首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
N. Ronald Morris 《Cell》1976,8(3):357-363
The structure of chromatin from Aspergillus nidulans was studied using micrococcal nuclease and DNAase I. Limited digestion with micrococcal nuclease revealed a nucleosomal repeat of 154 base pairs for Aspergillus and 198 base pairs for rat liver. With more extensive digestion, both types of chromatin gave a similar quasi-limit product with a prominent fragment at 140 base pairs. The similarity of the two limit digests suggests that the structure of the 140 base pair nucleosome core is conserved. This implies that the difference in nucleosome repeat lengths between Aspergillus and rat liver is caused by a difference in the length of the DNA between two nucleosome cores. Digestion of Aspergillus chromatin with DNAase I produced a pattern of single-stranded fragments at intervals of 10 bases which was similar to that produced from rat liver chromatin.  相似文献   

2.
DNA isolated from (a) liver chromatin digested in situ with endogenous Ca2+, Mg2+-dependent endonuclease, (b) prostate chromatin digested in situ with micrococcal nuclease or pancreatic DNAase I, and (c) isolated liver chromatin digested with micrococcal nuclease or pancreatic DNAase I has been analyzed electrophoretically on polyacrylamide gels. The electrophoretic patterns of DNA prepared from chromatin digested in situ with either endogenous endonuclease (liver nuclei) or micrococcal nuclease (prostate nuclei) are virtually identical. Each pattern consists of a series of discrete bands representing multiples of the smallest fragment of DNA 200 +/- 20 base pairs in length. The smallest DNA fragment (monomer) accumulates during prolonged digestion of chromatin in situ until it accounts for nearly all of the DNA on the gel; approx. 20% of the DNA of chromatin is rendered acid soluble during this period. Digestion of liver chromatin in situ in the presence of micrococcal nuclease results initially in the reduction of the size of the monomer from 200 to 170 base pairs of DNA and subsequently results in its conversion to as many as eight smaller fragments. The electrophoretic pattern obtained with DNA prepared from micrococcal nuclease digests of isolated liver chromatin is similar, but not identical, to that obtained with liver chromatin in situ. These preparations are more heterogeneous and contain DNA fragments smaller than 200 base pairs in length. These results suggest that not all of the chromatin isolated from liver nuclei retains its native structure. In contrast to endogenous endonuclease and micrococcal nuclease digests of chromatin, pancreatic DNAase I digests of isolated chromatin and of chromatin in situ consist of an extremely heterogeneous population of DNA fragments which migrates as a continuum on gels. A similar electrophoretic pattern is obtained with purified DNA digested by micrococcal nuclease. The presence of spermine (0.15 mM) and spermidine (0.5 mM) in preparative and incubation buffers decreases the rate of digestion of chromatin by endogenous endonuclease in situ approx. 10-fold, without affecting the size of the resulting DNA fragments. The rates of production of the smallest DNA fragments, monomer, dimer, and trimer, are nearly identical when high molecular weight DNA is present in excess, indicating that all of the chromatin multimers are equally susceptible to endogenous endonuclease. These observations points out the effects of various experimental conditions on the digestion of chromatin by nucleases.  相似文献   

3.
The subunit structure of chromatin from Physarum polycephalum.   总被引:4,自引:4,他引:0       下载免费PDF全文
Nucleosome DNA repeat lengths in Physarum chromatin, determined by nuclease digestion experiments, are shorter than those observed in most mammalian chromatin and longer than those reported for chromatin of certain other lower eukaryotes. After digestion with staphylococcal nuclease for short periods of time an average repeat length of 190 base pairs is measured. After more extensive digestion an average repeat length of 172 base pairs is measured. Upon prolonged digestion DNA is degraded to an average monomer subunit length of 160 base pairs, with only a small amount of DNA found in lengths of 130 base pairs or smaller. Mathematical analysis of the data suggests that the Physarum nucleosome DNA repeat comprises a protected DNA segment of about 159 base pairs with a nuclease-accessible interconnecting segment which ranges from 13 to 31 base pairs. The spacing data are compatible with measurements from electron micrographs of Physarum chromatin.  相似文献   

4.
The structure of rabbit, fowl, and Xenopus laevis sperm chromatin was explored by study of the reaction of their decondensed nuclei with DNase 1 and micrococcal nuclease. Those of rabbit and fowl were readily digested by DNase 1, and the polyacrylamide gel electrophoresis profiles of DNAs extracted from the digests were similar, each being polydisperse with a single discrete band of DNA smaller than 72 base pairs. There were differences, however, between the sperm chromatins in the course of their digestion by micrococcal nuclease. A limit digest at about 45% acid solubility was obtained with Xenopus sperm chromatin, while 90% of fowl sperm DNA was rendered acidsoluble by the enzyme. The gel profiles of the limit digests were polydisperse, but only those of rabbit and fowl sperm chromatins possessed a discrete band of DNA smaller than 72 base pairs. Bleomycin did not react with DNA of rabbit, fowl, or Xenopus spermatozoa. Since bleomycin reacts with somatic cell chromatin, and the course of DNase 1 or micrococcal nuclease digestion of sperm chromatin was different from that found for somatic cell chromatin, it would appear that sperm chromatin does not have the repeating nucleosometype structure of somatic cell chromatin. The nuclease digestion studies further suggest that the organization of rabbit and fowl sperm chromatins is similar, and is different from that of Xenopus sperm chromatin. The dependence of the structure of sperm chromatin on the composition of its basic proteins, and a possible structure for a protamine-type sperm chromatin, are discussed.  相似文献   

5.
Jean O. Thomas  R.J. Thompson 《Cell》1977,10(4):633-640
We have used micrococcal nuclease as a probe of the repeating structure of chromatin in four nuclear populations from three tissues of the rabbit. Neuronal nuclei isolated from the cerebral cortex contain about 160 base pairs of DNA in the chromatin repeat unit, as compared with about 200 base pairs for nonastrocytic glial cell nuclei from the same tissue, neuronal nuclei from the cerebellum and liver nuclei. All four types of nuclei show the same features of nucleosomal organization as other eucaryotic nuclei so far studied: nucleosomes liberated by digestion with micrococcal nuclease give a “core particle” containing 140 base pairs as a metastable intermediate on further digestion and a series of single-strand DNA fragments which are mutiples of 10 bases after digestion with DNAase I. Nuclei from cerebral cortex neurons, which have a short repeat, are distinct from the others in being larger, in having a higher proportion of euchromatin (dispersed chromatin) as judged by microscopy and in being more active in RNA synthesis in vitro.  相似文献   

6.
7.
Abstract: Nuclei from the cerebral cortices of animals of different ages were separated into neuronal and neuroglial populations. Nuclei from cerebellar neurons were also studied. Using the enzyme micrococcal nuclease as a probe for chromatin structure, we found that the DNA from both neuronal preparations showed a decreased susceptibility to digestion during aging, although the onset of this alteration varies. In addition, both neuronal populations showed dramatic increases in the nucleosome spacing of the chromatin. Cerebral neuronal chromatin has a repeat length (nucleosome core and linker region) of 164 base pairs at 22 days and 11 months, 186 base pairs at 24 months, and 199 base pairs at 30 months. Cerebellar neuronal chromatin has a repeat of 188 base pairs at both 22 days and 11 months, 208 base pairs at 24 months, and 243 base pairs at 30 months. Neuroglial chromatin, on the other hand, showed no change in either accessibility to nuclease or repeat length.  相似文献   

8.
9.
10.
Subunit structure of simian-virus-40 minichromosome.   总被引:34,自引:0,他引:34  
Electron microscopic evidence indicates that Simian virus 40 (SV40) minichromosomes extracted from infected cells consist of 20 +/- 2 nucleosomes, each containing 190 -- 200 base pairs of DNA. About 50% of the nucleosomes are not close together, but connected by segments of DNA of irregular lengths which correspond to about 15% of the viral genome, irrespective of the ionic strength. Micrococcal nuclease digestion studies show that there is about 200 base pairs of DNA in the biochemical unit of SV40 chromatin. Therefore, the visible internucleosomal DNA of the SV40 minichromosome does not arise from an unfolding of a fraction of the 190 - 200 base pairs of DNA initially wound in the nucleosome. These results support the chromatin model which proposes that the same DNA length is contained in the nucleosome and the biochemical unit. Results from extensive micrococcal nuclease digestion suggest that an SV40 nucleosome consists of a 'core' containing a DNA segment of about 135 base pairs associated to a DNA fragment more susceptible to nuclease attack. The addition of histone H1 results in a striking condensation of the SV40 minichromosome, which supports the assumption that histone H1 is involved in the folding of chromatin fibers.  相似文献   

11.
Evidence for a subunit structure of chromatin in mouse myeloma cells   总被引:2,自引:0,他引:2  
If micrococcal nuclease is allowed to digest chromatin as it exists inside intact nuclei isolated from mouse myeloma tissue culture cells, more than 60% of the DNA can be isolated as a homogeneous fragment on a sucrose gradient. Analytical ultracentrifugation indicates that the protected DNA is native, unnicked, and about 140 +/- 10 base pairs long. After less extensive nuclease digestion, the protected DNA migrates in gels in lengths which are integral multiples of this 140 base pair "monomer" band. A submonomer band, 105 "/- 10 base pairs long, can also be detected. Similar digestion patterns were obtained by two different nuclear isolation procedures and even when intact cells were gently lysed directly in the digestion medium. These results confirm and extend the chromatin digestion studies of previous investigators and provide support for a subunit model for eukaryotic chromatin. The single strand specific S1 nuclease did not digest intranuclear chromatin under the conditions used.  相似文献   

12.
Nucleoprotein particles (B2), isolated following digestion of calf thymus chromatin with micrococcal nuclease, are resolved on a non-chelating Bio-Gel A-5m column. B2 protein electrophoresis showed the presence of several H1 species and several nonhistone proteins but was depleted in core histones. DNA electrophoresis demonstrated that native B2 DNA has a length of about 46 base pairs. On DNA sequencing gels, the length distribution of denatured B2 DNA ranged from 12 to 35 bases with a weighted average chain length of about 26 bases. Depletion of a 20 base band in B2 DNA suggested specific protection of internucleosomal DNA sites during the nuclease digestion.  相似文献   

13.
The susceptibility of the DNA in chromatin to single strand-specific nucleases was examined using nuclease P1, mung bean nuclease, and venom phosphodiesterase. A stage in the reaction exists where the size range of the solubilized products is similar for each of the three nucleases and is nearly independent of incubation time. During this stage, the chromatin fragments sediment in the range of 30 to 100 S and contain duplex DNA ranging from 1 to 10 million daltons. Starting with chromatin depleted of histones H1 and H5 similar fragments are generated. In both cases these nucleoprotein fragments are reduced to nucleosomes and their multimers by micrococcal nuclease. Thus, chromatin contains a limited number of DNA sites which are susceptible to single strand-specific nucleases. These sites occur at intervals of 8 to 80 nucleosomes and are distributed throughout the chromatin. Nucleosome monomers, dimers, or trimers were not observed at any stage of single strand-specific nuclease digestion of nuclei, H1- and H5-depleted chromatin, or micrococcal nuclease-generated oligonucleosomes. Each of the three nucleases converted mononucleosomes (approximately 160 base pairs) to nucleosome cores (approximately 140 base pairs) probably by exonucleolytic action that was facilitated by the prior removal of H1 and H5. The minichromosome of SV40 is highly resistant to digestion by nuclease P1.  相似文献   

14.
Chromatin assembly in isolated mammalian nuclei.   总被引:4,自引:1,他引:3       下载免费PDF全文
Cellular DNA replication was stimulated in confluent monolayers of CV-1 monkey kidney cells following infection with SV40. Nuclei were isolated from CV-1 cells labeled with [3H]thymidine and then incubated in the presence of [alpha-32P]deoxyribonucleoside triphosphates under conditions that support DNA replication. To determine whether or not the cellular DNA synthesized in vitro was assembled into nucleosomes the DNA was digested in situ with either micrococcal nuclease or pancreatic DNase I, and the products were examined by electrophoretic and sedimentation analysis. The distribution of DNA fragment lengths on agarose gels following micrococcal nuclease digestion was more heterogeneous for newly replicated than for the bulk of the DNA. Nonetheless, the state of cellular DNA synthesized in vitro (32P-labeled) was found to be identical with that of the DNA in the bulk of the chromatin (3H-labeled) by the following criteria: (i) The extent of protection against digestion by micrococcal nuclease of DNase I. (ii) The size of the nucleosomes (180 base pairs) and core particles (145 base pairs). (iii) The number and sizes of DNA fragments produced by micrococcal nuclease in a limit digest. (iv) The sedimentation behavior on neutral sucrose gradients of nucleoprotein particles released by micrococcal nuclease. (v) The number and sizes of DNA fragments produced by DNase I digestion. These results demonstrate that cellular DNA replicated in isolated nuclei is organized into typical nucleosomes. Consequently, subcellular systems can be used to study the relationship between DNA replication and the assembly of chromatin under physiological conditions.  相似文献   

15.
Summary The action of micrococcal nuclease, DNase I and DNase II on mouse TLT hepatoma chromatin revealing the periodicity of its structure as visualized by denaturing and nondenaturing gel electrophoresis, was consistent with the action of these enzymes on other chromatins. Micrococcal nuclease showed a complex subnucleosome fragment pattern based on multiples of 10 base pairs with a prominant couplet at 140/160 base pairs and the absence of the 80 base pair fragment. This couplet of the core and minimal nucleosome fragments was conspicuously present in the mononucleosomes found in the 11S fractions of a glycerol gradient centrifugation. DNase I and II produced a fairly even distribution of a 10 base pair increasing series of fragments to about 180 base pairs, a pattern also repeated in the DNA of nucleosome glycerol-gradient fractions. In limited digestions by these nucleases multinucleosomic DNA fragments are pronounced. These fragment lengths are multiples of an estimated average repeat length of nucleosome DNA of 180 base pairs. The action of the endogenous Mg/Ca-stimulated endonuclease produced only limited cuts in the hepatoma chromatin resulting primarily in multi-nucleosommc DNA fragment lengths and only upon lengthy digestion limited subnucleosomic, 10-base-pair multiple fragments are produced. The putative euchromatin-enriched fractions (50–75S) of the glycerol gradient centrifugation of autodigested chromatin, similarly, contained primarily the multinucleosomic DNA fragment lengths. These results are consistent with our previous electron microscopic demonstration that autodigested chromatin as well as the putative euchromatin-enriched fractions were composed of multinucleosomic chromatin segments containing a full complement of histones.  相似文献   

16.
Chromatin from a uninucleate dinoflagellate, Crypthecodinium cohnii, a binucleate dinoflagellate, Peridinium balticum, and a chromophyte, Olisthodiscus luteus, was examined by nuclease digestion and the results were compared to those from vertebrates. Gel analysis of the products of staphylococcal (micrococcal) nuclease digestion revealed a DNA repeat unit of 220(±5) base pairs for O. luteus and 215(±5) for P. balticum. Limit digestion gave a core particle of 140 base pairs, revealing that these longer repeat sizes are due to longer linker regions. No repeating subunit structure was found upon electrophoresis of digests of C. cohnii nuclei. Examination of the DNA fragments produced by DNAse I digestion of nuclei isolated from P. balticum and O. luteus showed the same ladder of ten base multiples as seen in chromatin from other eukaryotes. Examination of the kinetics of digestion by DNAse II of Peridinium chromatin revealed less susceptibility when compared to DNAse I digestions while 70% of Olisthodiscus chromatin and 35% of C. cohnii chromatin was sensitive to DNAse II. These data, taken together with previous results from Euglena, indicate that while algal chromatin is similar to that of higher eukaryotes in regard to DNAse I and II action, it differs in that the linker DNA is longer. In addition, the Hl-like histone from O. luteus and P. balticum is located in the linker DNA as in higher eukaryotes.  相似文献   

17.
Nascent DNA in nucleosome like structures from chromatin   总被引:17,自引:0,他引:17  
A Levy  K M Jakob 《Cell》1978,14(2):259-267
We have used chromatin sensitivity to cleavage by micrococcal nuclease as a probe for differences between chromatin containing nascent DNA and that containing bulk DNA. Micrococcal nuclease digested the nascent DNA in chromatin of swimming blastulae of sea urchins more rapidly to acid-soluble nucleotides than the DNA of bulk chromatin. A part of the nascent DNA occurred in micrococcal nuclease-resistant structures which were either different from, or temporary modifications of, the bulk nucleosomes. This was inferred from the size differences between bulk and nascent DNA fragments in 10% polyacrylamide gels after micrococcal nuclease digestion of nuclei from a mixture of 14C-thymidine long- and 3H-thymidine pulse-labeled embryos. Bulk monomer and dimer DNA fragments contained about 170 and 410 base pairs (bp), respectively, when 18% of the bulk DNA had been rendered acid-soluble. At this level of digestion, “nascent monomer DNA” fragments of about 150 bp as well as 305 bp “large nascent DNA fragments” were observed. Increasing levels of digestion indicated that the large nascent DNA fragment was derived from a chromatin structure which was more resistant to micrococcal nuclease cleavage than bulk dimer chromatin subunits. Peaks of 3H-thymidine-labeled DNA fragments from embryos which had been pulse-labeled and then chased or labeled for several minutes overlapped those of 14C-thymidine long-labeled monomer, dimer and trimer fragments. This indicated that the chromatin organization at or near the replication fork which had temporarily changed during replication had returned to the organization of its nonreplicating state.  相似文献   

18.
The DNA in intranuclear yeast chromatin is protected from rapid staphylococcal nuclease degradation so as to yield an oligomeric series of DNA sizes. The course of production and disappearance of the various oligomers agrees quantitatively with a theory of random cleavage by the enzyme at uniformly susceptible sites. The sizes of the oligomers are integral repeats of a basic size, about 160 base pairs, and 80-90% of the yeast genome is involved in this repeating structure. Within this repeat there exists a 140 base pair core of more nuclease-resistant DNA. During the course of digestion, the sizes of the oligomers decrease continuously. The widths of the distribution of DNA sizes increase in order: monomer (1 X repeat size, half width = 5-7 base pairs) less than dimer (2 X repeat size, half width = 30 base pairs) less than trimer (3 X repeat size, half width = 40-45 base pairs). The yeast genome thus seems to have variable spacing of the nucleaseresistant cores, to produce the average repeat size of about 160 base pairs. Also, the presence of more than one species of monomer and dimer at certain times of digestion suggests a possible heterogeneity in the subunit structure.  相似文献   

19.
Among the erythrocytes of chicken, trout, carp, and sucker, the relative proportion of the lysine-rich histone H5 varied from 20 to 0% of the total histones. Following digestion of nuclear chromatin with micrococcal nuclease, each of them displayed a longer DNA repeat length and greater repeat length heterogeneity than found in liver chromatin. Fish erythrocytes possessed similar repeat lengths of 207-209 base pairs which was 10-12 base pairs shorter than in chicken erythrocyte chromatin and approximately 10 base pairs longer than in liver chromatin. No correlation existed between the DNA repeat length or repeat length heterogeneity and the relative proportion of H5.  相似文献   

20.
Smith RH  Afione SA  Kotin RM 《BioTechniques》2002,33(1):204-6, 208, 210-1
Adeno-associated viruses (AAVs) are replication-defective parvoviruses that require helper virusfunctionsfor efficient productive replication. The AAVs are currently premier candidates as vectors for human gene therapy applications. In particular; much recent interest has been expressed concerning recombinant AAV serotype 5 (rAAV-5) vectors, as they appear to utilize cellular receptors distinctfrom those of the prototypical AAV serotype (AAV-2) and have been reported to have transduction properties in vivo that differ significantly from those of the prototype. One of the most popular current methodsfor the production of rAAVs involves co-transfection of human 293 cells with three plasmids: (i) an adenovirus (Ad)-derived helper plasmid containing Ad genes required for AAV replication, (ii) an AAV-derived plasmid encoding complementing AAV genes (ie., the viral rep and cap genes), and (iii) a target plasmid containing a transgene of interestflanked by AAV inverted terminal repeats (ITRs) that confer packaging and replication capabilities upon the ITR-flanked heterologous DNA. Here we describe novel plasmid reagents designed for convenient and efficient production of rAAV-S. An integrated helper plasmid containing all Ad genes requiredfor the efficient production of recombinant AAV as well as the complementing AAV genes on the same plasmid backbone, was constructed via transposase-mediated insertion into an Ad helper plasmid of a transposable element containing the AAV-5 rep and cap genes linked to a selectable marker This simple strategy can be used in the rapid and efficient construction of integrated helper plasmids derived from any reported AAV serotype for which a molecular clone exists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号