherichia coli excreted glutamate into the medium when protein synthesis was blocked in RC(rel) strains or when it was blocked with chloramphenicol in either RC(str) or RC(rel) strains. Both of these conditions resulted in continued ribonucleic acid (RNA) synthesis in the absence of protein synthesis. Glutamate was also excreted by both RC(str) and RC(rel) strains when RNA synthesis was inhibited by uracil starvation or by treatment with actinomycin D. It is proposed that, in each of these cases, glutamate excretion resulted from an increase in the permeability of the cell membrane.  相似文献   

6.
The effects of pyrimidine limitation on chromosome replication and the control of ribosomal and transfer ribonucleic acid syntheses were investigated. Chromosome replication was studied by autoradiography of (3)H-thymine pulse-labeled cells. Pyrimidine limitation did not affect the fraction of cells incorporating radioactive thymine during a short pulse, indicating that when growth is limited by the supply of pyrimidine, the time required for chromosome duplication increases in proportion to the time required for cell duplication. Control of ribosomal RNA and transfer RNA syntheses was examined by chromatographing cell extracts on methylated albumin kieselguhr columns. When growth was controlled by carbon-nitrogen limitation, the ratio of tRNA to total RNA remained roughly constant at growth rates above 0.5 doublings per hour. During pyrimidine limitation, however, the control of rRNA synthesis was apparently dissociated from the control of tRNA synthesis: the ratio of tRNA to total RNA increased as the growth rate decreased.  相似文献   

7.
A cell permeabilization procedure is described that reduces viability less than 10% and does not significantly reduce the rates of ribonucleic acid and protein synthesis when appropriately supplemented. Permeabilization abolishes the normal stringent coupling of protein and ribonucleic acid synthesis.  相似文献   

8.
The number of gene copies for 5S ribosomal ribonucleic acid (rRNA), relative to that for 16 and 23S rRNA, has been determined by deoxyribonucleic acid (DNA)-RNA hybridization for Escherichia coli and Bacillus megaterium. In both cases, the number of 5S rRNA genes equals the number of 16 or 23S rRNA genes. Rapid procedures for preparing extremely highly purified DNA suitable for DNA-RNA hybridization experiments and chemically pure 5S rRNA are described.  相似文献   

9.
The synthesis of ribonucleic acid (RNA) and of protein in Escherichia coli during glucose-lactose diauxie lag have been examined. The rate of RNA synthesis is about 7%, of the corresponding rate during exponential growth and the rate of protein synthesis 10 to 15%. Inhibition of RNA synthesis occurs to the same extent in both rel and rel(+) strains. The RNA which accumulates during 20 min in diauxie lag is composed of about 50% ribosomal and transfer RNA species and about 50% of a fraction which resembles messenger RNA (mRNA) in its heterogeneous sedimentation properties. Decay of the heterogeneous fraction occurs in the presence of glucose and actinomycin D with a half-life of 3 min, the same as that of pulse-labeled mRNA; however, during the diauxie lag, the half-life of this RNA is about 25 min. Accumulation of the heterogeneous RNA is further increased when protein synthesis is blocked by chloramphenicol. The data suggest that the disproportionate accumulation of mRNA during diauxie lag and energy source shift-down may be attributed at least in part to increased stability of mRNA, but do not rule out a preferential synthesis of mRNA.  相似文献   

10.
Methylation of Ribosomal Proteins in Escherichia coli   总被引:3,自引:4,他引:3  
Escherichia coli was grown in a medium containing [1-(14)C]methionine and [methyl-(3)H]methionine, and the (3)H/(14)C ratio was determined for each of the ribosomal proteins derived from the 70S ribosome. Evidence indicates that six proteins from the 50S subunit were methylated: L7, L9, L11, L12, L18, and L33. Methylation of several other 50S proteins (such as L1, L3, L5, etc.) may also occur. The methylated amino acids in protein L11 have been characterized further and found to be predominately epsilon-trimethyllysine. A small amount of a compound tentatively identified as N(G), N'(G)-dimethylarginine was also detected.  相似文献   

11.
Data have been obtained which imply that chloramphenicol stimulation of ribonucleic acid (RNA) synthesis is a result of the accumulation of aminoacyl transfer RNA (tRNA) molecules. The data also support the hypothesis that chloramphenicol exerts an additional effect upon the stimulation of RNA synthesis. This effect may be at the level of the ribosome or the aminoacyl tRNA, or of both. It is this effect combined with the presence of aminoacyl tRNA that results in stimulation by chloramphenicol of RNA synthesis.  相似文献   

12.
Data are presented which support the view that l-lysine is transported by two systems in Streptococcus faecalis. The system with the higher affinity for l-lysine appears to be specific for l-lysine among the common amino acids and to require an energy source. The second system transports both l-lysine and l-arginine and does not appear to require an energy source. Both of these systems will accept hydroxy-l-lysine as a substrate as shown by the energy requirement for hydroxy-l-lysine transport and by the inhibition of uptake by l-arginine as well as by l-lysine. The affinity of both systems appears to be considerably lower for hydroxy-l-lysine than for l-lysine. A mutant of S. faecalis which is resistant to the growth inhibitory action of hydroxy-l-lysine appears to differ from the parent strain by having a defective l-lysine-specific transport system. In this mutant, hydroxy-l-lysine is not readily transported via the l-lysine-specific system because of the mutation or via the second system because of the high concentration of l-arginine present in the growth medium. This overall lack of transport prevents hydroxy-l-lysine from reaching inhibitory levels within the cell.  相似文献   

13.
An Escherichia coli mutant dependent on exogenous transfer ribonucleic acid (RNA) for bulk RNA formation at 42 C has been isolated, starting from a parental strain permeable to RNA. In the absence of added transfer RNA at the high temperature, protein synthesis stopped, and the strain formed little if any ribosomal RNA.  相似文献   

14.
Hybridization competition experiments were used to examine the ribosomal ribonucleic acid (rRNA) homologies of 22 bacteria and 3 higher organisms with Escherichia coli and Bacillus stearothermophilus. Although little or no homology was observed with the higher organisms, the bacteria showed a wide range of homologies. Organisms whose rRNA showed closer homology to E. coli rRNA showed less rRNA homology to B. stearothermophilus rRNA and vice versa.  相似文献   

15.
16.
The distribution of labeled ribonucleic acid (RNA) associated with polysomes from Escherichia coli infected with the bacteriophage R17 was investigated. Pulse-labeling of RNA for 15 sec with (3)H-uridine resulted in increased labeling of the RNA associated with larger polysomes from infected cells as compared to control cells. Analysis of the RNA indicated that the increased labeling of large polysomes resulted from the presence of labeled double-stranded viral RNA. Other species of 15-sec pulse-labeled RNA entered into polysome formation in both infected and control cells. On the other hand, pulse-labeling of cultures for 15 sec with (3)H-uridine followed by a 5-min chase with unlabeled uridine resulted in a greater decrease in the amount of labeled RNA associated with large polysomes from infected cells as compared to control cells. This decreased labeling of large polysomes from infected cells was accompanied by an increased amount of label associated with the monomer to trimer regions. Analysis of RNA labeled under pulse-chase conditions indicated that virus infection resulted in an increased amount of heterogeneous 5 to 15S RNA in both the monomer to trimer and ribosomal subunit-soluble regions of the polysome profile. Labeled 5 to 15S RNA extracted directly from infected cells under pulse-chase conditions, without prior polysome fractionation, was characterized by a shift toward a distribution of smaller polynucleotides.  相似文献   

17.
The effect of the ribonucleic acid (RNA) control (RC) gene on the biosynthesis of viral RNA has been examined in an RC(str) and an RC(rel) host infected with R17 RNA bacteriophage under conditions in which host RNA and protein synthesis were inhibited by the addition of rifampicin. Methionine and isoleucine starvation depressed viral RNA biosynthesis in an RC(str) host but not in an RC(rel) host. However, histidine starvation had little effect on viral RNA and protein synthesis in both RC(str) and RC(rel) cells, although it had a marked effect on host protein and RNA synthesis in an RC(str) host. Chloramphenicol relieved the effect of amino acid starvation on viral RNA synthesis in an RC(str) host. It is concluded that stringent control of viral RNA biosynthesis does not require the continued biosynthesis of the RC gene product (RNA or protein) and that a preformed RC gene product can regulate the biosynthesis of the exogenous RNA. It is suggested that the amino acid dependence of viral RNA biosynthesis is due to its obligatory coupling with the translation of the viral coat protein which lacks histidine. It may be inferred that the amino acid requirement of bacterial RNA is due to its coupling with the translation of a host-specific protein (other than the RC gene product) which requires a full complement of amino acids. Since chloramphenicol is known to permit ribosome movement in the absence of protein synthesis, it is suggested that ribosome movement along the nascent RNA chain is a sufficient condition for the continuation of RNA synthesis.  相似文献   

18.
19.
Escherichia coli strain 9D3 possesses a highly temperature-sensitive valyl-transfer ribonucleic acid (tRNA) synthetase (EC 6.1.1.9). Since 9D3 is a rel(+) strain, it cannot carry out net RNA synthesis at high temperature. A 100-mug amount of chloramphenicol (CAP) per ml added in the absence of valine cannot stimulate RNA synthesis. Either 300 mug of CAP or 100 mug of CAP plus 50 mug of valine per ml, however, promotes nearly maximal RNA synthesis. These results can be understood as follows. (i) Valyl-tRNA is required for net RNA synthesis, (ii) the synthetase lesion is incomplete, (iii) the rate of mutant acylation of tRNA(val) at high temperature is valine-dependent, and (iv) the CAP concentration determines the rate of residual protein synthesis. Data are also presented which demonstrate that the rate of net RNA synthesis can greatly increase long after the addition of CAP, if the amount of valyl-tRNA increases.  相似文献   

20.
The incorporation of radioactive uracil into 50s and 30s ribosomal subunits and ribosomal ribonucleic acid (rRNA) was studied during the growth cycle of different sporogenic and asporogenic strains of Bacillus subtilis. It was found that partially synchronized cultures of the strains examined incorporated labeled uracil into the two ribosomal subunit species and rRNA during sporulation and during the stationary phase of the asporogenic strains. Kinetic studies have shown that, compared to vegetative cells, the percentage of uracil incorporated into the ribosomal subunits of cells taken 30 min after the end of exponential growth was decreased by about 25 to 35%. This decrease, however, appeared to be a general characteristic of stationary-phase cells and seems to depend on the nature of the sporulation medium and to some extent on the nature of the strain but not on the sp(+) or sp(-) phenotype of the strain. Moreover, by use of actinomycin D it was shown that the labeled uracil incorporated, in the presence of the drug, during the sporulation period was located in the ribosomal subunits (stable RNA). Based on these results, we concluded that during sporulation ribosomal genes are transcribed and consequently rRNA continues to be synthesized, although to a lesser extent than during vegetative growth. These results are discussed in the light of those obtained by Hussey et al.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号