首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Butyrivibrio fibrisolvens A38 inocula were inhibited by as little as 15 microM linoleic acid (LA), but growing cultures tolerated 10-fold more LA before growth was inhibited. Growing cultures did not produce significant amounts of cis-9, trans-11 conjugated linoleic acid (CLA) until the LA concentration was high enough to inhibit biohydrogenation, growth was inhibited, and lysis was enhanced. Washed-cell suspensions that were incubated anaerobically with 350 microM LA converted most of the LA to hydrogenated products, and little CLA was detected. When the washed-cell suspensions were incubated aerobically, biohydrogenation was inhibited, CLA production was at least twofold greater, and CLA persisted. The LA isomerase reaction was very rapid, but the LA isomerase did not recycle like a normal enzyme to catalyze more substrate. Cells that were preincubated with CLA lost their ability to produce more CLA from LA, and the CLA accumulation was directly proportional (r(2) = 0.98) to the initial cell density. Growing cells were as sensitive to CLA as LA, the LA isomerase and reductases of biohydrogenation were linked, and free CLA was not released. Because growing cultures of B. fibrisolvens A38 did not produce significant amounts of CLA until the LA concentration was high, biohydrogenation was arrested, and the cell density had declined, the flow of CLA from the rumen may be due to LA-dependent bacterial inactivation, death, or lysis.  相似文献   

2.
Specific isomers of conjugated linoleic acid (CLA), a fatty acid with potentially beneficial physiological and anticarcinogenic effects, were efficiently produced from linoleic acid by washed cells of Lactobacillus acidophilus AKU 1137 under microaerobic conditions, and the metabolic pathway of CLA production from linoleic acid is explained for the first time. The CLA isomers produced were identified as cis-9, trans-11- or trans-9, cis-11-octadecadienoic acid and trans-9, trans-11-octadecadienoic acid. Preceding the production of CLA, hydroxy fatty acids identified as 10-hydroxy-cis-12-octadecaenoic acid and 10-hydroxy-trans-12-octadecaenoic acid had accumulated. The isolated 10-hydroxy-cis-12-octadecaenoic acid was transformed into CLA during incubation with washed cells of L. acidophilus, suggesting that this hydroxy fatty acid is one of the intermediates of CLA production from linoleic acid. The washed cells of L. acidophilus producing high levels of CLA were obtained by cultivation in a medium containing linoleic acid, indicating that the enzyme system for CLA production is induced by linoleic acid. After 4 days of reaction with these washed cells, more than 95% of the added linoleic acid (5 mg/ml) was transformed into CLA, and the CLA content in total fatty acids recovered exceeded 80% (wt/wt). Almost all of the CLA produced was in the cells or was associated with the cells as free fatty acid.  相似文献   

3.
The objective of this study was to evaluate the effect of soluble carbohydrates (glucose, cellobiose), pH (6.0, 6.5, 7.0), and rumen microbial growth factors (VFA, vitamins) on biohydrogenation of linoleic acid (LA) by mixed rumen fungi. Addition of glucose or cellobiose to culture media slowed the rate of biohydrogenation;only 35-40% of LA was converted to conjugated linoleic acid (CLA) or vaccenic acid (VA) within 24 h of incubation, whereas in the control treatment, 100% of LA was converted within 24 h. Addition of VFA or vitamins did not affect biohydrogenation activity or CLA production. Culturing rumen fungi at pH 6.0 slowed biohydrogenation compared with pH 6.5 or 7.0. CLA production was reduced by pH 6.0 compared with control (pH 6.5), but was higher with pH 7.0. Biohydrogenation of LA to VA was complete within 72 h at pH 6.0, 24 h at pH 6.5, and 48 h at pH 7.0. It is concluded that optimum conditions for biohydrogenation of LA and for CLA production by rumen fungi were provided without addition of soluble carbohydrates, VFA or vitamins to the culture medium; optimum pH was 6.5 for biohydrogenation and 7.0 for CLA production.  相似文献   

4.
Aims: To investigate the ability of selected probiotic bacterial strains to produce conjugated linoleic acid (CLA) and also to estimate the biohydrogenation kinetics of Lactobacillus acidophilus on the production of CLA from free linoleic acid (LA). Methods and Results: Six probiotic bacteria, Lact. paracasei, Lact. rhamnosus GG, Lact. acidophilus ADH, and Bifidobacterium longum B6, Lact. brevis, and Lact. casei, were used to examine their ability to convert LA to CLA. LA tolerance was evaluated by addition of different LA concentrations in MRS broth. Lact. acidophilus showed the major tolerant to LA and the greatest CLA‐producing ability (36–48 μg ml?1 of CLA). The rate‐controlling steps were k2 and k1 for the addition of 1 and 3 mg ml?1 of LA, respectively. The percentage of CLA conversion was higher in MRS broth supplemented with 1 mg ml?1 (65%) than 3 mg ml?1 (26%). Conclusion: The results provide useful information and new approach for understanding the biohydrogenation mechanisms of CLA production. Significance and Impact of the Study: This study would help elucidate the pathway from LA to stearic acid (SA), known as biohydrogenation. In addition, the use of selected probiotic bacteria might lead to a significant improvement in food safety.  相似文献   

5.
Conjugated linoleic acid (CLA) has anti-carcinogenic and anti-atherosclerosis activity, and modulatory effects on the immune system and lipid metabolism. To produce a transgenic rice plant that can accumulate CLA, a linoleate isomerase gene that can convert linoleic acid to trans-10, cis-12 CLA was introduced and expressed under the control of seed-specific promoters from the oleosin and globulin genes. The fatty acid composition of the transgenic rice grain was analyzed by gas chromatography. Although there was no clear difference in the fatty acid composition between seeds from transformed versus untransformed plants, a peak of trans-10, cis-12 CLA methyl ester, which was not present in seeds from untransformed plants, was found in transformed plants. The trans-10, cis-12 CLA comprised an average of 1.3% (w/w) of the total fatty acids in seeds carrying the oleosin promoter in comparison to 0.01% (w/w) in seeds carrying the globulin promoter. In addition, approximately 70 and 28% of the total amount of the CLA isomer were present in the triacylglycerol and free fatty acid fractions, respectively. These results demonstrate the ability to produce fatty acid components of vegetable oils with novel physiological activities in crops.  相似文献   

6.
Conjugated linoleic acid (CLA) and conjugated linolenic acid (CLNA) isomers have attracted great interest because of their potential health benefits. Formation of CLA and CLNA takes place in the rumen during biohydrogenation. Several studies have indicated that certain types of intestinal bacteria, including bifidobacteria, are able to convert linoleic acid (LA) to CLA. The role of intestinal bacteria in the formation of CLNA isomers is largely unknown. In the present study, a screening of 36 different Bifidobacterium strains for their ability to produce CLA and CLNA from free LA and α-linolenic acid (LNA), respectively, was performed. The strains were grown in MRS broth, to which LA or LNA (0.5 mg ml−1) were added after 7 h of bacterial growth. Cultures were further incubated at 37°C for 72 h. Six strains (four Bifidobacterium breve strains, a Bifidobacterium bifidum strain and a Bifidobacterium pseudolongum strain) were able to produce different CLA and CLNA isomers. Conversion percentages varied from 19.5% to 53.5% for CLA production and from 55.6% to 78.4% for CLNA production among these strains. The CLA isomers produced were further identified with Ag+-HPLC. LA was mainly converted to t9t11-CLA and c9t11-CLA. The main CLNA isomers were identified with GC-MS as c9t11c15-CLNA and t9t11c15-CLNA.  相似文献   

7.
This study was designed to isolate different strains of the genus Bifidobacterium from the fecal material of neonates and to assess their ability to produce the cis-9, trans-11 conjugated linoleic acid (CLA) isomer from free linoleic acid. Fecal material was collected from 24 neonates aged between 3 days and 2 months in a neonatal unit (Erinville Hospital, Cork, Ireland). A total of 46 isolates from six neonates were confirmed to be Bifidobacterium species based on a combination of the fructose-6-phosphate phosphoketolase assay, RAPD [random(ly) amplified polymorphic DNA] PCR, pulsed-field gel electrophoresis (PFGE), and partial 16S ribosomal DNA sequencing. Interestingly, only 1 of the 11 neonates that had received antibiotic treatment produced bifidobacteria. PFGE after genomic digestion with the restriction enzyme XbaI demonstrated that the bifidobacteria population displayed considerable genomic diversity among the neonates, with each containing between one and five dominant strains, whereas 11 different macro restriction patterns were obtained. In only one case did a single strain appear in two neonates. All genetically distinct strains were then screened for CLA production after 72 h of incubation with 0.5 mg of free linoleic acid ml−1 by using gas-liquid chromatography. The most efficient producers belonged to the species Bifidobacterium breve, of which two different strains converted 29 and 27% of the free linoleic acid to the cis-9, trans-11 isomer per microgram of dry cells, respectively. In addition, a strain of Bifidobacterium bifidum showed a conversion rate of 18%/μg dry cells. The ability of some Bifidobacterium strains to produce CLA could be another human health-promoting property linked to members of the genus, given that this metabolite has demonstrated anticarcinogenic activity in vitro and in vivo.  相似文献   

8.
Most studies of linoleic acid biohydrogenation propose that it converts to stearic acid through the production of cis-9 trans-11 CLA and trans-11 C18:1. However, several other CLA have been identified in ruminai contents, suggesting additional pathways may exist. To explore this possibility, this research investigated the linoleic acid biohydrogenation pathway to identify CLA isomers in cultures of ruminai microorganisms after dosing with a 13C stable isotope. The 13C enrichment was calculated as [(M+1/M)×100] in labeled minus unlabeled cultures. After 48 h incubation, significant 13C enrichment was observed in seven CLA isomers, indicating their formation from linoleic acid. All enriched CLA isomers had double bonds in either the 9,11 or 10,12 position except for trans-9 cis-11 CLA. The cis-9 trans-11 CLA exhibited the highest enrichment (30.65%), followed by enrichments from 21.06 to 23.08% for trans-10 cis-12, cis-10 trans-12, trans-9 trans-11, and trans-10 trans-12 CLA. The remaining two CLA (cis-9 cis-11 and cis-10 cis-12 CLA) exhibited enrichments of 18.38 and 19.29%, respectively. The results of this study verified the formation of cis-9 trans-11 and trans-10 cis-12 CLA isomers from linoleic acid biohydrogenation. An additional five CLA isomers also contained carbons originating from linoleic acid, indicating that pathways of linoleic acid biohydrogenation are more complex than previously described.  相似文献   

9.
The oxidation and nitration of unsaturated fatty acids by oxides of nitrogen yield electrophilic derivatives that can modulate protein function via post-translational protein modifications. The biological mechanisms accounting for fatty acid nitration and the specific structural characteristics of products remain to be defined. Herein, conjugated linoleic acid (CLA) is identified as the primary endogenous substrate for fatty acid nitration in vitro and in vivo, yielding up to 105 greater extent of nitration products as compared with bis-allylic linoleic acid. Multiple enzymatic and cellular mechanisms account for CLA nitration, including reactions catalyzed by mitochondria, activated macrophages, and gastric acidification. Nitroalkene derivatives of CLA and their metabolites are detected in the plasma of healthy humans and are increased in tissues undergoing episodes of ischemia reperfusion. Dietary CLA and nitrite supplementation in rodents elevates NO2-CLA levels in plasma, urine, and tissues, which in turn induces heme oxygenase-1 (HO-1) expression in the colonic epithelium. These results affirm that metabolic and inflammatory reactions yield electrophilic products that can modulate adaptive cell signaling mechanisms.  相似文献   

10.
Objective: To determine whether altered dietary essential fatty acid (linoleic and arachidonic acid) concentrations alter sensitivity to conjugated linoleic acid (CLA)‐induced body fat loss or DNA fragmentation. Research Methods and Procedures: Mice were fed diets containing soy oil (control), coconut oil [essential fatty acid deficient (EFAD)], or fish oil (FO) for 42 days, and then diets were supplemented with a mixture of CLA isomers (0.5% of the diet) for 14 days. Body fat index, fat pad and liver weights, DNA fragmentation in adipose tissue, and fatty acid profiles of adipose tissue were determined. Results: The EFAD diet decreased (p < 0.05) linoleic and arachidonic acid in mouse adipose tissue but did not affect body fat. Dietary CLA caused a reduction (p < 0.05) in body fat. Mice fed the EFAD diet and then supplemented with CLA exhibited a greater reduction (p < 0.001) in body fat (20.21% vs. 6.94% in EFAD and EFAD + CLA‐fed mice, respectively) compared with mice fed soy oil. Dietary FO decreased linoleic acid and increased arachidonic acid in mouse adipose tissue. Mice fed FO or CLA were leaner (p < 0.05) than control mice. FO + CLA‐fed mice did not differ in body fat compared with FO‐fed mice. Adipose tissue apoptosis was increased (p < 0.001) in CLA‐supplemented mice and was not affected by fat source. Discussion: Reductions in linoleic acid concentration made mice more sensitive to CLA‐induced body fat loss only when arachidonic acid concentrations were also reduced. Dietary essential fatty acids did not affect CLA‐induced DNA fragmentation.  相似文献   

11.
A new strain of Butyrivibrio fibrisolvens (TH1) that has high potential to produce conjugated linoleic acid (CLA) was isolated. Strain TH1 had higher LA isomerase (LA-I) activity, and was much more tolerant to linoleic acid (LA) than other strains examined. However, high CLA reductase (CLA-R) activity resulted in the temporary accumulation of CLA and subsequent conversion to trans-vaccenic acid (t-VA). When LA was added to growing TH1 cultures in a solution with dimethylsulfoxide (LA/DMSO), CLA produced was greater than when LA was added in a mixture with bovine serum albumin (BSA). The number of viable cells decreased upon addition of LA/DMSO, but then increased as the CLA decreased upon its conversion to t-VA. This result suggests that B. fibrisolvens can resume growing by the removal of CLA from the cells. Most CLA was released from B. fibrisolvens cells by gentle washing with BSA, suggesting that CLA bound to the cells might be removed in the rumen and large intestine. Thus, CLA production by B. fibrisolvens in the digestive tract could be increased by a reduction in CLA-R activity without accompanying an overall decrease in the cell number of B. fibrisolvens. Fatty acids (FAs) with 18 carbon backbone inducted LA-I activity, whereas unsaturated FAs induced CLA-R activity, suggesting that FAs stimulate the synthesis of LA-I and CLA-R. Providing a diet with a low ratio of unsaturated to saturated FAs may favor CLA production.  相似文献   

12.
共轭亚油酸(Conjugated linoleic acid,CLA)具有抗癌、抗动脉粥样硬化、减肥和免疫调节等生理活性。共轭亚油酸可以通过酶法异构化获得,将底物亚油酸异构形成具有生物活性物质-共轭亚油酸的异构酶称为亚油酸异构酶。因此,通过介绍亚油酸异构酶的来源、作用机制、酶学性质和基因工程菌生产等方面的研究进展,结合不断发展的基因工程技术,旨在提高亚油酸异构酶的活性、产量和异构化效率,以扩大反应底物范围,降低生产成本,从而推进共轭亚油酸的规模化、可持续性的工业生产。  相似文献   

13.
We have previously shown that the 9c,11t-conjugated linoleic acid (CLA) concentration was always significantly higher than the 10t,12c-CLA concentration following the administration of these compounds to mice and rats, and considered that structural differences between the conjugated double bonds in these isomers affected absorption in the small intestine. This study investigates the absorption of CLA in the rat intestine by a lipid absorption assay of lymph from the thoracic duct. In Study 1, we used safflower oil and a triacylglycerol form of CLA (CLA-TG), while in Study 2, we used 9c,11t-CLA and 10t,12c-CLA. The cumulative recovery of CLA was lower than that of linoleic acid until two hours after sample administration. There was no difference in the extent of lymphatic recovery of 9c,11t-CLA and 10t,12c-CLA after the administration of CLA-TG, 9c,11t-CLA, and 10t,12c-CLA to the rats, suggesting that geometrical and positional isomerism of the conjugated double bonds did not influence the absorption.  相似文献   

14.
On the basis of the isomer-specific effects of trans fatty acids (FA) on human health, and the detrimental effect of t10,c12-conjugated linoleic acid (CLA) on cows' milk fat production, there is a need to identify factors that affect the shift from trans-11 to trans-10 pathway during ruminal biohydrogenation of FA. This experiment was conducted in vitro and aimed at separating the effects of the diet of the donor cows from those of the fermentative substrate, which is necessary to prevent this shift. A total of four dry Holstein dairy cows were used in a 4 × 4 Latin square design. They received 12 kg of dry matter per day of four diets based on maize silage during four successive periods: the control diet (22% starch, <3% fat); the high-starch diet, supplemented with wheat plus barley (35% starch, <3% crude fat); the sunflower oil diet, supplemented with 5% of sunflower oil (20% starch, 7.6% crude fat); and the high-starch plus oil diet (33% starch, 7.3% crude fat). Ruminal fluid of each donor cow was incubated for 5 h with four substrates having similar chemical composition to the diets, replacing sunflower oil by pure linoleic acid (LA). The efficiency of isomerisation of LA to CLA was the highest when rumen fluids from cows receiving dietary oil were incubated with added LA. The shift from trans-11 to trans-10 isomers was induced in vitro by high-starch diets and the addition of LA. Oil supplementation to the diet of the donor cows increased this shift. Conversely, the trans-10 isomer balance was always low when no LA was added to incubation cultures. These results showed that a large accumulation of trans-10 FA was only observed with an adapted microflora, as well as an addition of non-esterified LA to the incubation substrate.  相似文献   

15.
AimsThis study was performed to elucidate whether mitogen-activated protein kinases (MAPKs) are involved in the modulation of the proliferation and differentiation of skeletal muscle cells by fatty acids.Main methodsC2C12 myoblasts were cultured in differentiation medium containing 2% horse serum for 3 days, and treated with each fatty acid. Phosphorylation levels of MAPKs were examined by immunoblot analysis.Key findingsThe mono-unsaturated fatty acids (MUFAs), oleic acid (OA) and n?6 polyunsaturated fatty acids (n?6 PUFAs), linoleic acid (LA), γ-linoleic acid (GLA), and arachidonic acid (AA) increased the proliferation of C2C12 cells. On the other hand, n?3 polyunsaturated fatty acids (n?3 PUFAs) and saturated fatty acids (SFs) did not affect the proliferation of C2C12 cells. In addition, the treatment of cis-9, trans-11 conjugated linoleic acid (c9,t11 CLA) showed an increased cell proliferation. However, trans-10, cis-12 conjugated linoleic acid (t10,c12 CLA) significantly inhibited cell proliferation. Treatment of C2C12 cells with LA, OA, and c9,t11 CLA increased phosphorylation levels of ERK1/2 and JNK during proliferation. During cell differentiation, OA, LA, and c9,t11 CLA stimulated differentiation of C2C12 cells, whereas t10,c12 CLA inhibited differentiation. We also found that OA, LA, and c9, t11 CLA increased phosphorylation level of ERK1/2, but not JNK during differentiation.SignificanceThese results suggest that fatty acids are able to modulate the proliferation and differentiation of skeletal muscle and MAPKs may be involved in the modulation of the proliferation and differentiation of skeletal muscle cells by fatty acids.  相似文献   

16.
The understanding of the biosynthetic pathway of 6-pentyl-α-pyrone in Trichoderma species was achieved by using labelled linoleic acid or mevalonate as a tracer. Incubation of growing cultures of Trichoderma harzianum and T. viride with [U-14C]linoleic acid or [5-14C]sodium mevalonate revealed that both fungal strains were able to incorporate these labelled compounds (50 and 15%, respectively). Most intracellular radioactivity was found in the neutral lipid fraction. At the initial time of incubation, the radioactivity from [14C]linoleic acid was incorporated into 6-pentyl-α-pyrone more rapidly than that from [14C]mevalonate. No radioactivity incorporation was detected in 6-pentyl-α-pyrone when fungal cultures were incubated with [1-14C]linoleic acid. These results suggested that β-oxidation of linoleic acid was a probable main step in the biosynthetic pathway of 6-pentyl-α-pyrone in Trichoderma species.  相似文献   

17.
Despite the fact that the ruminant diet is rich in polyunsaturated fatty acids (PUFA), ruminant products – meat, milk and dairy – contain mainly saturated fatty acids (SFA) because of bacterial lipolysis and subsequent biohydrogenation of ingested PUFA in the rumen. The link between SFA consumption by man and coronary heart disease is well established. In contrast, ruminant products also contain fatty acids that are known to be beneficial to human health, namely conjugated linoleic acids (CLAs). The aims of research in this field have been to understand the microbial ecology of lipolysis and biohydrogenation and to find ways of manipulating ruminal microbes to increase the flow of PUFA and CLA from the rumen into meat and milk. This review describes our present understanding of the microbial ecology of ruminal lipid metabolism, including some apparently anomalous and paradoxical observations, and the status of how the metabolism may be manipulated and the possible consequential effects on other aspects of ruminal digestion. Intuitively, it may appear that inhibiting the ruminal lipase would cause more dietary PUFA to reach the mammary gland. However, lipolysis releases the non-esterified fatty acids that form the substrates for biohydrogenation, but which can, if they accumulate, inhibit the whole process. Thus, increasing lipase activity could be beneficial if the increased release of non-esterified PUFA inhibited the metabolism of CLA. Rumen ciliate protozoa do not carry out biohydrogenation, yet protozoal lipids are much more highly enriched in CLA than bacterial lipids. How could this happen if protozoa do not metabolise PUFA? The answer seems to lie in the ingestion of plant organelles, particularly chloroplasts, and the partial metabolism of the fatty acids by contaminating bacteria. Bacteria related to Butyrivibrio fibrisolvens are by far the most active and numerous biohydrogenating bacteria isolated from the rumen. But do we misunderstand the role of different bacterial species in biohydrogenation because there are uncultivated species that we need to understand and include in the analysis? Manipulation methods include dietary vegetable and fish oils and plant-derived chemicals. Their usefulness, efficacy and possible effects on fatty acid metabolism and on ruminal microorganisms and other areas of their metabolism are described, and areas of opportunity identified.  相似文献   

18.
Objective: To determine if the addition or removal of dietary conjugated linoleic acid (CLA) would alter insulin tolerances in mice from two genetic lines. Research Methods and Procedures: High metabolic rate (MH) and low metabolic rate (ML) mice were assigned to consume 1) a control diet ad libitum, 2) a control diet at a restricted intake, or 3) a diet containing 1% CLA ad libitum. After 9 weeks, an insulin tolerance test was conducted, and a portion of the mice were killed. All remaining mice consumed the control diet ad libitum. Insulin tolerance tests were conducted 11 and 32 days after the diet change, and mice were killed 3 days after each test. Body fatness, fat pad weights, and serum insulin concentrations of mice were determined at each time‐point. Two follow‐up experiments were also conducted. Results: Restricted mice had insulin sensitivities not different than control mice. CLA‐fed MH mice in experiment 1 were resistant (p < 0.001) to insulin on each day measured. CLA‐fed ML mice were slightly resistant (p = 0.08) to exogenous insulin on day 0 of recovery and not different from control mice on day 11 or 32. Glucose response to insulin in MH mice fed CLA in experiments 2 or 3 did not differ from control mice. Discussion: Mice fed CLA did not have improved insulin tolerances compared with control mice. In some cases, dietary CLA may cause insulin resistance. MH mice seem more sensitive to CLA than ML mice.  相似文献   

19.

Background

Trans fatty acids are produced either by industrial hydrogenation or by biohydrogenation in the rumens of cows and sheep. Industrial trans fatty acids lower high-density lipoprotein (HDL) cholesterol, raise low-density lipoprotein (LDL) cholesterol, and increase the risk of coronary heart disease. The effects of trans fatty acids from ruminants are less clear. We investigated the effect on blood lipids of cis-9, trans-11 conjugated linoleic acid (CLA), a trans fatty acid largely restricted to ruminant fats.

Methodology/Principal Findings

Sixty-one healthy women and men were sequentially fed each of three diets for three weeks, in random order, for a total of nine weeks. Diets were identical except for 7% of energy (approximately 20 g/day), which was provided either by oleic acid, by industrial trans fatty acids, or by a mixture of 80% cis-9, trans-11 and 20% trans-10, cis-12 CLA. After the oleic acid diet, mean (± SD) serum LDL cholesterol was 2.68±0.62 mmol/L compared to 3.00±0.66 mmol/L after industrial trans fatty acids (p<0.001), and 2.92±0.70 mmol/L after CLA (p<0.001). Compared to oleic acid, HDL-cholesterol was 0.05±0.12 mmol/L lower after industrial trans fatty acids (p = 0.001) and 0.06±0.10 mmol/L lower after CLA (p<0.001). The total-to–HDL cholesterol ratio was 11.6% higher after industrial trans fatty acids (p<0.001) and 10.0% higher after CLA (p<0.001) relative to the oleic acid diet.

Conclusions/Significance

High intakes of an 80∶20 mixture of cis-9, trans-11 and trans-10, cis-12 CLA raise the total to HDL cholesterol ratio in healthy volunteers. The effect of CLA may be somewhat less than that of industrial trans fatty acids.

Trial Registration

ClinicalTrials.gov NCT00529828  相似文献   

20.
Objective: The objective of the study was to determine if consumption of conjugated linoleic acid (CLA) by mice could induce apoptosis in adipose tissue. Other objectives were to determine the influence of feeding mice CLA for ≤2 weeks on body fat, energy expenditure, and feed intake. Research Methods and Procedures: A mixture of CLA isomers (predominantly c9,t11 and t10,c12) was included in the AIN‐93G diet at 0, 1, and 2%, and fed to mice for 12 days (Trial 1), or was included at 2% and fed to mice for 0, 5, and 14 days (Trial 2). Feed intake was measured daily and energy expenditure was determined by direct calorimetry on day 9 in Trial 1. Retroperitoneal fat pads were analyzed for apoptosis by determination of DNA fragmentation. Results: Dietary CLA reduced feed intake by 10% to 12% (p < 0.01), but either did not influence or did not increase energy expenditure as indicated by heat loss. Body weight was not influenced by consumption of CLA in Trial 1 but was increased (p < 0.01) by CLA in Trial 2. Weights of retroperitoneal, epididymal, and brown adipose tissues were lower (p < 0.01) in animals fed CLA, although liver weight was increased (p < 0.10; Trial 1) or not changed (Trial 2). Analysis of retroperitoneal fat pad DNA from both trials indicated that apoptosis was increased (p < 0.01) by CLA consumption. Discussion: These results are interpreted to indicate that CLA consumption causes apoptosis in white adipose tissue. This effect occurs within 5 days of consuming a diet that contains CLA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号