首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Lymphocyte activation gene-3 (LAG-3) is an MHC class II ligand expressed on activated T and NK cells. A LAG-3Ig fusion protein has been used in mice as an adjuvant protein to induce antitumor responses and specific CD8 and CD4 Th1 responses to nominal Ags. In this work we report on the effect of LAG-3Ig on the maturation and activation of human monocyte-derived dendritic cells (DC). LAG-3Ig binds MHC class II molecules expressed in plasma membrane lipid rafts on immature human DC and induces rapid morphological changes, including the formation of dendritic projections. LAG-3Ig markedly up-regulates the expression of costimulatory molecules and the production of IL-12 and TNF-alpha. Consistent with this effect on DC maturation, LAG-3Ig disables DC in their capacity to capture soluble Ags. These events are associated with the acquisition of professional APC function, because LAG-3Ig increases the capacity of DC to stimulate the proliferation and IFN-gamma response by allogeneic T cells. These effects were not observed when using ligation of MHC class II by specific mAb. Class II-mediated signals induced by a natural ligand, LAG-3, lead to complete maturation of DC, which acquire the capacity to trigger naive T cells and drive polarized Th1 responses.  相似文献   

2.
Lymphocyte activation gene-3 (LAG-3) is an MHC class II ligand structurally and genetically related to CD4. Although its expression is restricted to activated T cells and NK cells, the functions of LAG-3 remain to be elucidated. Here, we report on the expression and function of LAG-3 on proinflammatory bystander T cells that are activated in the absence of TCR engagement. LAG-3 is expressed at high levels on human T cells cocultured with autologous monocytes and IL-2 and synergizes with the low levels of CD40 ligand (CD40L) expressed on these cells to trigger TNF-alpha and IL-12 production by monocytes. Indeed, anti-LAG-3 mAb inhibits both IL-12 and IFN-gamma production in IL-2-stimulated cocultures of T cells and autologous monocytes. Soluble LAG-3Ig fusion protein markedly enhances IL-12 production by monocytes stimulated with infra-optimal concentrations of sCD40L, whereas it directly stimulates monocyte-derived dendritic cells (DC) for the production of TNF-alpha and IL-12, unravelling an enhanced responsiveness to MHC class II engagemenent in DC as compared with activated monocytes. Thus similar to CD40L, LAG-3 may be involved in the proinflammatory activity of cytokine-activated bystander T cells and most importantly it may directly activate DC.  相似文献   

3.
LIGHT is a recently cloned novel cytokine belonging to the TNF family that is selectively expressed on immature dendritic cells (iDCs) generated from monocytes isolated from human PBMCs. In these studies, we demonstrate that exogenous soluble LIGHT or soluble CD40 ligand (CD40L) can promote monocyte-derived dendritic cell maturation in vitro by the up-regulation of CD86, CD80, CD83, and HLA-DR antigen expression. Immature dendritic cells differentiated from monocytes of MDS patients displayed lower levels of costimulatory and HLA-DR molecules compared with iDCs differentiated from monocytes of normal subjects. However, upon induction of maturation by LIGHT or CD40L, the expression of costimulatory and HLA-DR molecules is comparable between DCs from MDS and normal subjects. Exogenous LIGHT- and CD40L-stimulated mature DCs (mDCs) also displayed increased antigen presentation to autologous T lymphocytes (tetanus toxin) or allogeneic T lymphocytes in mixed lymphocyte reactions. DCs matured by LIGHT showed increased secretion of IL-6, IL-12p75, and TNF-, but not IL-1. We conclude that both LIGHT and CD40L are immunoregulating factors that induce monocyte-derived iDCs from MDS patients to undergo maturation resulting in increased antigen presentation and T-cell activation. Monocyte-derived DCs can be stimulated to undergo phenotypic and functional changes with LIGHT that might be applied in the development of a DC-based vaccine for MDS treatment.  相似文献   

4.
CD40 ligand (CD40L) is a membrane-bound molecule expressed by activated T cells. CD40L potently induces dendritic cell (DC) maturation and IL-12p70 secretion and plays a critical role during T cell priming in the lymph nodes. IFN-gamma and IL-4 are required for CD40L-mediated cytokine secretion, suggesting that T cells are required for optimal CD40L activity. Because CD40L is rapidly up-regulated by non-T cells during inflammation, CD40 stimulation may also be important at the primary infection site. However, a role for T cells at the earliest stages of infection is unclear. The present study demonstrates that the innate immune cell-derived cytokine, IL-1beta, can increase CD40L-induced cytokine secretion by monocyte-derived DC, CD34(+)-derived DC, and peripheral blood DC independently of T cell-derived cytokines. Furthermore, IL-1beta is constitutively produced by monocyte-derived DC and monocytes, and is increased in response to intact Escherichia coli or CD40L, whereas neither CD34(+)-derived DC nor peripheral blood DC produce IL-1beta. Finally, DC activated with CD40L and IL-1beta induce higher levels of IFN-gamma secretion by T cells compared with DC activated with CD40L alone. Therefore, IL-1beta is the first non-T cell-derived cytokine identified that enhances CD40L-mediated activation of DC. The synergy between CD40L and IL-1beta highlights a potent, T cell-independent mechanism for DC activation during the earliest stages of inflammatory responses.  相似文献   

5.
Lymphocyte activation gene-3 (LAG-3) is a CD4-related transmembrane protein expressed by regulatory T cells that binds MHC II on APCs. It is shown in this study that during Treg:DC interactions, LAG-3 engagement with MHC class II inhibits DC activation. MHC II cross-linking by agonistic Abs induces an ITAM-mediated inhibitory signaling pathway, involving FcgammaRgamma and ERK-mediated recruitment of SHP-1 that suppresses dendritic cell maturation and immunostimulatory capacity. These data reveal a novel ITAM-mediated inhibitory signaling pathway in DCs triggered by MHC II engagement of LAG-3, providing a molecular mechanism in which regulatory T cells may suppress via modulating DC function.  相似文献   

6.
It is widely believed that generation of mature dendritic cells (DCs) with full T cell stimulatory capacity from human monocytes in vitro requires 5-7 days of differentiation with GM-CSF and IL-4, followed by 2-3 days of activation. Here, we report a new strategy for differentiation and maturation of monocyte-derived DCs within only 48 h of in vitro culture. Monocytes acquire immature DC characteristics by day 2 of culture with GM-CSF and IL-4; they down-regulate CD14, increase dextran uptake, and respond to the inflammatory chemokine macrophage inflammatory protein-1alpha. To accelerate DC development and maturation, monocytes were incubated for 24 h with GM-CSF and IL-4, followed by activation with proinflammatory mediators for another 24 h (FastDC). FastDC expressed mature DC surface markers as well as chemokine receptor 7 and secreted IL-12 (p70) upon CD40 ligation in the presence of IFN-gamma. The increase in intracellular calcium in response to 6Ckine showed that chemokine receptor 7 expression was functional. When FastDC were compared with mature monocyte-derived DCs generated by a standard 7-day protocol, they were equally potent in inducing Ag-specific T cell proliferation and IFN-gamma production as well as in priming autologous naive T cells using tetanus toxoid as a model Ag. These findings indicate that FastDC are as effective as monocyte-derived DCs in stimulating primary, Ag-specific, Th 1-type immune responses. Generation of FastDC not only reduces labor, cost, and time required for in vitro DC development, but may also represent a model more closely resembling DC differentiation from monocytes in vivo.  相似文献   

7.
Ag presentation by dendritic cells (DC) is essential to effective antitumor T cell responses in cancer patients. Depending on their origin, maturation state, and the ambient cytokine milieu, DC can differentiate into distinct subpopulations, which preferentially either induce Th1 cell activation (CD11c+,CD123- myeloid DC (MDC)) or immunosuppressive T cell development (CD11c-,CD123+ plasmacytoid DC (PDC)). The present study was undertaken to characterize the effects of pancreatic carcinoma cell-derived cytokines on immature monocyte-derived DC (iMo-DC) in vitro and in vivo. Medium conditioned by human pancreatic carcinoma cells inhibited iMo-DC proliferation, expression of costimulatory molecules (CD80 and CD40) and of HLA-DR, and functional activity as assessed by MLR and IL-12p70 production. iMo-DC generated from pancreatic carcinoma patients in advanced stages of the disease similarly showed decreased levels of HLA-DR expression and reduced ability to stimulate MLR in response to CD40L and IFN-gamma. Moreover, in tumor-patient peripheral blood, the ratio of MDC to PDC cells was lower than in healthy controls due to reduced numbers of MDC CD11c+ cells. Importantly, rather than a single cytokine, a combination of tumor-derived cytokines was responsible for these effects; these were primarily TGF-beta, IL-10, and IL-6, but not vascular endothelial growth factor. In summary, we have identified an array of pancreatic carcinoma-derived cytokines that cooperatively affect iMo-DC activation in a manner consistent with ineffective antitumor immune responses.  相似文献   

8.
9.
We investigated the role of Toxoplasma gondii-derived heat shock protein 70 (TgHSP70) as a dendritic cell (DC) maturation-inducing molecule. TgHSP70 induced the maturation of human monocyte-derived dendritic cells as determined by increased levels of surface markers, namely, CD40, CD80, CD86, and HLA-DR. Moreover, TgHSP70 also reduced phagocytic activity and increased the allostimulatory capacity of DCs, suggesting the functional maturation of DCs by TgHSP70. Maturation of DCs by TgHSP70 also elicited a significant increase in IL-12 production in a polymyxin B-insensitive manner. TgHSP70 also stimulated extracellular signal-regulated kinase and p38 kinase pathways in DCs, and TgHSP70-induced IL-12 production was inhibited by SB203580 but not by PD98059, thus indicating the role of p38 kinase in the maturation of DCs by TgHSP70. This study demonstrates the role of TgHSP70 in the functional maturation of DCs and suggests TgHSP70 as a useful molecule for the development of a vaccine against T. gondii.  相似文献   

10.
Dendritic cells (DC) are important APCs that play a key role in the induction of an immune response. The signaling molecules that govern early events in DC activation are not well understood. We therefore investigated whether DC express carcinoembryonic Ag-related cell adhesion molecule 1 (CEACAM1, also known as BGP or CD66a), a well-characterized signal-regulating cell-cell adhesion molecule that is expressed on granulocytes, monocytes, and activated T cells and B cells. We found that murine DC express in vitro as well as in vivo both major isoforms of CEACAM1, CEACAM1-L (having a long cytoplasmic domain with immunoreceptor tyrosine-based inhibitory motifs) and CEACAM1-S (having a short cytoplasmic domain lacking phosphorylatable tyrosine residues). Ligation of surface-expressed CEACAM1 on DC with the specific mAb AgB10 triggered release of the chemokines macrophage inflammatory protein 1alpha, macrophage inflammatory protein 2, and monocyte chemoattractant protein 1 and induced migration of granulocytes, monocytes, T cells, and immature DC. Furthermore, the surface expression of the costimulatory molecules CD40, CD54, CD80, and CD86 was increased, indicating that CEACAM1-induced signaling regulates early maturation and activation of dendritic cells. In addition, signaling via CEACAM1 induced release of the cytokines IL-6, IL-12 p40, and IL-12 p70 and facilitated priming of naive MHC II-restricted CD4(+) T cells with a Th1-like effector phenotype. Hence, our results show that CEACAM1 is a signal-transducing receptor that can regulate early maturation and activation of DC, thereby facilitating priming and polarization of T cell responses.  相似文献   

11.
1 Alpha,25-dihydroxyvitamin D3 (1,25(OH)2D3), the active form of vitamin D3, is a potent immunomodulatory agent. Here we show that dendritic cells (DCs) are major targets of 1,25(OH)2D3-induced immunosuppressive activity. 1,25(OH)2D3 prevents the differentiation in immature DCs of human monocytes cultured with GM-CSF and IL-4. Addition of 1,25(OH)2D3 during LPS-induced maturation maintains the immature DC phenotype characterized by high mannose receptor and low CD83 expression and markedly inhibits up-regulation of the costimulatory molecules CD40, CD80, and CD86 and of class II MHC molecules. This is associated with a reduced capacity of DCs to activate alloreactive T cells, as determined by decreased proliferation and IFN-gamma secretion in mixed leukocyte cultures. 1, 25(OH)2D3 also affects maturing DCs, leading to inhibition of IL-12p75 and enhanced IL-10 secretion upon activation by CD40 ligation. In addition, 1,25(OH)2D3 promotes the spontaneous apoptosis of mature DCs. The modulation of phenotype and function of DCs matured in the presence of 1,25(OH)2D3 induces cocultured alloreactive CD4+ cells to secrete less IFN-gamma upon restimulation, up-regulate CD152, and down-regulate CD154 molecules. The inhibition of DC differentiation and maturation as well as modulation of their activation and survival leading to T cell hyporesponsiveness may explain the immunosuppressive activity of 1, 25(OH)2D3.  相似文献   

12.
Mature dendritic cells (DCs) are central to the development of optimal T cell immune responses. CD40 ligand (CD40L, CD154) is one of the most potent maturation stimuli for immature DCs. We studied the role of three signaling pathways, p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK), and phosphoinositide-3-OH kinase (PI3K), in CD40L-induced monocyte-derived DC activation, survival, and expansion of virus-specific CD8(+) T cell responses. p38 MAPK pathway was critical for CD40L-mediated up-regulation of CD83, a marker of DC maturation. CD40L-induced monocyte-derived DC IL-12 production was mediated by both the p38 MAPK and PI3K pathways. CD40L-mediated DC survival was mostly mediated by the PI3K pathway, with smaller contributions by p38 MAPK and ERK pathways. Finally, the p38 MAPK pathway was most important in mediating CD40L-stimulated DCs to induce strong allogeneic responses as well as expanding virus-specific memory CD8(+) T cell responses. Thus, although the p38 MAPK, PI3K, and ERK pathways independently affect various parameters of DC maturation induced by CD40L, the p38 MAPK pathway within CD40L-conditioned DCs is the most important pathway to maximally elicit T cell immune responses. This pathway should be exploited in vivo to either completely suppress or enhance CD8(+) T cell immune responses.  相似文献   

13.
Activation of immature CD83- dendritic cells (DC) in peripheral tissues induces their maturation and migration to lymph nodes. Activated DC become potent stimulators of Th cells and efficient inducers of Th1- and Th2-type cytokine production. This study analyzes the ability of human monocyte-derived CD1a+ DC at different stages of IL-1 beta and TNF-alpha-induced maturation to produce the major Th1-driving factor IL-12. DC at the early stages of maturation (2 and 4 h) produced elevated amounts of IL-12 p70 during interaction with CD40 ligand-bearing Th cells or, after stimulation with the T cell-replacing factors, soluble CD40 ligand and IFN-gamma. The ability to produce IL-12 was strongly down-regulated at later time points, 12 h after the induction of DC maturation, and in fully mature CD83+ cells, at 48 h. In contrast, the ability of mature DC to produce IL-6 was preserved or even enhanced, indicating their intact responsiveness to CD40 triggering. A reduced IL-12-producing capacity of mature DC resulted mainly from their impaired responsiveness to IFN-gamma, a cofactor in CD40-induced IL-12 p70 production. This correlated with reduced expression of IFN-gamma R (CD119) by mature DC. In addition, while immature DC produced IL-12 and IL-6 after stimulation with LPS or Staphylococcus aureus Cowan I strain, mature DC became unresponsive to these bacterial stimuli. Together with the previously described ability of IL-10 and PGE2 to stably down-regulate the ability to produce IL-12 in maturing, but not in fully mature, DC, the current data indicate a general resistance of mature DC to IL-12-modulating factors.  相似文献   

14.
Low molecular weight dextran sulfate (DXS) has been reported to inhibit the classical, alternative pathway as well as the mannan-binding lectin pathway of the complement system. Furthermore, it acts as an endothelial cell protectant inhibiting complement-mediated endothelial cell damage. Endothelial cells are covered with a layer of heparan sulfate (HS), which is rapidly released under conditions of inflammation and tissue injury. Soluble HS induces maturation of dendritic cells (DC) via TLR4. In this study, we show the inhibitory effect of DXS on human DC maturation. DXS significantly prevents phenotypic maturation of monocyte-derived DC and peripheral myeloid DC by inhibiting the up-regulation of CD40, CD80, CD83, CD86, ICAM-1, and HLA-DR and down-regulates DC-SIGN in response to HS or exogenous TLR ligands. DXS also inhibits the functional maturation of DC as demonstrated by reduced T cell proliferation, and strongly impairs secretion of the proinflammatory mediators IL-1beta, IL-6, IL-12p70, and TNF-alpha. Exposure to DXS leads to a reduced production of the complement component C1q and a decreased phagocytic activity, whereas C3 secretion is increased. Moreover, DXS was found to inhibit phosphorylation of IkappaB-alpha and activation of NF-kappaB. These findings suggest that DXS prevents TLR-induced maturation of human DC and may therefore be a useful reagent to impede the link between innate and adaptive immunity.  相似文献   

15.
Lymphocyte activation gene-3 (LAG-3; CD223) is a transmembrane protein that is structurally similar to CD4. Since LAG-3 has a much higher binding affinity to MHC class II than that of CD4, several approaches using soluble LAG-3 were used to modulate immune responses by activation or inhibition of MHC class II expressing antigen presenting cells. In this study, we constructed soluble pig LAG-3 containing a critical binding site (D1 and D2 region) to MHC class II molecules, combined with a constant region of an immunoglobulin (Ig) heavy chain. Flow cytometry analyses indicated that soluble pig LAG-3 binds to both pig and human MHC class II molecules. Moreover, soluble pig LAG-3 can inhibit human lymphocyte proliferation in the human–pig xenogeneic mixed lymphocyte reaction in a dose-dependent manner. These results indicate that soluble pig LAG-3 may be useful for controlling the xenogeneic T cell immune responses between the human and pig.  相似文献   

16.
Primary C3 deficiency, a rare autosomal inherited disease (OMIM 120700), was identified in a 2-year-old male suffering from recurrent pyogenic infections from early infancy with undetectable total complement hemolytic activity (CH50) and C3 values. The nonconsanguineous parents and the two patients' two siblings had 50% normal serum C3 concentration. The molecular abnormality associated a paternal allele coding C3 with the missense mutation p.Ser(550)Pro and an apparently null maternal allele, with production of a defective protein that could no longer be secreted. Vaccination of the child did not induce a long-term Ab response. Accordingly, switched memory IgD(-)CD27(+) B cells were barely detected, amounting to only 2.3% of peripheral blood CD19(+) cells. Cells were significantly defective in stimulating alloreactive responses. The in vitro development of immature dendritic cells and their maturation capacity were greatly impaired, with decreased CD1a expression and IL-12p70 secretion ability. These cells were unable to induce autologous B cell proliferation and Ig secretion in the presence of CD40L and C3. Finally, the regulatory T cell development ability of CD4(+) T cells after CD3 and CD46 activation in the presence of IL-2 was significantly impaired. Thus, the association of important functional defects of dendritic cells, acquisition of B cell memory, and regulatory T cells with human C3 deficiency strongly supports a major role for C3 in bridging innate and adaptive immunity in humans.  相似文献   

17.
LIGHT is a recently identified member of the TNF superfamily that is up-regulated upon activation of T cells. Herpesvirus entry mediator, one of its receptors, is constitutively expressed on immature dendritic cells (DCs). In this report, we demonstrate that LIGHT induces partial DC maturation as demonstrated by Ag presentation and up-regulation of adhesion and costimulatory molecules. LIGHT-stimulated DCs show reduced macropinocytosis and enhanced allogeneic stimulatory capacity but fail to produce significant amounts of IL-12, IL-6, IL-1beta, or TNF-alpha compared with unstimulated DCs. However, LIGHT cooperates with CD154 (CD40 ligand) in DC maturation, with particular potentiation of allogeneic T cell proliferation and cytokine secretion of IL-12, IL-6, and TNF-alpha. Moreover, LIGHT costimulation allows DCs to prime in vitro-enhanced specific CTL responses. Our results suggest that LIGHT plays an important role in DC-mediated immune responses by regulating CD154 signals and represents a potential tool for DC-based cancer immunotherapy.  相似文献   

18.
Interactions between dendritic cells (DC) and T cells are known to involve the delivery of signals in both directions. We sought to characterize the effects on human DC of contact with different subsets of activated CD4+ T cells. The results showed that interaction with CD25(high)CD4+ regulatory T cells (Tregs) caused DC to take on very different properties than contact with naive or memory phenotype T cells. Whereas non-Tregs stimulated DC maturation, culture with Tregs produced DC with a mixed phenotype. By many criteria, Tregs inhibited DC maturation, inducing down-regulation of costimulatory molecules and T cell stimulatory activity. However, DC exposed to Tregs also showed some changes typically associated with DC maturation, namely, increased expression of CCR7 and MHC class II molecules, and gained the ability to migrate in response to the CCR7 ligand CCL19. Both soluble factors and cell-associated molecules were shown to be involved in Treg modulation of DC, with lymphocyte activation gene 3 (LAG-3) playing a predominant role in driving maturation-associated changes. The data show that Tregs induce the generation of semimature DC with the potential to migrate into lymphoid organs, suggesting a possible mechanism by which Tregs down-modulate immune responses.  相似文献   

19.
Agents that enhance dendritic cell maturation can enhance T-cell activation and therefore may improve the efficiency of vaccines or improve cellular immunotherapy. Previously, we demonstrated that a novel low-molecular-weight synthetic immune response modifier, R-848, induces IL-12 and IFN-alpha secretion from monocytes and macrophages. Here we report that R-848 induces the maturation of human monocyte-derived dendritic cells. Characteristic of dendritic cell maturation, R-848 treatment induces cell surface expression of CD83 and increases cell surface expression of CD80, CD86, CD40, and HLA-DR. Additionally, R-848 induces cytokine (IL-6, IL-12, TNF-alpha, IFN-alpha) and chemokine (IL-8, MIP-1alpha, MCP-1) secretion from dendritic cells. Most significantly, R-848 enhances dendritic cell antigen presenting function, as measured by increased T-cell proliferation and T-cell cytokine secretion in both allogeneic and autologous T-cell systems. Consequently, low-molecular-weight synthetic molecules such as R-848 and its derivatives may be useful as vaccine adjuvants or as ex vivo stimulators of dendritic cells for cellular immunotherapy.  相似文献   

20.
Signaling lymphocyte activation molecule (SLAM), a 70-kDa costimulatory molecule that mediates CD28-independent proliferation of T cells and IFN-gamma production, has been identified on human T cells, immature thymocytes, and a subset of B cells. We have found that SLAM is expressed on mature but not immature dendritic cells (DC). However, the SLAM-associated protein, is missing in DC. SLAM surface expression is strongly up-regulated by IL-1beta. Addition of IL-1beta to the DC maturation mixture also increases the stimulatory properties of DC. These findings provide a new marker for DC maturation and help to explain two areas of DC biology. First, SLAM is a receptor for the measles virus, previously shown to infect DC. Second, SLAM could possibly contribute to the enhanced immunostimulatory functions of DC that are observed following the addition of IL-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号