首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a potent Ca(2+)-mobilizing messenger that in many cells releases Ca(2+) from the endolysosomal system. Recent studies have shown that NAADP-induced Ca(2+) mobilization is mediated by the two-pore channels (TPCs). Whether NAADP acts as a messenger in astrocytes is unclear, and downstream functional consequences have yet to be defined. Here, we show that intracellular delivery of NAADP evokes Ca(2+) signals from acidic organelles in rat astrocytes and that these signals are potentiated upon overexpression of TPCs. We also show that NAADP increases acidic vesicular organelle formation and levels of the autophagic markers, LC3II and beclin-1. NAADP-mediated increases in LC3II levels were reduced in cells expressing a dominant-negative TPC2 construct. Our data provide evidence that NAADP-evoked Ca(2+) signals mediated by TPCs regulate autophagy.  相似文献   

3.
Microinjection of human Jurkat T-lymphocytes with nicotinic acid adenine dinucleotide phosphate (NAADP(+)) dose-dependently stimulated intracellular Ca(2+)-signaling. At a concentration of 10 nM NAADP(+) evoked repetitive and long-lasting Ca(2+)-oscillations of low amplitude, whereas at 50 and 100 nM, a rapid and high initial Ca(2+)-peak followed by trains of smaller Ca(2+)-oscillations was observed. Higher concentrations of NAADP(+) (1 and 10 microM) gradually reduced the initial Ca(2+)-peak, and a complete self-inactivation of Ca(2+)-signals was seen at 100 microM. The effect of NAADP(+) was specific as it was not observed with nicotinamide adenine dinucleotide phosphate. Both inositol 1,4, 5-trisphosphate- and cyclic adenosine diphosphoribose-mediated Ca(2+)-signaling were efficiently inhibited by coinjection of a self-inactivating concentration of NAADP(+). Most importantly, microinjection of a self-inactivating concentration of NAADP(+) completely abolished subsequent stimulation of Ca(2+)-signaling via the T cell receptor/CD3 complex, indicating that a functional NAADP(+) Ca(2+)-release system is essential for T-lymphocyte Ca(2+)-signaling.  相似文献   

4.
Nicotinic acid adenine dinucleotide phosphate (NAADP) has been shown to release intracellular Ca(2+) in several types of cells. We have used Ca(2+)-sensitive fluorescent dyes (Fura-2, Fluo-4) to measure intracellular Ca(2+) in astrocytes in culture and in situ. Bath-applied NAADP elicited a reversible and concentration-dependent Ca(2+) rise in up to 90% of astrocytes in culture (EC(50)=7 microM). The NAADP-evoked Ca(2+) rise was maintained in the absence of extracellular Ca(2+), but was suppressed after depleting the Ca(2+) stores of the ER with ATP (20 microM), with cyclopiazonic acid (10 microM) or with ionomycin (5 microM). P(2) receptor antagonist pyridoxalphosphate-6-azophenyl-2'4'-disulfonic acid (PPADS, 100 microM), IP(3) receptor blocker 2-aminoethoxydiphenyl borate (2-APB, 100 microM) and PLC inhibitor U73122 (10 microM) also reduced or suppressed the NAADP-evoked Ca(2+) rise. NAADP still evoked a Ca(2+) response after application of glycyl-l-phenylalanine-beta-naphthylamide (GPN, 200 microM), which permeabilizes lysosomes, or preincubation with H(+)-ATPase inhibitor bafilomycin A1 (4 microM) and of p-trifluoromethoxy carbonyl cyanide phenylhydrazone (FCCP, 2 microM), that impairs mitochondrial Ca(2+) handling. In acute brain slices, NAADP (10 microM) evoked Ca(2+) transients in cerebellar Bergmann glial cells and in hippocampal astrocytes. Our results suggest that NAADP recruits Ca(2+) from inositol 1,4,5-trisphosphate-sensitive Ca(2+) stores in mammalian astrocytes, at least partly by activating metabotropic P(2)Y receptors.  相似文献   

5.
Mobilization of Ca2+ from intracellular stores is an important mechanism for generating cytoplasmic Ca2+ signals [1]. Two families of intracellular Ca(2+)-release channels - the inositol-1,4, 5-trisphosphate (IP3) receptors and the ryanodine receptors (RyRs) - have been described in mammalian tissues [2]. Recently, nicotinic acid adenine dinucleotide phosphate (NAADP), a molecule derived from NADP+, has been shown to trigger Ca2+ release from intracellular stores in invertebrate eggs [3] [4] [5] [6] and pancreatic acinar cells [7]. The nature of NAADP-induced Ca2+ release is unknown but it is clearly distinct from the IP3- and cyclic ADP ribose (cADPR)-sensitive mechanisms in eggs (reviewed in [8] [9]). Furthermore, mammalian cells can synthesize and degrade NAADP, suggesting that NAADP-induced Ca2+ release may be widespread and thus contribute to the complexity of Ca2+ signalling [10] [11]. Here, we show for the first time that NAADP evokes Ca2+ release from rat brain microsomes by a mechanism that is distinct from those sensitive to IP3 or cADPR, and has a remarkably similar pharmacology to the action of NAADP in sea urchin eggs [12]. Membranes prepared from the same rat brain tissues are able to support the synthesis and degradation of NAADP. We therefore suggest that NAADP-mediated Ca2+ signalling could play an important role in neuronal Ca2+ signalling.  相似文献   

6.
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a recently described Ca2+ mobilizing messenger, and probably the most potent. We briefly review its unique properties as a Ca2+ mobilizing agent. We present arguments for its action in targeting acidic calcium stores rather than the endoplasmic reticulum. Finally, we discuss possible biosynthetic pathways for NAADP in cells and candidates for its target Ca2+ release channel, which has eluded identification so far.  相似文献   

7.
Ca2+ ions are involved in the regulation of many diverse functions in animal and plant cells, e.g. muscle contraction, secretion of neurotransmitters, hormones and enzymes, fertilization of oocytes, and lymphocyte activation and proliferation. The intracellular Ca2+ concentration can be increased by different molecular mechanisms, such as Ca2+ influx from the extracellular space or Ca2+ release from intracellular Ca2+ stores. Release from intracellular Ca2+ stores is accomplished by the small molecular compounds D-myo-inositol 1,4,5-trisphosphate (InsP3), cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP). This review concentrates on (i) receptor-mediated formation of cADPR by ADP-ribosyl cyclases, (ii) intracellular and extracellular effects of cADPR in a variety of cell types, and (iii) cADPR in the nucleus. Though our understanding of the role of NAADP is still unclear in many aspects, important recent findings are reviewed, e.g. Ca2+ release activity and binding studies in mammalian cell types.  相似文献   

8.
Ca(2+) regulates a spectrum of cellular processes including many aspects of neuronal function. Ca(2+)-sensitive events such as neurite extension and axonal guidance are driven by Ca(2+) signals that are precisely organized in both time and space. These complex cues result from both Ca(2+) influx across the plasma membrane and the mobilization of intracellular Ca(2+) stores. In the present study, using rat cortical neurons, we have examined the effects of the novel intracellular Ca(2+)-mobilizing messenger nicotinic acid adenine dinucleotide phosphate (NAADP) on neurite length and cytosolic Ca(2+) levels. We show that NAADP potentiates neurite extension in response to serum and nerve growth factor and stimulates increases in cytosolic Ca(2+) from bafilomycin-sensitive Ca(2+) stores. Simultaneous blockade of inositol trisphosphate and ryanodine receptors abolished the effects of NAADP on neurite length and reduced the magnitude of NAADP-mediated Ca(2+) signals. This is the first report demonstrating functional NAADP receptors in a mammalian neuron. Interplay between NAADP receptors and more established intracellular Ca(2+) channels may therefore play important signaling roles in the nervous system.  相似文献   

9.
Nicotinic acid adenine dinucleotide phosphate (NAADP) is capable of inducing global Ca2+ increases via a lysosome-associated mechanism, but the mechanism mediating NAADP-induced intracellular Ca2+ release remains unclear. The present study reconstituted and characterized a lysosomal NAADP-sensitive Ca2+ release channel using purified lysosomes from rat liver. Furthermore, the identity of lysosomal NAADP-sensitive Ca2+ release channels was also investigated. It was found that NAADP activates lysosomal Ca2+ release channels at concentrations of 1 nM to 1 microM, but this activating effect of NAADP was significantly reduced when the concentrations used increased to 10 or 100 microM. Either activators or blockers of Ca2+ release channels on the sarcoplasmic reticulum (SR) had no effect on the activity of these NAADP-activated Ca2+ release channels. Interestingly, the activity of this lysosomal NAADP-sensitive Ca2+ release channel increased when the pH in cis solution decreased, but it could not be inhibited by a lysosomal H+-ATPase antagonist, bafilomycin A1. However, the activity of this channel was significantly inhibited by plasma membrane L-type Ca2+ channel blockers such as verapamil, diltiazem, and nifedipine, or the nonselective Ca2+,Na+ channel blocker, amiloride. In addition, blockade of TRP-ML1 (transient receptor potential-mucolipin 1) protein by anti-TRP-ML1 antibody markedly attenuated NAADP-induced activation of these lysosomal Ca2+ channels. These results for the first time provide direct evidence that a NAADP-sensitive Ca2+ release channel is present in the lysosome of native liver cells and that this channel is associated with TRP-ML1, which is different from ER/SR Ca2+ release channels.  相似文献   

10.
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a potent second messenger that mobilizes Ca(2+) from the acidic endolysosomes by activation of the two-pore channels TPC1 and TPC2. The channel properties of human TPC1 have not been studied before, and its cellular function is not known. In the present study, we characterized TPC1 incorporated into lipid bilayers. The native and recombinant TPC1 channels are activated by NAADP. TPC1 activity requires acidic luminal pH and high luminal Ca(2+). With Ba(2+) as the permeable ion, luminal Ca(2+) activates TPC1 with an apparent K(m) of 180 μm. TPC1 operates in two tightly coupled conductance states of 47 ± 8 and 200 ± 9 picosiemens. Importantly, opening of the large conductance markedly increases the small conductance mean open time. Changes in membrane potential from 0 to -60 mV increased linearly both the small and the large conductances and NP(o), indicating that TPC1 is regulated by voltage. Intriguingly, the apparent affinity for activation of TPC1 by its ligand NAADP is not constant. Rather, hyperpolarization increases the apparent affinity of TPC1 for NAADP by 10 nm/mV. The concerted regulation of TPC1 activity by luminal Ca(2+) and by membrane potential thus provides a potential mechanism to explain NAADP-induced Ca(2+) oscillations. These findings reveal unique properties of TPC1 to explain its role in Ca(2+) oscillations and cell function.  相似文献   

11.
Nicotinic acid adenine dinucleotide phosphate (NAADP) is an agonist-generated second messenger that releases Ca(2+) from intracellular acidic Ca(2+) stores. Recent evidence has identified the two-pore channels (TPCs) within the endolysosomal system as NAADP-regulated Ca(2+) channels that release organellar Ca(2+) in response to NAADP. However, little is known about the mechanism coupling NAADP binding to calcium release. To identify the NAADP binding site, we employed a photoaffinity labeling method using a radioactive photoprobe based on 5-azido-NAADP ([(32)P-5N(3)]NAADP) that exhibits high affinity binding to NAADP receptors. In several systems that are widely used for studying NAADP-evoked Ca(2+) signaling, including sea urchin eggs, human cell lines (HEK293, SKBR3), and mouse pancreas, 5N(3)-NAADP selectively labeled low molecular weight sites that exhibited the diagnostic pharmacology of NAADP-sensitive Ca(2+) release. Surprisingly, we were unable to demonstrate labeling of endogenous, or overexpressed, TPCs. Furthermore, labeling of high affinity NAADP binding sites was preserved in pancreatic samples from TPC1 and TPC2 knock-out mice. These photolabeling data suggest that an accessory component within a larger TPC complex is responsible for binding NAADP that is unique from the core channel itself. This observation necessitates critical evaluation of current models of NAADP-triggered activation of the TPC family.  相似文献   

12.
Many physiological processes are controlled by a great diversity of Ca2 + signals that depend on Ca2 + entry into the cell and/or Ca2 + release from internal Ca2 + stores. Ca2 + mobilization from intracellular stores is gated by a family of messengers including inositol-1,4,5-trisphosphate (InsP3), cyclic ADP-ribose (cADPR), and nicotinic acid adenine dinucleotide phosphate (NAADP). There is increasing evidence for a novel intracellular Ca2 + release channel that may be targeted by NAADP and that displays properties distinctly different from the well-characterized InsP3 and ryanodine receptors. These channels appear to localize on a wider range of intracellular organelles, including the acidic Ca2 + stores. Activation of the NAADP-sensitive Ca2 + channels evokes complex changes in cytoplasmic Ca2 + levels by means of channel chatter with other intracellular Ca2 + channels. The recent demonstration of changes in intracellular NAADP levels in response to physiologically relevant extracellular stimuli highlights the significance of NAADP as an important regulator of intracellular Ca2 + signaling.  相似文献   

13.
Intracellular Ca(2+) is able to control numerous cellular responses through complex spatiotemporal organization. Ca(2+) waves mediated by inositol trisphosphate or ryanodine receptors propagate by Ca(2+)-induced Ca(2+) release and therefore do not have an absolute requirement for a gradient in either inositol trisphosphate or cyclic ADP-ribose, respectively. In contrast, we report that although Ca(2+) increases induced by nicotinic acid adenine dinucleotide phosphate (NAADP) are amplified by Ca(2+)-induced Ca(2+) release locally, Ca(2+) waves mediated by NAADP have an absolute requirement for an NAADP gradient. If NAADP is increased such that its concentration is spatially uniform in one region of an egg, the Ca(2+) increase occurs simultaneously throughout this area, and only where there is diffusion out of this area to establish an NAADP gradient is there a Ca(2+) wave. A local increase in NAADP results in a Ca(2+) increase that spreads by NAADP diffusion. NAADP diffusion is restricted at low but not high concentrations of NAADP, indicating that NAADP diffusion is strongly influenced by binding to immobile and saturable sites, probably the NAADP receptor itself. Thus, the range of action of NAADP can be tuned by its concentration from that of a local messenger, like Ca(2+), to that of a global messenger, like IP(3) or cyclic ADP-ribose.  相似文献   

14.
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a messenger that regulates calcium release from intracellular acidic stores. Recent studies have identified two-pore channels (TPCs) as endolysosomal channels that are regulated by NAADP; however, the nature of the NAADP receptor binding site is unknown. To further study NAADP binding sites, we have synthesized and characterized [(32)P-5-azido]nicotinic acid adenine dinucleotide phosphate ([(32)P-5N(3)]NAADP) as a photoaffinity probe. Photolysis of sea urchin egg homogenates preincubated with [(32)P-5N(3)]NAADP resulted in specific labeling of 45-, 40-, and 30-kDa proteins, which was prevented by inclusion of nanomolar concentrations of unlabeled NAADP or 5N(3)-NAADP, but not by micromolar concentrations of structurally related nucleotides such as NAD, nicotinic acid adenine dinucleotide, nicotinamide mononucleotide, nicotinic acid, or nicotinamide. [(32)P-5N(3)]NAADP binding was saturable and displayed high affinity (K(d) ~10 nM) in both binding and photolabeling experiments. [(32)P-5N(3)]NAADP photolabeling was irreversible in a high K(+) buffer, a hallmark feature of NAADP binding in the egg system. The proteins photolabeled by [(32)P-5N(3)]NAADP have molecular masses smaller than the sea urchin TPCs, and antibodies to TPCs do not detect any immunoreactivity that comigrates with either the 45-kDa or the 40-kDa photolabeled proteins. Interestingly, antibodies to TPC1 and TPC3 were able to immunoprecipitate a small fraction of the 45- and 40-kDa photolabeled proteins, suggesting that these proteins associate with TPCs. These data suggest that high affinity NAADP binding sites are distinct from TPCs.  相似文献   

15.
Nicotinic acid adenine dinucleotide phosphate (NAADP+) has been identified as a novel second messenger triggering Ca2+ release from intracellular stores. Here we report that murine cortical astrocytes in culture and in acute slices respond with transient intracellular Ca2+ increases to extracellularly applied NAADP+ and express the NAADP+-producing enzyme CD38. The Ca2+ transients triggered by NAADP+ occurred with an average delay of 35 s as compared with ATP-triggered Ca2+ signaling, suggesting that NAADP+ may have to enter the cell to act. Blockage of connexin hemichannels (a possible entry route for NAADP+ into the cell) reduced the number of astrocytes responding to NAADP+. Disruption of lysosomes as the suggested site of NAADP+ receptors reduced the number of astrocytes responding to NAADP+ strongly. The NAADP+-triggered Ca2+ signal also depended on intact endoplasmic reticulum Ca2+ stores linked to activation of inositol 1,4,5-trisphosphate receptors and on the activity of voltage-gated Ca2+ channels. Adenosine receptor-mediated signaling contributes to the NAADP+-evoked signal, since it is strongly reduced by the adenosine receptor blocker CGS-15943. Moreover, NAADP+ triggered responses in all other cell types (cultured cerebellar neurons, microglia, and oligodendrocytes) of the central nervous system.  相似文献   

16.
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a potent Ca(2+) mobilizing agent in a variety of broken and intact cell preparations. In sea urchin egg homogenates, NAADP releases Ca(2+) independently of inositol trisphosphate or ryanodine receptor activation. Little, however, is known concerning the molecular target for NAADP. Here we report for the first time solubilization of NAADP receptors from sea urchin egg homogenates. Supernatant fractions, prepared following Triton X-100 treatment, bound [(32)P]NAADP with similar affinity and selectivity as membrane preparations. Furthermore, the unusual non-dissociating nature of NAADP binding to its receptor was preserved upon solubilization. NAADP receptors could also be released into supernatant fractions upon detergent treatment of membranes prelabeled with [(32)P]NAADP. Tagged receptors prepared in this way, were readily resolved by native gel electrophoresis as a single protein target. Gel filtration and sucrose density gradient centrifugation analysis indicates that NAADP receptors are substantially smaller than inositol trisphosphate or ryanodine receptors, providing further biochemical evidence that NAADP activates a novel intracellular Ca(2+) release channel.  相似文献   

17.
An intracellular mechanism activated by nicotinic acid adenine dinucleotide phosphate (NAADP(+)) contributes to intracellular Ca(2+) release alongside inositol 1,4,5-trisphosphate (Ins-P(3)) and ryanodine receptors. The NAADP(+)-sensitive mechanism has been shown to be operative in sea urchin eggs, ascidian eggs, and pancreatic acinar cells. Furthermore, most mammalian cell types can synthesize NAADP(+), with nicotinic acid and NADP(+) as precursors. In this contribution, NAADP(+)-induced Ca(2+) release has been investigated in starfish oocytes. Uncaging of injected NAADP(+) induced Ca(2+) mobilization in both immature oocytes and in oocytes matured by the hormone 1-methyladenine (1-MA). The role of extracellular Ca(2+) in NAADP(+)-induced Ca(2+) mobilization, which was minor in immature oocytes, was instead essential in mature oocytes. Thus, the NAADP(+)-sensitive Ca(2+) pool, which is known to be distinct from those sensitive to inositol 1,4,5-trisphosphate or cyclic ADPribose, apparently migrated closer to (or became part of) the plasma membrane during the maturation process. Inhibition of both Ins-P(3) and ryanodine receptors, but not of either alone, substantially inhibited NAADP(+)-induced Ca(2+) mobilization in both immature and mature oocytes. The data also suggest that NAADP(+)-induced Ca(2+) mobilization acted as a trigger for Ca(2+) release via Ins-P(3) and ryanodine receptors.  相似文献   

18.
19.
Nicotinic acid adenine dinucleotide phosphate (NAADP) is the most potent Ca2+ mobilizing second messenger that has been identified. We have previously shown that NAADP analogs substituted at the 5-position of nicotinic acid were recognized by the sea urchin receptor at low concentration, whereas the 4- substituted analogs were not as potent. However, to date the structure–activity relationship (SAR) of these analogs has not been addressed in mammalian systems. Thus, we asked whether these structurally modified analogs behave similarly in an NAADP-responsive mammalian cell line (SKBR3) using microinjection and single cell fluorescent imaging methods. Novel “caged” 4- and 5-substituted NAADP analogs that were activated inside the cell by flash photolysis resulted in Ca2+ mobilizing activity in SKBR3 cells in a concentration dependent manner, but with reduced effectiveness compared to unmodified NAADP. The SAR in mammalian SKBR3 cells was quite different from that of sea urchin and may suggest that there are differences between NAADP receptors in different species or tissues. Importantly, these data indicate that modifications at the 4- and 5-position of the nicotinic acid ring may lead to the development of functional photoaffinity labels that could be used for receptor localization and isolation in mammalian systems.  相似文献   

20.
Although numerous extracellular stimuli are coupled to increases in intracellular Ca(2+), different stimuli are thought to achieve specificity by eliciting different spatiotemporal Ca(2+) increases. We investigated the effect of nicotinic acid adenine dinucleotide phosphate (NAADP) inactivation on spatiotemporal Ca(2+) signals in intact sea urchin eggs. The photorelease of NAADP but not inositol 1,4,5-trisphosphate or cyclic ADP-ribose resulted in self-inactivation. When NAADP was released first locally and subsequently globally, the spatial pattern of the first response shaped that of the second. Specifically, the local release of NAADP created a Ca(2+) gradient that was reversed during the subsequent global release of NAADP. Neither cyclic ADP-ribose nor inositol 1,4,5-trisphosphate showed a similar effect. In contrast to homogenates, NAADP inactivation was reversible in intact eggs with resensitization occurring in approximately 20 min. Because initial NAADP responses affect later responses, NAADP can serve as a mechanism for a Ca(2+) memory that has both spatial and temporal components. This NAADP-mediated Ca(2+) memory provides a novel mechanism for cells to control spatiotemporal Ca(2+) increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号