首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have demonstrated the correlation between cell division and the expression of a histone H2A-encoding gene, His2A , in Norway spruce. Picea abies (L.) Karst and used a cDNA clone in in situ hybridization experiments to monitor the cytokinin-induced cell division during early stages of adventitious bud development. A general stimulation of division of epidermal and cortical cells followed upon the cytokinin treatment. After two weeks in culture a high mitotic activity was detected only in single cells or small groups of cells in the epidermis and subepidermal cell layers. These cells presumably constitute the early stages of meristem primordia. The small clusters of dividing cells enlarge and subsequently form adventitious buds. Cells of the meristem and needle primordia of adventitious buds divide frequently as do the corresponding cells in vegetative buds. A quiescent center is distinguished within the apical meristem of vegetative buds. These cells, in the summit of the domed meristem, divide with a considerably lower frequency than cells in the flanking region. Differences in the temporal expression pattern of the histone H2A gene in cells of the vascular tissue, detected between embryos germinating in vitro and bud-induced embryos, suggest that the cytokinin treatment affects the timing of cell divisions in the differentiating procambium.  相似文献   

2.
ARNOLD  S. von 《Annals of botany》1987,59(1):15-22
Adventitious buds were initiated on embryos of Picea abies (L.)Karst. after a pulse treatment with cytokinin. The initial stagesof bud formation could take place on culture medium lackingsucrose, but sucrose was required for further development ofmeristematic centres into bud primordia and buds. Sucrose atone per cent was optimal for adventitious bud formation. Embryoscultured on media containing sucrose started to accumulate starchduring the first day. Starch accumulation occurred especiallyin the cortex cells where starch grains were frequently presentin the chloroplasts. The starch accumulation increased withhigher sucrose concentrations in the culture medium. Embryoscultured on medium lacking sucrose did not accumulate starchbefore the formation of meristematic centres. Starch accumulationwas never observed in meristematic cells from which adventitiousbud primordia developed. Picea abies (L.) Karst., Norway spruce, adventitious bud, starch accumulation, sucrose concentration  相似文献   

3.
Resting vegetative buds of Norway spruce, Picea abies (L.) Karst., were induced to form adventitious bud primordia when cultured on medium -containing cytokinin. After transfer of the induced buds to medium lacking cytokinin, adventitious buds developed. The adventitious buds arose from meristems formed de novo in the needle primordia. No differences were found in the ability to form adventitious buds among buds collected from trees ranging from 5–50 years old.  相似文献   

4.
Adventitious buds on embryos of Picea abies (L.) Karst. developed after a pulse treatment with 250 μ M benzyladenine (BA) of pH 5.5 for 2 h. Light and temperature regimes were not critical during the initial stages. Adventitious buds developed faster after a pulse treatment and the variation among different experiments was lower compared to when the embryos were cultured on media supplemented with BA. Various stages of the differentiation of adventitious buds were identified: stage 1 - appearance of meristematic centres (approximately the first two weeks); stage 2 - development of adventitious bud primordia (approximately the third week); stage 3 - adventitious bud development (from approximately the 4th to the 8th week). This system may be used for further studies on bud differentiation.  相似文献   

5.
贺竹梅  杨貌仙   《广西植物》1991,(4):316-323+396
本文详细报道了从秃杉(Taiwania flousiana Gaussen)离体胚诱导不定芽、不定根及从无菌苗茎端培养再生植株的过程。诱导不定芽要求较低的蔗糖浓度(以3%最好);同时BA是必须的,在附加0.1—3 mg/1 BA的White培养基上,从离体胚的子叶或胚轴上诱导了不定芽的发生(以1 mg/1最好);NAA与BA结合使用,对不定芽诱导无促进作用;适当提高光照有利于不定芽的诱导。在诱导不定芽的同时,在子叶表面还观察到有许多无结构的“不定突起”。不定芽起源于子叶表皮下1—2层细胞。IBA对诱导离体胚上产生不定根效果较好。在有或无生长素的培养基上,从生长1月龄的无菌苗茎端培养获得了不定根的产生,在加有细胞分裂索的培养基上,从无菌苗上产生了腋芽。  相似文献   

6.
《Plant science》1987,53(2):147-155
Cytokinins applied in an agar medium induced adventitious buds on cultured needles from seedling of Pinus brutia Ten. Cytokinins applied as pulses to the explants prior to culture were less effective. Irrespective of the mode of cytokinin application, 8 weeks was the time required to bring about bud formation. Organogenetic potential of the cultured needles decreased with chronological age of the explanted seedlings. The induced buds grew into elongated shoots on culture medium without cytokinins, but the inclusion of activated charcoal (1%) doubled the elongation rate. There was an indication that mixtures of cytokinins were more effective than separate cytokinins in producing buds on explants, but the difference between treatments did not achieve statistical significance. Parenchyma cells in mesophyll layers were evidently the target cells responding to the culture conditions. After a period of activity and division in these cells, meristematic zones developed which later led to formation of bud primordia, and subsequently these primordia developed into well-formed adventitious buds. Subsequent rooting (64%) of shoots was achieved using a combination of two auxins and a low level of cytokinin.  相似文献   

7.
Summary Adventitious bud formation was induced on detached cotyledons and on cotyledons attached to excised embryos ofPinus caribaea andPseudotsuga menziesii. The embryonic tissue was exposed to the cytokinin 6-benzyl amino purine contained within an agar medium. This exposure resulted in the formation of a meristematic zone, involving both epidermal and sub-epidermal cells, and then nodules on the tissue surface. Some of these nodules were induced to differentiate into bud primordia, and thence shoots, following exposure to a combination of auxin (IAA) and cytokinin. Shoots were produced over the entire surface of detached cotyledons ofPs. menziesii but predominantly on the adaxial surfaces of detached cotyledons ofPi. caribaea and the tips and adaxial surfaces of the cotyledons on the entire embryos of both species. Thus, inter-specific differences in the distribution of competent areas for adventitious bud production were detected in embryos.  相似文献   

8.
Initiation of adventitious bud formation in vitro from Douglas fir cotyledons required both cytokinin and auxin at concentrations of 5 μM BAP and 5 nM NAA. Histological observations showed that these adventitious buds arose de novo from cells residing in hypodermal layers. Development of adventitious buds in culture was characterized by the sequential appearance of four anatomically distinguishable structures: 1) meristemoid, 2) bud primordium, 3) shoot apex with needle primordia, and 4) adventitious bud. The anatomical structure of tissue culture-produced buds was similar to that of vegetative buds produced on intact plants. Cultured cotyledons capable of producing adventitious buds (bud culture) were compared with bud-callus and callus cultures initiated by 5 μM BAP plus 5 μM NAA and 5μM NAA alone without BAP, respectively. Results showed that, during early stages of the culture period (i.e., prior to the appearance of meristemoid structure), cell division of bud culture was mainly located in hypodermal layers, whereas for the other culture types, bud-callus and callus cultures, cell division occurred randomly in all tissues.  相似文献   

9.
Adventitious buds were formed on the hypocotyls of decapitated flax seedlings. Scanning electron and light microscopic examinations of hypocotyls showed that epidermal cells divided to produce meristematic spots from which several leaf primordia were formed. Between leaf primordia and the original vascular tissues of hypocotyls, new xylem cells were formed which connected them. About 10, 30 and 60% of adventitious buds were formed on upper, middle and basal parts of hypocotyls of decapitated seedlings, respectively. Removal of apical meristem together with longer hypocotyl zero to four cm long below the apical meristem) induced higher percentage of adventitious bud formation in the remaining hypocotyl. When the entire hypocotyl was cut into 16 segments (0.25 cm each) and these segments were cultured on MS medium containing 3% sucrose and 0.8% agar, adventitious buds were mainly formed in the lowest five segments. These results suggested that there was a gradient of inhibitory factor(s) from apical to basal part of hypocotyl with respect to adventitious bud formation. Auxin transport inhibitors, morphactin and TIBA induced adventitious bud formation on intact seedlings by suppressing the basipetal movement of auxin.  相似文献   

10.
Summary Studies were undertaken to optimize tissue culture conditions for micropropagation of Aleppo pine (Pinus halepensis Mill.) from mature embryos and various explants of the embryo. Over 90% of the embryo explants gave rise to adventitious buds within 4 wk. Intact embryos were the most suitable explants for shoot bud induction. Both isolated cotyledons and hypocotyls produced adventitious buds, but these developed slowly and failed to elongate. N6-Benzyladenine (BA) alone at 5.0μM was the most effective cytokinin when added to gelled to gelled von Arnold and Eriksson’s (AE) medium containing 3% sucrose. Adventitious bud development was achieved on hormone-free AE medium, and shoot elongation was optimum on three quarter-strength Bornman’s MCM medium, with 0.1% conifer-derived activated charcoal. Shoots were multiplied on three-quarter strength MCM medium, containing 5μM BA. To induce adventitious roots on the elongated shoots, pulse treatment with 1 mM IBA for 6 h, followed by the transfer of the shoots to sterile peat:vermiculite (1:1) mixture, was beneficial. After acclimatization for 3 to 4 wk under mist, almost all the rooted shoots could be transplanted successfully to the greenhouse, where the plants exhibited normal growth habit. Histologic studies on the ontogeny of adventitious shoot formation from mature embryo explants revealed temporal structural changes in different parts of the explant. Induction of mitotic divisions on the shoot-forming medium resulted in the formation of meristemoids in the epidermal and subepidermal layers of the explant, located initially at both the tips of the cotyledons and the axils of adjacent cotyledons. Shoot buds arising in the axils of adjacent cotyledons were due to new cell division and not to any preexisting meristem.  相似文献   

11.
Histological events during adventitious shoot formation in cultured shoot apex of 10–12-day-old seedlings and adventitious root formation in the elongated shoot of Taiwania floudana Gaussen were examined. Ceils of the peripheral subsurface layers of the shoot apex responded to cytokinin and divided into meristematic cells from which the shoot primordia were proliferated. A few bud primordia also originated from the epidermis and hypodermis of the adaxial surface of the cotyledon. The parenchyma of leaf gap of the shoots cultured in rooting medium dedifferentiated to regain the capacity of division and form adventitious root. Besides, cells that had relatively low potential of differentiation, such as the cortex parenchyma, pith ray, phloem parenchyma and cambium zone, albeit initiated to divide, but seldom formed root primordium. The origin of the adventitious roots in the leaf gap facilitated the establishment of the vascular connection between the shoot and root.  相似文献   

12.
Summary Adventitious shoots were induced on the proximal portion of leaves excised from Fagus orientalis shoot cultures derived from a 2-mo.-old or a 4-yr-old seedling. Up to 90% of the explants formed between 13 and 19 buds after culture on Woody Plant Medium containing 2.9 μM indole-3-acetic acid and 4.5 μM thidiazuron. Adventitious buds developed mostly on petiole stub callus, but also on the midvein. The histological events leading to shoot organogenesis were examined. Some shoots developed directly from subepidermis or epidermis, but most originated indirectly from cell file proliferation produced by periclinally dividing cells subadjacent to the epidermis. Some cells in the outermost layers of these files became meristematic and divided extensively, resulting in the formation of meristemoids after 16 d of culture. Dedifferentiation into meristematic cells, which exhibited a large, prominent nucleus, densely-stained cytoplasm, and a high nucleus-to-cell area ratio, was generally associated with anticlinal divisions in cells previously originated by periclinal division. Subepidermal cell proliferation occurred mainly in the abaxial surface of the explant, which initially formed a diffuse cambium and later evolved to a phellogenic cambium. Some meristemoids were also differentiated by lenticel phellogen. Organized cell divisions in meristemoids gave rise to bud primordia that emerged from the explant surface and differentiated a protoderm. The progressive structural differentiation of the apical meristem, leaf primordia, and procambial strands led, after about 28 d of culture, to shoots with vascular connections with treachery elements previously differentiated in adjacent tissues.  相似文献   

13.
14.
Resting vegetative buds of Picea abies collected from phytotron-grown rooted cuttings of 24-year-old trees or a 12-year-old hedge were tested for their capacity to form adventitious buds after various cytokinin treatments. The most effective method for obtaining a high yield of adventitious buds within 8 weeks was to pulse treat the buds in 250 M BA for 3 h and then culture them on medium containing 5 M each of BA and kinetin for 1 week. The developmental pattern for adventitious bud production, with the formation of 10 to 20 adventitious buds per bud, was similar for all tested genotypes, although the number of buds giving rise to adventitious buds varied significantly. The capability of some clones to form adventitious buds was correlated to endogenous cytokinin content. The clone which contained most endogenous cytokinin in its resting bud had the highest potential for adventitious bud formation.  相似文献   

15.
Apple rootstocks M 26 and EMLA 9 'COST' shoots propagated in vitro were used for the histological study of initiation and development of adventitious roots after a brief induction pretreatment. The results show that there are differences in mode and timing of initiation and development of adventitious roots between the two varieties. In M 26, adventitious roots were directly initiated from the derivatives of the cambium, some of which were immediately transformed into meristemoids in situ 36 h after pretreatment. Subsequently, meristemoids differentiated into root primordia. Development of adventitious roots were completed when they emerged at the surface of stem bases 10 days after pretreatment. In EMLA 9, before the meristemoids formed, internal cell files were formed by continuous divisions of cambial cells. The cells were regularly arranged in files external to the cambium. On the fourth day after pretreatment, some cells in the outermost layers of these files became meristematic, started to divide and turned into meristemoids, which differentiated into root primordia. The cells of the files between the root primordium and the cambium were transformed into vascular tissues which connected the vascular systems of the adventitious roots and stems.  相似文献   

16.
Cotyledon explants of ginseng (Panax ginseng C. A. Meyer) produced somatic embryos directly on medium without growth regulators, with 89% of the explants forming somatic embryos. Cytokinin treatment greatly suppressed somatic embryo formation but stimulated the direct formation of adventitious buds. BAP treatment was more effective than the kinetin treatment for adventitious bud formation. Auxin (0.05 mg/l IBA) in combination with cytokinin enhanced adventitious bud formation, with the highest frequency, 40%, at 0.05 mg/l IBA and 5 mg/l BAP. Adventitious buds were mainly formed near the distal portion of the cotyledons, while somatic embryos were formed near the proximal excised margins. Shoots were developed from adventitious buds after transfer to MS medium with 10 mg/l GA3. Root formation from the shoots was obtained after the shoots were transferred to half-strength MS medium with auxin (IAA). When the plants derived from adventitious buds were transferred to greenhouse soil, 36% were successfully acclimatized. Received: 7 November 1997 / Revision received: 12 January 1998 / Accepted: 7 February 1998  相似文献   

17.
宋莉英  高峰 《植物学报》2006,23(2):192-196
针对苦瓜(Momordica charantia)离体培养中外植体易于产生愈伤组织而难以再生不定芽的问题,本文采用酶联免疫吸附法, 研究了苦瓜组织培养过程中不同发育阶段各外植体内源激素含量的变化, 以探讨不定芽分化与激素水平变化之间的关系, 以及苦瓜难以再生不定芽的内在制约因素。结果表明: (1)苦瓜外植体中IAA含量较高, 而iPAs含量过低, 是苦瓜易于产生愈伤组织而不定芽再生困难的主要原因;(2)不定芽的分化与IAA/iPAs的变化有密切的关系; (3)在离体培养过程中, 保持外源细胞分裂素类物质(如ZT)的适当浓度并及时继代, 有利于苦瓜不定芽的分化。  相似文献   

18.
Leaves of Momordica grosvenori Swingle were used as experimatal material. Plantlets were obtained on MS medium supplemented with 6-BA 1 ppm and IBA 0.5 ppm. Histocytological observations on adventitious bud formation were carried out. After 1 week in culture, mesophyll cells obviously enlarged, cell divisions began in the mesophyll cells near the cut ends of explants, and meristemoids which consisted of small dark stained cells without chloroplasts were produced. Then meristemoids continued to proliferate and redifferentiated into many leaf-shaped bodies. Three weeks after cultivation, adiventitious buds were produced from meristemoids at surface layer of leaf-shaped body. The stem of plantlet was cut off when it reached 2 cm in height, and then was transferred onto MS basic medium supplemented with NAA 0.25–0.5 ppm for rooting. About 10 days after cultivation, vigorous root system was produced from the cut end of plantlets. It is possible that this technique of obtaining whole plants by leaf explant culture provides a method for the multiplication of the good individual plants of M. grosvenori.  相似文献   

19.
Immature zygotic embryos were cultured on Murashige and Skoog's medium (MS) supplemented with various combinations of 2,4-dichlorophenoxyacetic acid (2,4-D), naphthaleneacetic acid (NAA), benzyladenine (BA) and zeatin or with various concentrations of 2,4-D alone. The maximum number (8 per embryo) of adventitious buds formed from cotyledons of heart stage embryos cultured on MS medium with 1 mg dm−3 BA and 0.01 mg dm−3 NAA. The adventitious buds originated from procambial strands of immature embryo cotyledons and then developed into adventitious bud primordia within 20 d. Adventitious buds transferred to hormone free MS medium grew into shoots, but did not produce plantlets because the shoots failed to root. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Leaf explants of tobacco were cultured on MS medium supplemented with 2 mg/ l NAA and 0.5 mg/l BA for induction of callus formation, or supplemented with 2 mg/l BA for bud formation. Histocytological observations on callus and bud formation were carried out. Three days after cultivation, mesophyll cells enlarged, the nuclei became more apparent and dark stained, and starch accumulated in the cells. Cell divisions began in the mesophyll cells at the cut ends, in the palisade cells near the vascular bundles and in the vascular parenchyma. Mitotic activity then spreaded over tbc explants, and was most active at the edges of leaf explants. Regular rows of cells appeared as a result of series of transverse divisions in the palisade. The number of chloroplast in the mesophyll cells decreased and degenerated gradually. A number of meristemoids ware initiated in the cultured leaf explants after 7 days of cultivation. They were originated from two kinds of tissues, the mesophyll and vascular bundle, including the phloem parenchyma and vascular sheath. On the medium with NAA and BA, callus formation was induced with vigorous divisions, whereas bud primordia were differentiated from the meristomoids on the medimn with 2 mg/l BA. The buds were developed from both the superficial meristemoids and the meristematic regions deep within the callused leaf explants. The accumulated starch in the cells gradually disappeared as bud formation proceeded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号