首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel series of 3-(2-cyclohexenyl-3-oxo-2,3-dihydropyridazin-6-yl)-2-phenylpyrazol o[1,5-a]pyridines was synthesized and evaluated for in vitro adenosine A1 and A2A receptor binding activities. Most of the cyclohexenyl derivatives (7a-e, 8a-s) were found to be potent adenosine A1 receptor antagonists. In a series of analogues of FR166124 (3a), alcohol 7c, nitrile 7e and amide derivatives (7d, 8c, 8r) were found to be more potent A1 antagonists with higher A2A/A1 selectivity than FR166124. Amongst them, 8r showed considerable water solubility (33.3 mg/mL), but lower than that of the sodium salt of FR166124 (> 200 mg/mL). Additionally, FR166124 had strong diuretic activity by both p.o. and iv administration in rats (minimum effective dose=0.1 and 0.032 mg/kg, respectively).  相似文献   

2.
3.
The development of potent and selective adenosine receptor ligands as potential drugs is an active area of research. Xanthines are one of the most important classes of adenosine receptor antagonists and have been widely developed in terms of affinity and selectivity for adenosine receptors. We recently developed new original pathways for the synthesis of xanthine analogues starting from 5-substituted-2-amino-2-oxazoline 5 as a synthon. These procedures allowed us to selectively introduce a large, functionalized and beta-adrenergic 2-hydroxy-3-phenoxypropyl pharmacophore at the 1- and 3-position of the xanthine moiety which allowed further structural modifications. In this study, we present a new synthetic access to racemic xanthine derivatives 1-4 from 5, and their evaluation as adenosine A1, A2A and A3 receptor ligands in radioligand binding studies. The 2-hydroxy-3-phenoxypropyl moiety was well tolerated in the 3-position of the xanthine core, while its introduction in the 1-position of the xanthine moiety led to a large decrease in adenosine receptor affinity. 1,7-Dimethyl-3-[1-(2-chloro-3-phenoxypropyl)]-8-(3,4,5-trimethoxystyryl)xanthine (2n) was the most potent and selective A2A antagonist of the present series (Ki=44 nM, >200-fold selective vs A1). 1-Propyl-3-[1-(2-hydroxy-3-phenoxypropyl)]-8-noradamantylxanthine (3f) was identified as a potent (KiA1=21 nM) and highly selective (>350-fold vs A2A and A3 receptor) adenosine A1 receptor antagonist.  相似文献   

4.
There is experimental evidence from radioligand binding experiments for the existence of strong antagonistic interactions between different subtypes of adenosine and dopamine receptors in the striatum, mainly between adenosine A1 and dopamine D1 and between adenosine A2A and dopamine D2 receptors. These interactions seem to be more powerful in the ventral compared to the dorsal striatum, which might have some implications for the treatment of schizophrenia. The binding characteristics of different dopamine and adenosine receptor subtypes were analysed in the different striatal compartments (dorsolateral striatum and shell and core of the nucleus accumbens), by performing saturation experiments with the dopamine D1 receptor antagonist [125I]SCH-23982, the dopamine D2-3 receptor antagonist [3H]raclopride, the adenosine A1 receptor antagonist [3H]DPCPX and the adenosine A2A receptor antagonist [3H]SCH 58261. The experiments were also performed in rats with a neonatal bilateral lesion of the ventral hippocampus (VH), a possible animal model of schizophrenia. Both dopamine D2-3 and adenosine A2A receptors follow a similar pattern, with a lower density of receptors (40%) in the shell of the nucleus accumbens compared with the dorsolateral caudate-putamen. A lower density of adenosine A1 receptors (20%) was also found in the shell of the nucleus accumbens compared with the caudate-putamen. On the other hand, dopamine D1 receptors showed a similar density in the different striatal compartments. Therefore, differences in receptor densities cannot explain the stronger interactions between adenosine and dopamine receptors found in the ventral, compared to the dorsal striatum. No statistical differences in the binding characteristics of any of the different adenosine and dopamine receptor antagonists used were found between sham-operated and VH-lesioned rats.  相似文献   

5.
Clathrin-coated vesicles purified from bovine brain express adenosine A1 receptor binding activity. N6-Cyclohexyl[3H]adenosine [( 3H]CHA), an agonist for the A1 receptor, binds specifically to coated vesicles. High and low agonist affinity states of the receptor for the radioligand [3H]CHA with KD values of 0.18 and 4.4 nM, respectively, were detected. The high purity of coated vesicles was established by assays for biochemical markers and by electron microscopy. Binding competition experiments using agonists (N6CHA, N-cyclopentyladenosine, 5'-(N-ethylcarboxamido)adenosine, and N6-[(R)- and N6-[(S)-phenylisopropyl]adenosine) and antagonists (theophylline, 3-isobutyl-1-methylxanthine, and caffeine) confirmed the typical adenosine A1 nature of the binding site. This binding site presents stereospecificity for N6-phenylisopropyladenosine, showing 33 times more affinity for N6-[(R)- than for N6-[(S)-phenylisopropyl]adenosine. The specific binding of [3H]CHA in coated vesicles is regulated by guanine nucleotides. [3H]CHA specific binding was decreased by 70% in the presence of the hydrolysis-resistant GTP analogue guanyl-5-yl-imidodiphosphate. Bovine brain coated vesicles present adenylate cyclase activity. This activity was modulated by forskolin and CHA. The results of this study support the evidence that adenosine A1 receptors present in coated vesicles are coupled to adenylate cyclase activity through a Gi protein.  相似文献   

6.
7.
A new series of 1,3-dipropyl-8-(1-phenylacetamide-1H-pyrazol-3-yl)-xanthine derivatives has been identified as potent A(2B) adenosine receptor antagonists. The products have been evaluated for their binding affinities for the human A(2B), A(1), A(2A), and A(3) adenosine receptors. N-(4-chloro-phenyl)-2-[3-(2,6-dioxo-1,3-dipropyl-2,3,6,7-tetrahydro-1H-purin-8-yl)-5-methyl-pyrazol-1-yl] (11c) showed a high affinity for the human A(2B) adenosine receptor K(i)=7nM and good selectivity (A(1), A(2A), A(3)/A(2B)>140). Synthesis and SAR of this novel class of compounds is presented herein.  相似文献   

8.
9.
A new series of 4-(1,3-dialkyl-2,4-dioxo-2,3,4,5-tetrahydro-1H-pyrrolo[3,2-d]pyrimidin-6-yl)benzenesulfonamides has been identified as potent A2B adenosine receptor antagonists. The products have been evaluated for their binding affinities for the human A2B, A1 and A3 adenosine receptors. 6-(4-{[4-(4-Bromobenzyl)piperazin-1-yl]sulfonyl}phenyl)-1,3-dimethyl-1H-pyrrolo[3,2-d]pyrimidine-2,4(3H,5H)-dione (16) showed a high affinity for the A2B adenosine receptor (IC50=1 nM) and selectivity (A1: 183x; A3: 12660x). Synthesis and SAR of this novel class of compounds showing improved absorption properties is presented herein.  相似文献   

10.
4-Phenylethynyl-6-phenyl-1,4-dihydropyridine derivatives are selective antagonists at human A3 adenosine receptors, with Ki values in a radioligand binding assay vs [125I]AB-MECA [N(6)-(4-amino-3-iodobenzyl)-5'-N-methylcarbamoyl-adenosine] in the submicromolar range. In this study, functionalized congeners of 1,4-dihydropyridines were designed as chemically reactive adenosine A3 antagonists, for the purpose of synthesizing molecular probes for this receptor subtype. Selectivity of the new analogues for cloned human A3 adenosine receptors was determined in radioligand binding in comparison to binding at rat brain A1 and A2A receptors. Benzyl ester groups at the 3- and/or 5-positions and phenyl groups at the 2- and/or 6-positions were introduced as potential sites for chain attachment. Structure-activity analysis at A3 adenosine receptors indicated that 3,5-dibenzyl esters, but not 2,6-diphenyl groups, are tolerated in binding. Ring substitution of the 5-benzyl ester with a 4-fluorosulfonyl group provided enhanced A3 receptor affinity resulting in a Ki value of 2.42 nM; however, a long-chain derivative containing terminal amine functionalization at the 4-position of the 5-benzyl ester showed only moderate affinity. This sulfonyl fluoride derivative appeared to bind irreversibly to the human A3 receptor (1 h incubation at 100 nM resulting in the loss of 56% of the specific radioligand binding sites), while the binding of other potent dihydropyridines and other antagonists was generally reversible. At the 3-position of the dihydropyridine ring, an amine-functionalized chain attached at the 4-position of a benzyl ester provided higher A3 receptor affinity than the corresponding 5-position isomer. This amine congener was also used as an intermediate in the synthesis of a biotin conjugate, which bound to A3 receptors with a Ki value of 0.60 microM.  相似文献   

11.
Barbiturates Are Selective Antagonists at A1 Adenosine Receptors   总被引:3,自引:0,他引:3  
Barbiturates in pharmacologically relevant concentrations inhibit binding of (R)-N6-phenylisopropyl[3H]adenosine ([3H]PIA) to solubilized A1 adenosine receptors in a concentration-dependent, stereospecific, and competitive manner. Ki values are similar to those obtained for membrane-bound receptors and are 31 microM for (+/-)-5-(1,3-dimethyl)-5-ethylbarbituric acid [(+/-)-DMBB] and 89 microM for (+/-)-pentobarbital. Kinetic experiments demonstrate that barbiturates compete directly for the binding site of the receptor. The inhibition of rat striatal adenylate cyclase by unlabelled (R)-N6-phenylisopropyladenosine [(R)-PIA] is antagonized by barbiturates in the same concentrations that inhibit radioligand binding. The stimulation of adenylate cyclase via A2 adenosine receptors in membranes from N1E 115 neuroblastoma cells is antagonized only by 10-30 times higher concentrations of barbiturates. It is concluded that barbiturates are selective antagonists at the A1 receptor subtype. In analogy to the excitatory effects of methylxanthines it is suggested that A1 adenosine receptor antagonism may convey excitatory properties to barbiturates.  相似文献   

12.
1. A high-affinity adenosine-binding site with Kd(adenosine) 0.5-1.3 microM was demonstrated in particulate and synaptosomal fractions isolated from the cerebral cortex of guinea pig, rat and ox. 2. Binding of [3H]adenosine to this site was inhibited by theophylline and by 2-chloroadenosine, but not by four other adenosine analogues. 3. Endogenous adenosine, found to be present in some preparations at approx. 1 pmol/mg of protein, diminished the binding capacity of the preparations for [3H]adenosine. 4. Addition of the adenosine deaminase inhibitor erythro-9-[1-(1-hydroxyethyl)heptyl]-adenine revealed the presence of a second lower affinity binding site with Kd (adenosine) 5-9 microM and a higher maximal adenosine-binding capacity. The inhibitor partially blocked binding to the high-affinity site in preparations from which adenosine deaminase had been removed by washing. 5. To preparations of particulate fractions maintained under iso-osmotic conditions, adenosine attachment was non-saturable and temperature-dependent, indicating the existence of an active uptake process. 6. The location and binding constant of the high-affinity adenosine-binding site suggest that it corresponds to the receptor site for adenosine-activated adenylate cyclase.  相似文献   

13.
Some 8-alkynyladenosines were synthesized and evaluated for their adenosine receptor activity, utilizing radioligand binding studies (A(1), A(2A), A(3)) or adenylyl cyclase activity assays (A(2B)). Furthermore, the maximal induction of guanosine 5'-(gamma-thio)triphosphate ([35S]GTPgammaS) binding to G proteins and the inhibition of NECA-stimulated binding, in membranes of CHO cells which express the human A(3) receptor, were used to determine the intrinsic activity of these nucleosides at the A(3) adenosine receptor. The results showed that these new adenosine derivatives are very selective ligands for the A(3) receptor subtype and behave as adenosine antagonists, since they do not stimulate basal [35S]GTPgammaS binding, but inhibit NECA-stimulated binding. This is the first report that adenosine derivatives, with unmodified ribose moiety, are adenosine receptor antagonists.  相似文献   

14.
We have examined the binding of the adenosine agonist radioligands [3H]cyclohexyladenosine [( 3H]CHA), R-N6-[3H]phenylisopropyladenosine [( 3H]R-PIA), and 5'-N-ethylcarboxamido[3H]adenosine [( 3H]NECA) to membranes prepared from rat pineal gland. The results showed that the A-1-selective ligands (CHA and R-PIA) had less than or equal to 10% specific binding. By contrast, [3H]NECA, a nonselective A-1/A-2 ligand, gave 72% specific binding of the total binding. This specific binding was insensitive to cyclopentyladenosine (50 nM) or R-PIA (50 microM). To characterize this binding, we used the N-ethylmaleimide pretreatment method. Under these conditions, this binding was of high affinity with a KD of 51 +/- 10 nM and an apparent Bmax of 1,060 +/- 239 fmol/mg of protein. Specific binding was unaffected by the presence of MgCl2 (10 mM) but was sensitive to guanylylimidodiphosphate (100 microM) (-25%), a result suggesting the involvement of an N-protein mechanism in the coupling of the adenosine receptor labeled by [3H]NECA to other components of the receptor complex. The rank of activity of adenosine analogues in displacing specific [3H]NECA binding was NECA greater than 2-chloroadenosine greater than S-adenosyl-L-homocysteine greater than CHA. Binding was also displaced by 3-isobutyl-1-methylxanthine (IC50 = 23.6 microM). These findings are consistent with the selective labeling by [3H]NECA of an A-2-type adenosine receptor in rat pineal membranes.  相似文献   

15.
Novel 2,8-disubstituted adenosine derivatives were synthesized in good overall yields starting from 2-iodoadenosine. Binding affinities were determined for rat adenosine A(1) and A(2A) receptors and human A(3) receptors. Some compounds displayed good adenosine A(2A) receptor affinities, with most of the 2-(1-hexynyl)- and 2-[(E)-1-hexenyl]-substituted derivatives having K(i) values in the nanomolar range. Although the introduction of an 8-alkylamino substituents decreased the affinity for the adenosine A(2A) receptor somewhat, the selectivity for this receptor compared to A(3) was improved significantly. The 8-methylamino (12) and 8-propylamino (14) derivatives of 2-(1-hexynyl)adenosine (3), showed reasonable A(2A) receptor affinities with K(i) values of 115 and 82nM, respectively, and were 49- and 26-fold selective for the adenosine A(2A) receptor compared to the A(3) receptor. The compounds were also evaluated for their ability to stimulate the cAMP production in CHO cells expressing the human adenosine A(2A) receptor. 2-(1-Hexynyl)adenosine (3) and 2-[(E)-1-hexenyl]adenosine (4) both showed submaximal levels of produced cAMP, compared to the reference full agonist CGS 21680, and thus behaved as partial agonists. Most 8-alkylamino-substituted derivatives of 3, displayed similar cAMP production as 3, and behaved as partial agonists as well. Introduction of alkylamino groups at the 8-position of 4, showed a slight reduction of the efficacy compared to 4, and these compounds were partial agonists also.  相似文献   

16.
A series of pyrazolo[1',5':1,6]pyrimido[4,5-d]pyridazin-4(3H)-ones was synthesized and tested in radioligand binding assays to determine their affinities for the human adenosine A(1), A(2A), A(2B) and A(3) receptors. Results indicated that this scaffold is appropriate for adenosine receptor subtype A(1) ligands and that the best arranged groups around this scaffold are 3- and 4-pyridinyl at position 1, benzyl at position 3, hydrogen at position 6 and 3-thienyl or phenyl at position 9. The most interesting compounds showed K(i) for A1 in the nanomolar range and an appreciable selectivity for other receptor subtypes.  相似文献   

17.
Herein we report the synthesis and biological evaluation of some potent and selective A(1) adenosine receptor agonists, which incorporate a functionalised linker attached to an antioxidant moiety. N(6)-(2,2,5,5-Tetramethylpyrrolidin-1-yloxyl-3-ylmethyl)adenosine (VCP28, 2e) proved to be an agonist with high affinity (K(i)=50nM) and good selectivity (A(3)/A(1) > or = 400) for the A(1) adenosine receptor. N(6)-[4-[2-[1,1,3,3-Tetramethylisoindolin-2-yloxyl-5-amido]ethyl]phenyl]adenosine (VCP102, 5a) has higher binding affinity (K(i)=7 nM), but lower selectivity (A(3)/A(1)= approximately 3). All compounds bind weakly (K(i)>1 microM) to A(2A) and A(2B) receptors. The combination of A(1) agonist activity and antioxidant activity has the potential to produce cardioprotective effects.  相似文献   

18.
Ligand recognition has been extensively explored in G protein-coupled A(1), A(2A), and A(2B) adenosine receptors but not in the A(3) receptor, which is cerebroprotective and cardioprotective. We mutated several residues of the human A(3) adenosine receptor within transmembrane domains 3 and 6 and the second extracellular loop, which have been predicted by previous molecular modeling to be involved in the ligand recognition, including His(95), Trp(243), Leu(244), Ser(247), Asn(250), and Lys(152). The N250A mutant receptor lost the ability to bind both radiolabeled agonist and antagonist. The H95A mutation significantly reduced affinity of both agonists and antagonists. In contrast, the K152A (EL2), W243A (6.48), and W243F (6.48) mutations did not significantly affect the agonist binding but decreased antagonist affinity by approximately 3-38-fold, suggesting that these residues were critical for the high affinity of A(3) adenosine receptor antagonists. Activation of phospholipase C by wild type (WT) and mutant receptors was measured. The A(3) agonist 2-chloro-N(6)-(3-iodobenzyl)-5'-N-methylcarbamoyladenosine stimulated phosphoinositide turnover in the WT but failed to evoke a response in cells expressing W243A and W243F mutant receptors, in which agonist binding was less sensitive to guanosine 5'-gamma-thiotriphosphate than in WT. Thus, although not important for agonist binding, Trp(243) was critical for receptor activation. The results were interpreted using a rhodopsin-based model of ligand-A(3) receptor interactions.  相似文献   

19.
125I-Hydroxyphenylisopropyl adenosine (125I-HPIA) was used to characterize adenosine receptors in human adipocyte plasma membranes. Steady state binding was achieved after 6 h at 37 degrees. Scatchard plots were linear, with a KD of approx. 2.5 nM, and Bmax of 360-1800 fmol/mg protein. (-)N6-phenylisopropyl adenosine (PIA) was a more potent inhibitor of binding than N-ethyl carboxamido adenosine, and (+)PIA was more than 10-fold less potent than (-)PIA, consistent with A1 adenosine receptor binding. Theophylline was a potent inhibitor of binding (IC50 approx. 10 microM). Photoaffinity cross-linking studies demonstrated that the receptor is a single subunit, Mr approx. 43 kDa. The findings demonstrate that the human adipocyte adenosine receptor is similar to the A1 adenosine receptor of rat adipocytes, although its molecular weight is higher, and its affinity for HPIA is lower than that of the rat.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号