首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The type III secretion system of Salmonella pathogenicity island 2 (SPI-2) is required for bacterial replication inside macrophages. SseB has been considered a putative target of the secretion system on the basis of its similarity with EspA, a protein secreted by the type III secretion system of enteropathogenic Escherichia coli (EPEC). EspA forms a filamentous structure on the bacterial cell surface and is involved in translocation of proteins into the eukaryotic cytosol. In this paper, we show that SseB is a secreted protein that associates with the surface of the bacterial cell and might, therefore, also be required for delivery of SPI-2 effector proteins to the eukaryotic cell cytosol. SseB begins to accumulate inside the bacterial cell when the culture enters early stationary phase. However, SseB is only secreted if the bacteria are grown at low pH or if the pH is shifted after growth from 7.0 to below pH 5.0. The secretion occurs within minutes of acidification and is totally dependent on a functional SPI-2 type III secretion system. As the pH of the Salmonella-containing vacuole inside host cells has been shown to acidify to between pH 4.0 and 5.0, and as SPI-2 gene expression occurs inside host cells, low pH might be a physiological stimulus for SPI-2-mediated secretion in vivo.  相似文献   

2.
Bacterial invasion plays a critical role in the establishment of Pseudomonas aeruginosa infection and is aided by two major virulence factors – surface appendages and secreted proteases. The second messenger cyclic diguanylate (c-di-GMP) is known to affect bacterial attachment to surfaces, biofilm formation and related virulence phenomena. Here we report that MorA, a global regulator with GGDEF and EAL domains that was previously reported to affect virulence factors, negatively regulates protease secretion via the type II secretion system (T2SS) in P. aeruginosa PAO1. Infection assays with mutant strains carrying gene deletion and domain mutants show that host cell invasion is dependent on the active domain function of MorA. Further investigations suggest that the MorA-mediated c-di-GMP signaling affects protease secretion largely at a post-translational level. We thus report c-di-GMP second messenger system as a novel regulator of T2SS function in P. aeruginosa. Given that T2SS is a central and constitutive pump, and the secreted proteases are involved in interactions with the microbial surroundings, our data broadens the significance of c-di-GMP signaling in P. aeruginosa pathogenesis and ecological fitness.  相似文献   

3.
Common themes in microbial pathogenicity revisited.   总被引:22,自引:0,他引:22       下载免费PDF全文
Bacterial pathogens employ a number of genetic strategies to cause infection and, occasionally, disease in their hosts. Many of these virulence factors and their regulatory elements can be divided into a smaller number of groups based on the conservation of similar mechanisms. These common themes are found throughout bacterial virulence factors. For example, there are only a few general types of toxins, despite a large number of host targets. Similarly, there are only a few conserved ways to build the bacterial pilus and nonpilus adhesins used by pathogens to adhere to host substrates. Bacterial entry into host cells (invasion) is a complex mechanism. However, several common invasion themes exist in diverse microorganisms. Similarly, once inside a host cell, pathogens have a limited number of ways to ensure their survival, whether remaining within a host vacuole or by escaping into the cytoplasm. Avoidance of the host immune defenses is key to the success of a pathogen. Several common themes again are employed, including antigenic variation, camouflage by binding host molecules, and enzymatic degradation of host immune components. Most virulence factors are found on the bacterial surface or secreted into their immediate environment, yet virulence factors operate through a relatively small number of microbial secretion systems. The expression of bacterial pathogenicity is dependent upon complex regulatory circuits. However, pathogens use only a small number of biochemical families to express distinct functional factors at the appropriate time that causes infection. Finally, virulence factors maintained on mobile genetic elements and pathogenicity islands ensure that new strains of pathogens evolve constantly. Comprehension of these common themes in microbial pathogenicity is critical to the understanding and study of bacterial virulence mechanisms and to the development of new "anti-virulence" agents, which are so desperately needed to replace antibiotics.  相似文献   

4.
Macrophages detect bacterial infection through pattern recognition receptors (PRRs) localized at the cell surface, in intracellular vesicles or in the cytosol. Discrimination of viable and virulent bacteria from non-virulent bacteria (dead or viable) is necessary to appropriately scale the anti-bacterial immune response. Such scaling of anti-bacterial immunity is necessary to control the infection, but also to avoid immunopathology or bacterial persistence. PRR-mediated detection of bacterial constituents in the cytosol rather than at the cell surface along with cytosolic recognition of secreted bacterial nucleic acids indicates viability and virulence of infecting bacteria. The effector responses triggered by activation of cytosolic PRRs, in particular the RIG-I-induced simultaneous rapid type I IFN induction and inflammasome activation, are crucial for timely control of bacterial infection by innate and adaptive immunity. The knowledge on the PRRs and the effector responses relevant for control of infection with intracellular bacteria will help to develop strategies to overcome chronic infection.  相似文献   

5.
Invasion of epithelial cells by Shigella flexneri involves entry and intercellular dissemination. Entry of bacteria into non-phagocytic cells requires the IpaA-D proteins that are secreted by the Mxi-Spa type III secretion machinery. Type III secretion systems are found in several Gram-negative pathogens and serve to inject bacterial effector proteins directly into the cytoplasm of host cells. In this study, we have analysed the IpgD protein of S. flexneri, the gene of which is located on the virulence plasmid at the 5' end of the mxi-spa locus. We have shown that IpgD (i) is stored in the bacterial cytoplasm in association with a specific chaperone, IpgE; (ii) is secreted by the Mxi-Spa type III secretion system in amounts similar to those of the IpaA-D proteins; (iii) is associated with IpaA in the extracellular medium; and (iv) is involved in the modulation of the host cell response after contact of the bacterium with epithelial cells. This suggests that IpgD is an effector that might be injected into host cells to manipulate cellular processes during infection.  相似文献   

6.
Summary: Outer membrane (OM) vesicles are ubiquitously produced by Gram-negative bacteria during all stages of bacterial growth. OM vesicles are naturally secreted by both pathogenic and nonpathogenic bacteria. Strong experimental evidence exists to categorize OM vesicle production as a type of Gram-negative bacterial virulence factor. A growing body of data demonstrates an association of active virulence factors and toxins with vesicles, suggesting that they play a role in pathogenesis. One of the most popular and best-studied pathogenic functions for membrane vesicles is to serve as natural vehicles for the intercellular transport of virulence factors and other materials directly into host cells. The production of OM vesicles has been identified as an independent bacterial stress response pathway that is activated when bacteria encounter environmental stress, such as what might be experienced during the colonization of host tissues. Their detection in infected human tissues reinforces this theory. Various other virulence factors are also associated with OM vesicles, including adhesins and degradative enzymes. As a result, OM vesicles are heavily laden with pathogen-associated molecular patterns (PAMPs), virulence factors, and other OM components that can impact the course of infection by having toxigenic effects or by the activation of the innate immune response. However, infected hosts can also benefit from OM vesicle production by stimulating their ability to mount an effective defense. Vesicles display antigens and can elicit potent inflammatory and immune responses. In sum, OM vesicles are likely to play a significant role in the virulence of Gram-negative bacterial pathogens.  相似文献   

7.
Evidence for the involvement of type IV protein secretion systems in bacterial virulence is accumulating. Many of the substrate proteins secreted by type IV systems either hijack or interfere with specific host cell pathways. These substrates can be injected directly into host cells via the type IV apparatus or are secreted by the type IV machinery in a state that allows them to gain access to cellular targets without the further assistance of the type IV system. Arguably, the protein substrates of most type IV secretion systems remain undiscovered. Here, we review the activities of known type IV substrates and discuss the putative roles of unidentified substrates.  相似文献   

8.
Many bacterial pathogens secrete potent toxins to aid in the destruction of host tissue, to initiate signaling changes in host cells or to manipulate immune system responses during the course of infection. Though methods have been developed to successfully purify and produce many of these important virulence factors, there are still many bacterial toxins whose unique structure or extensive post-translational modifications make them difficult to purify and study in in vitro systems. Furthermore, even when pure toxin can be obtained, there are many challenges associated with studying the specific effects of a toxin under relevant physiological conditions. Most in vitro cell culture models designed to assess the effects of secreted bacterial toxins on host cells involve incubating host cells with a one-time dose of toxin. Such methods poorly approximate what host cells actually experience during an infection, where toxin is continually produced by bacterial cells and allowed to accumulate gradually during the course of infection. This protocol describes the design of a permeable membrane insert-based bacterial infection system to study the effects of Streptolysin S, a potent toxin produced by Group A Streptococcus, on human epithelial keratinocytes. This system more closely mimics the natural physiological environment during an infection than methods where pure toxin or bacterial supernatants are directly applied to host cells. Importantly, this method also eliminates the bias of host responses that are due to direct contact between the bacteria and host cells. This system has been utilized to effectively assess the effects of Streptolysin S (SLS) on host membrane integrity, cellular viability, and cellular signaling responses. This technique can be readily applied to the study of other secreted virulence factors on a variety of mammalian host cell types to investigate the specific role of a secreted bacterial factor during the course of infection.  相似文献   

9.
细胞外囊泡(Extracellular Vesicles,EVs)是从细胞膜上脱落或者分泌的双层膜结构的囊泡状小体.真核生物、细菌、古细菌和支原体等具有细胞结构的生物均能够释放EVs.细菌分泌的EVs含有DNA、RNA及蛋白质等多种成分,其在细菌毒力保持、免疫逃逸、细菌间物质运输、宿主细胞免疫调节、宿主转录基因调节、耐...  相似文献   

10.
The type III secretion system (T3SS) encoded by Salmonella Pathogenicity Island 2 (SPI2) is essential for virulence and intracellular proliferation of Salmonella enterica. We have previously identified SPI2-encoded proteins that are secreted and function as a translocon for the injection of effector proteins. Here, we describe the formation of a novel SPI2-dependent appendage structure in vitro as well as on the surface of bacteria that reside inside a vacuole of infected host cells. In contrast to the T3SS of other pathogens, the translocon encoded by SPI2 is only present singly or in few copies at one pole of the bacterial cell. Under in vitro conditions, appendages are composed of a filamentous needle-like structure with a diameter of 10 nm that was sheathed with secreted protein. The formation of the appendage in vitro is dependent on acidic media conditions. We analyzed SPI2-encoded appendages in infected cells and observed that acidic vacuolar pH was not required for induction of SPI2 gene expression, but was essential for the assembly of these structures and their function as translocon for delivery of effector proteins.  相似文献   

11.
Questions about the behaviour of bacterial pathogens in vivo   总被引:3,自引:0,他引:3  
Bacterial pathogens cause disease in man and animals. They have unique biological properties, which enable them to colonize mucous surfaces, penetrate them, grow in the environment of the host, inhibit or avoid host defences and damage the host. The bacterial products responsible for these five biological requirements are the determinants of pathogenicity (virulence determinants). Current knowledge comes from studies in vitro, but now interest is increasing in how bacteria behave and produce virulence determinants within the infected host. There are three aspects to elucidate: bacterial activities, the host factors that affect them and the metabolic interactions between the two. The first is relatively easy to accomplish and, recently, new methods for doing this have been devised. The second is not easy because of the complexity of the environment in vivo and its ever-changing face. Nevertheless, some information can be gained from the literature and by new methodology. The third aspect is very difficult to study effectively unless some events in vivo can be simulated in vitro. The objectives of the Discussion Meeting were to describe the new methods and to show how they, and conventional studies, are revealing the activities of bacterial pathogens in vivo. This paper sets the scene by raising some questions and suggesting, with examples, how they might be answered. Bacterial growth in vivo is the primary requirement for pathogenicity. Without growth, determinants of the other four requirements are not formed. Results from the new methods are underlining this point. The important questions are as follows. What is the pattern of a developing infection and the growth rates and population sizes of the bacteria at different stages? What nutrients are present in vivo and how do they change as infection progresses and relate to growth rates and population sizes? How are these nutrients metabolized and by what bacterial mechanisms? Which bacterial processes handle nutrient deficiencies and antagonistic conditions that may arise? Conventional and new methods can answer the first question and part of the second; examples are described. The difficulties of trying to answer the last two are discussed. Turning to production in vivo of determinants of mucosal colonization, penetration, interference with host defence and damage to the host, here are the crucial questions. Are putative determinants, which have been recognized by studies in vitro, produced in vivo and are they relevant to virulence? Can hitherto unknown virulence determinants be recognized by examining bacteria grown in vivo? Does the complement of virulence determinants change as infection proceeds? Are regulatory processes recognized in vitro, such as ToxR/ToxS, PhoP/PhoQ, quorum sensing and type III secretion, operative in vivo? What environmental factors affect virulence determinant production in vivo and by what metabolic processes? Examples indicate that the answers to the first four questions are ''yes'' in most but not all cases. Attempts to answer the last, and most difficult, question are also described. Finally, sialylation of the lipopolysaccharide of gonococci in vivo by host-derived cytidine 5''-mono-phospho-N-acetyl neuraminic acid, and the effect of host lactate are described. This investigation revealed a new bacterial component important in pathogenicity, the host factors responsible for its production and the metabolism involved.  相似文献   

12.
The pathogen virulence is traditionally thought to co-evolve as a result of reciprocal selection with its host organism. In natural communities, pathogens and hosts are typically embedded within a web of interactions with other species, which could affect indirectly the pathogen virulence and host immunity through trade-offs. Here we show that selection by predation can affect both pathogen virulence and host immune defence. Exposing opportunistic bacterial pathogen Serratia marcescens to predation by protozoan Tetrahymena thermophila decreased its virulence when measured as host moth Parasemia plantaginis survival. This was probably because the bacterial anti-predatory traits were traded off with bacterial virulence factors, such as motility or resource use efficiency. However, the host survival depended also on its allocation to warning signal that is used against avian predation. When infected with most virulent ancestral bacterial strain, host larvae with a small warning signal survived better than those with an effective large signal. This suggests that larval immune defence could be traded off with effective defence against bird predators. However, the signal size had no effect on larval survival when less virulent control or evolved strains were used for infection suggesting that anti-predatory defence against avian predators, might be less constrained when the invading pathogen is rather low in virulence. Our results demonstrate that predation can be important indirect driver of the evolution of both pathogen virulence and host immunity in communities with multiple species interactions. Thus, the pathogen virulence should be viewed as a result of both past evolutionary history, and current ecological interactions.  相似文献   

13.
Enterohemorrhagic Escherichia coli (EHEC) is a water- and food-borne pathogen that causes hemorrhagic colitis. EHEC uses a type III secretion system (T3SS) to translocate effector proteins that subvert host cell function. T3SS-substrates encoded outside of the locus of enterocyte effacement are important to E. coli pathogenesis. We discovered an EHEC secreted protein, NleF, encoded by z6020 in O-island 71 of E. coli EDL933 that we hypothesized to be a T3SS substrate. Experiments are presented that probe the function of NleF and its role in virulence. Immunoblotting of secreted and translocated proteins suggest that NleF is secreted by the T3SS and is translocated into host cells in vitro where it localizes to the host cytoplasm. Infection of HeLa cells with E. coli possessing or lacking nleF and transient expression of NleF-GFP via transfection did not reveal a significant role for NleF in several assays of bacterial adherence, host cytoskeletal remodeling, or host protein secretion. However, competitive coinfection of mice with Citrobacter rodentium strains possessing or lacking nleF suggested a contribution of NleF to bacterial colonization. Challenge of gnotobiotic piglets also revealed a role for NleF in colonization of the piglet colon and rectoanal junction.  相似文献   

14.
15.
Xanthomonas oryzae pv. oryzae is the causal agent of bacterial leaf blight, a serious disease of rice. We demonstrated earlier that the type II secretion system (T2S) is important for virulence of X. oryzae pv. oryzae and that several proteins, including a xylanase, are secreted through this system. In this study, the xynB gene encoding for the secreted xylanase was cloned as a 6.9-kb EcoRI fragment (pRR7) that also included a paralog called xynA. As in X. oryzae pv. oryzae, xynA and xynB are adjacent to each other in X. axonopodis pv. citri, whereas only the xynA homolog is present in X. campestris pv. campestris. Mutations in xynB but not xynA affect secreted xylanase activity. Western blot analysis using anti-XynB antibodies on exudates from infected rice leaves indicated that this xylanase is expressed during in planta growth. Another T2S-secreted protein was identified to be a lipase/esterase (LipA) based on the sequence tags obtained by tandem mass spectrometry analysis and biochemical assays. Mutations in either xynB or lipA partially affected virulence. However, a lipA-xynB double mutant was significantly reduced for virulence, and the pRR7 clone containing an intact xynB gene could complement the virulence-deficient phenotype of the lipA-xynB mutant. Our results suggest that there is functional redundancy among the T2S secreted proteins of X. oryzae pv. oryzae in promoting virulence on rice.  相似文献   

16.
Yersinia virulence is dependent on the expression of plasmid-encoded secreted proteins called Yops. After bacterial adherence to receptors on the mammalian cell membrane, several Yops are transported by a type III secretion pathway into the host cell cytoplasm. Two Yops, YopH and YopE, prevent macrophages from phagocytosing Yersinia by disrupting the host cell cytoskeleton and signal transduction pathways. In contrast to this active inhibition of phagocytosis by Yersinia , other pathogens such as Salmonella , Shigella , Listeria and Edwardsiella actively promote their entry into mammalian cells by binding to specific host surface receptors and exploiting existing cell cytoskeletal and signalling pathways. We have tested whether Yersinia Yops can prevent the uptake of these diverse invasive pathogens. We first infected epithelial cells with Yersinia to permit delivery of Yops and subsequently with an invasive pathogen. We then measured the level of bacterial invasion. Preinfection with Yersinia inhibited invasion of Edwardsiella , Shigella and Listeria , but not Salmonella . Furthermore, we found that either YopE or YopH prevented Listeria invasion, whereas only YopE prevented Edwardsiella and Shigella invasion. We correlated the inhibitory effect of the Yops with the inhibitory action of the cell-signalling inhibitors Wortmannin, LY294002 and NDGA, and concluded that the four invasive pathogenic species enter epithelial cells using at least three distinct host cell pathways. We also speculate that YopE affects the rho pathway.  相似文献   

17.
Heat-labile enterotoxin (LT) is an important virulence factor expressed by enterotoxigenic Escherichia coli. The route of LT secretion through the outer membrane and the cellular and extracellular localization of secreted LT were examined. Using a fluorescently labeled receptor, LT was found to be specifically secreted onto the surface of wild type enterotoxigenic Escherichia coli. The main terminal branch of the general secretory pathway (GSP) was necessary and sufficient to localize LT to the bacterial surface in a K-12 strain. LT is a heteromeric toxin, and we determined that its cell surface localization was mediated by the its B subunit independent of an intact G(M1) ganglioside binding site and that LT binds lipopolysaccharide and G(M1) concurrently. The majority of LT secreted into the culture supernatant by the GSP in E. coli associated with vesicles. Only a mutation in hns, not overexpression of the GSP or LT, caused an increase in vesicle yield, supporting a specific vesicle formation machinery regulated by the nucleoid-associated protein HNS. We propose a model in which LT is secreted by the GSP across the outer membrane, secreted LT binds lipopolysaccharide via a G(M1)-independent binding region on its B subunit, and LT on the surface of released outer membrane vesicles interacts with host cell receptors, leading to intoxication. These data explain a novel mechanism of vesicle-mediated receptor-dependent delivery of a bacterial toxin into a host cell.  相似文献   

18.
The Shigella outer membrane protein IcsA belongs to the family of type V secreted (autotransported) virulence factors. Members of this family mediate their own translocation across the bacterial outer membrane: the carboxy-terminal beta domain forms a beta barrel channel in the outer membrane through which the amino-terminal alpha domain passes. IcsA, which is localized at one pole of the bacterium, mediates actin assembly by Shigella, which is essential for bacterial intracellular movement and intercellular dissemination. Here, we characterize the transit of IcsA across the periplasm during its secretion. We show that an insertion in the dsbB gene, whose gene product mediates disulfide bond formation of many periplasmic intermediates, does not affect the surface expression or unipolar targeting of IcsA. However, IcsA forms one disulfide bond in the periplasm in a DsbA/DsbB-dependent fashion. Furthermore, cellular fractionation studies reveal that IcsA has a transient soluble periplasmic intermediate. Our data also suggest that IcsA is folded in a proteinase K-resistant state in the periplasm. From these data, we propose a novel model for the secretion of IcsA that may be applicable to other autotransported proteins.  相似文献   

19.
Lacroix B  Citovsky V 《PloS one》2011,6(10):e25578
VirB5 is a type 4 secretion system protein of Agrobacterium located on the surface of the bacterial cell. This localization pattern suggests a function for VirB5 which is beyond its known role in biogenesis and/or stabilization of the T-pilus and which may involve early interactions between Agrobacterium and the host cell. Here, we identify VirB5 as the first Agrobacterium virulence protein that can enhance infectivity extracellularly. Specifically, we show that elevating the amounts of the extracellular VirB5--by exogenous addition of the purified protein, its overexpression in the bacterium, or transgenic expression in and secretion out of the host cell--enhances the efficiency the Agrobacterium-mediated T-DNA transfer, as measured by transient expression of genes contained on the transferred T-DNA molecule. Importantly, the exogenous VirB5 enhanced transient T-DNA expression in sugar beet, a major crop recalcitrant to genetic manipulation. Increasing the pool of the extracellular VirB5 did not complement an Agrobacterium virB5 mutant, suggesting a dual function for VirB5: in the bacterium and at the bacterium-host cell interface. Consistent with this idea, VirB5 expressed in the host cell, but not secreted, had no effect on the transformation efficiency. That the increase in T-DNA expression promoted by the exogenous VirB5 was not due to its effects on bacterial growth, virulence gene induction, bacterial attachment to plant tissue, or host cell defense response suggests that VirB5 participates in the early steps of the T-DNA transfer to the plant cell.  相似文献   

20.

Background

Systemic bacterial infections are highly regulated and complex processes that are orchestrated by numerous virulence factors. Genes that are coordinately controlled by the set of regulators required for systemic infection are potentially required for pathogenicity.

Results

In this study we present a systems biology approach in which sample-matched multi-omic measurements of fourteen virulence-essential regulator mutants were coupled with computational network analysis to efficiently identify Salmonella virulence factors. Immunoblot experiments verified network-predicted virulence factors and a subset was determined to be secreted into the host cytoplasm, suggesting that they are virulence factors directly interacting with host cellular components. Two of these, SrfN and PagK2, were required for full mouse virulence and were shown to be translocated independent of either of the type III secretion systems in Salmonella or the type III injectisome-related flagellar mechanism.

Conclusions

Integrating multi-omic datasets from Salmonella mutants lacking virulence regulators not only identified novel virulence factors but also defined a new class of translocated effectors involved in pathogenesis. The success of this strategy at discovery of known and novel virulence factors suggests that the approach may have applicability for other bacterial pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号