共查询到20条相似文献,搜索用时 15 毫秒
1.
Insecticide susceptibility of Anopheles coluzzii and Anopheles gambiae mosquitoes in Ibadan,Southwest Nigeria 下载免费PDF全文
P. N. OKORIE O. G. ADEMOWO H. IRVING L. A. KELLY‐HOPE C. S. WONDJI 《Medical and veterinary entomology》2015,29(1):44-50
The emergence of insecticide resistance in Anopheles (Diptera: Culicidae) mosquitoes has great implications for malaria control in Nigeria. This study aimed to determine the dynamics of insecticide susceptibility levels and the frequency of knock‐down resistance (kdr) mutations (L1014F) in wild Anopheles coluzzii Coetzee & Wilkerson sp. n. and Anopheles gambiae Giles from the Ojoo and Bodija areas of Ibadan, in southwest Nigeria. Insecticide susceptibility to pyrethroids, organophosphates, carbamates and organochlorines was assessed using World Health Organization (WHO) bioassays. A subset of the mosquitoes exposed to pyrethroids and DDT was used for species and molecular form identification; kdr genotyping was determined using the TaqMan real‐time polymerase chain reaction assay. The mosquitoes were resistant to pyrethroids and DDT but completely susceptible to organophosphates and carbamates. Bodija samples (n = 186) consisted of An. gambiae (91.4%) and An. coluzzii (8.1%) and included one An. coluzzii/An. gambiae hybrid specimen. All mosquitoes screened in Ojoo (n = 26) were An. gambiae. The 1014F kdr mutation was detected at frequencies of 24.5 and 5.8% in Bodija and Ojoo, respectively. No correlation was observed between kdr genotypes and resistance phenotypes. The results indicate that metabolic resistance probably plays an important role in the development of resistance and highlight the need to implement insecticide resistance management strategies. 相似文献
2.
Li ZX Pickett JA Field LM Zhou JJ 《Archives of insect biochemistry and physiology》2005,58(3):175-189
Host preference and blood feeding are restricted to female mosquitoes. Olfaction plays a major role in host-seeking behaviour, which is likely to be associated with a subset of mosquito olfactory genes. Proteins involved in olfaction include the odorant receptors (ORs) and the odorant-binding proteins (OBPs). OBPs are thought to function as a carrier within insect antennae for transporting odours to the olfactory receptors. Here we report the annotation of 32 genes encoding putative OBPs in the malaria mosquito Anopheles gambiae and their tissue-specific expression in two mosquito species of the Anopheles complex; a highly anthropophilic species An. gambiae sensu stricto and an opportunistic, but more zoophilic species, An. arabiensis. RT-PCR shows that some of the genes are expressed mainly in head tissue and a subset of these show highest expression in female heads. One of the genes (agCP1588) which has not been identified as an OBP, has a high similarity (40%) to the Drosophila pheromone-binding protein 4 (PBPRP4) and is only expressed in heads of both An. gambiae and An. arabiensis, and at higher levels in female heads. Two genes (agCP3071 and agCP15554) are expressed only in female heads and agC15554 also shows higher expression levels in An. gambiae. The expression profiles of the genes in the two members of the Anopheles complex provides the first step towards further molecular analysis of the mosquito olfactory apparatus. 相似文献
3.
Ten microsatellite loci, four located within and six outside chromosome inversions, were employed to study the genetic structure of Anopheles arabiensis across the ecological zones of Nigeria (arid savannah in the north gradually turns into humid forest in the south). Regardless of location within or outside inversions, genetic variability at all loci was characterized by a reduction in both the number of alleles per locus and heterozygosity from savannah to forest. Across all loci, all but one allele in the forest also occurred in the savannah, whereas at least 78 alleles in the savannah were missing in the forest. Genetic differentiation increased with geographical distance; consequently, genetic distances between zones exceeded those within zones. The largest genetic distances were between localities at the extremes of the transect (range F(ST) = 0.196-0.258 and R(ST) = 0.183-0.468) and were as large as those between A. arabiensis and Anopheles gambiae s.s. Gene flow across the country was very low, so that Nm between the extremes of the transect was < 1. These data suggest that A. arabiensis has extended its range from the savannah into the forest during which it experienced a reduction in effective population size due to sequential founder effects. Gene flow post range expansion appears too restricted by geographical distance to homogenize the gene pool of A. arabiensis across Nigeria. 相似文献
4.
DNA probes for species identification of mosquitoes in the Anopheles gambiae complex 总被引:1,自引:0,他引:1
Abstract. Identification of species within the Anopheles gambiae Giles species complex is essential for the correct evaluation of malaria vector ecology studies and control programmes. The development of DNA probes to distinguish species of the An.gambiae complex is described. Genomic libraries were prepared for four members of the An.gambiae complex. These were screened using radiolabeled DNA from different species of An. gambiae sensu lato and a number of clones selected on the basis of their species specificity. These clones could be divided into two groups, each containing homologous sequences. Sequences homologous to group 1 inserts are highly reiterated in the genomes of Anopheles arabiensis Patton and Anopheles merus Dönitz, present in low copy number in Anopheles melas Theobald, but were not detected in Anopheles gambiae sensu stricto. Studies on the organization of this sequence in the genome of An.arabiensis show that homologous sequences are male specific and interspersed within the chromatin. Sequences homologous to group 2 inserts are highly repeated in the genomes of An.merus and An.melas, but present in low copy number in An.gambiae s.s. and An.arabiensis. Group 2 homologous sequences are not sex-specific in the species tested and appear to be tandemly repeated. When used as hybridization probes, these sequences provide a sensitive means for the identification of species within the Anopheles gambiae complex. 相似文献
5.
Use of a male-specific DNA probe to distinguish female mosquitoes of the Anopheles gambiae species complex 总被引:1,自引:0,他引:1
Abstract. A method has been developed to distinguish between mated female individuals of the sibling species Anopheles gambiae Giles sensu stricto and Anopheles arabiensis Patton. The DNA probe pAnal, reported by Gale & Crampton (1987a) to be useful for the specific identification of An.arabiensis males, is here shown to be sufficiently sensitive to deduce the species identity of inseminated females from the identity of the sperm contained within the spermatheca. 相似文献
6.
E. OCHOMO M. N. BAYOH W. G. BROGDON J. E. GIMNIG C. OUMA J. M. VULULE E. D. WALKER 《Medical and veterinary entomology》2013,27(2):156-164
Field and laboratory investigations revealed phenotypic, target site and metabolic resistance to permethrin in an Anopheles gambiae s.s. (Diptera: Culicidae) population in Bungoma District, a region in western Kenya in which malaria is endemic and rates of ownership of insecticide‐treated bednets are high. The sensitivity of individual An. gambiae s.l. females as indicated in assays using World Health Organization (WHO) test kits demonstrated reduced mortality in response to permethrin, deltamethrin and bendiocarb. Estimated time to knock‐down of 50% (KDT50) of the test population in Centers for Disease Control (CDC) bottle bioassays was significantly lengthened for the three insecticides compared with that in a susceptible control strain. Anopheles arabiensis from all three sites showed higher mortality to all three insecticides in the WHO susceptibility assays compared with the CDC bottle assays, in which they showed less sensitivity and longer KDT50 than the reference strain for permethrin and deltamethrin. Microplate assays revealed elevated activity of β‐esterases and oxidases, but not glutathione‐S‐transferase, in An. gambiae s.s. survivors exposed to permethrin in bottle bioassays compared with knocked down and unexposed individuals. No An. arabiensis showed elevated enzyme activity. The 1014S kdr allele was fixed in the Bungoma An. gambiae s.s. population and absent from An. arabiensis, whereas the 1014F kdr allele was absent from all samples of both species. Insecticide resistance could compromise vector control in Bungoma and could spread to other areas as coverage with longlasting insecticide‐treated bednets increases. 相似文献
7.
Slotman M Della Torre A Powell JR 《Evolution; international journal of organic evolution》2005,59(5):1016-1026
Although F1 female hybrids between Anopheles gambiae and A. arabiensis are fully fertile, sterility is present in backcross females. Here we report the results of a study into the genetic basis of backcross female sterility. Using 23 markers, we performed quantitative trait loci (QTL) mapping analyses to identify chromosomal regions involved in hybrid female sterility. We found that female sterility in backcrosses in both directions is primarily caused by interspecific interactions between a heterozygous X chromosome and recessive autosomal factors. In addition, our data provide support for two theories implicated in Haldane's rule in a single taxon. A comparison with data from a previous study shows that male hybrid sterility QTL are present in higher numbers than female hybrid sterility QTL. Furthermore, autosomal female sterility factors tend to be recessive, supporting the dominance theory for female sterility. Finally, our data indicate a very large effect of the X chromosome from both species on hybrid female sterility, despite the fact that the X chromosome represents less than 9% of the genome. However, this could be the result of a lack of introgression of the X chromosome between A. gambiae and A. arabiensis, rather than a faster evolution of sterility factors on the X chromosome. 相似文献
8.
Kristan M Fleischmann H della Torre A Stich A Curtis CF 《Medical and veterinary entomology》2003,17(3):326-332
Resistance to pyrethroid insecticides and DDT caused by the kdr gene in the malaria vector Anopheles gambiae Giles s.s. (Diptera: Culicidae) has been reported in several West African countries. To test for pyrethroid resistance in two more countries, we sampled populations of the An. gambiae complex from south-western Ghana and from urban and rural localities in Ogun State, south-west Nigeria. Adult mosquitoes, reared from field-collected larvae, were exposed to the WHO-recommended discriminating dosage of exposure for 1 h to DDT 4%, deltamethrin 0.05% or permethrin 0.75% and mortality was recorded 24 h post-exposure. Susceptibility of An. gambiae s.l. to DDT was 94-100% in Ghana and 72-100% in Nigeria, indicating low levels of DDT resistance. Deltamethrin gave the highest mortality rates: 97-100% in Ghana, 95-100% in Nigeria. Ghanaian samples of An. gambiae s.l. were fully susceptible to permethrin, whereas some resistance to permethrin was detected at 4/5 Nigerian localities (percentage mortalities 75, 82, 88, 90 and 100%), with survivors including both An. arabiensis Patton and An. gambiae s.s. identified by PCR assay. Even so, the mean knockdown time was not significantly different from a susceptible reference strain, indicating absence or low frequency of kdr-type resistance. Such low levels of pyrethroid resistance are unlikely to impair the effectiveness of pyrethroid-impregnated bednets against malaria transmission. Among Nigerian samples of An. gambiae s.l., the majority from two urban localities were identified as An. arabiensis, whereas the majority from rural localities were An. gambiae s.s. These findings are consistent with those of M. Coluzzi et al. (1979). Differences of ecological distribution between molecular forms of An. gambiae s.s. were also found, with rural samples almost exclusively of the S-form, whereas the M-form predominated in urban samples. It is suggested that 'urban island' populations of An. arabiensis and of An. gambiae s.s. M-form in the rainforest belt of West Africa might be appropriate targets for elimination of these malaria vectors by the sterile insect technique. 相似文献
9.
Monsuru Adebayo ADELEKE Chiedu Felix MAFIANA Adewunmi Babatunde IDOWU Abiodun Ayanlayo Sarafadeen AMUSAN Michael Femi ADEKUNLE 《昆虫学报》2008,51(12):1289-1292
对采自尼日利亚南部城市阿贝奥库塔冈比亚按蚊复合体Anopheles gambiae complex的形态特征进行了研究。依据2005年8月至2006年7月灯诱捕获的364个冈比亚按蚊复合体标本,分别对它们的触角、翅、喙、前足、中足和后足6个部位的长度进行了测量,对月平均值进行回归分析,同时利用差异系数(co-efficient of difference,CD)进行近缘分析。分析显示,各特征的长度平均值雨季大于旱季,但是回归分析表明长度变化与季节不显著相关(P>0.05)。差异系数分析结果表明,仅触角长度和翅长显示此复合体为两个不同的种群(CD>1.28),而其他特征值表明为同一种群。因此,该研究结果提示触角长度及翅长对冈比亚按蚊复合体近缘种的区分有重要参考价值。 相似文献
10.
LI Zhengxi Jing-Jiang ZHOU SHEN Zuorui & Lin FIELD .Department of Entomology China Agricultural Univeristy Beijing China .Biological Chemistry Division Rothamsted Research Harpenden Herts. AL JQ UK Correspondence should be addressed to Li Zhengxi 《中国科学:生命科学英文版》2004,47(6):567-576
~~Identification and expression profiling of putative odorant-binding proteins in the malaria mosquitoes, Anopheles gambiae and A. arabiensis1. Curtis, C. F., Introduction 1: An overview of mosquito biology, behaviour and importance, in Olfaction in Mosquito-Host Interactions (eds. Bock, G. R.. Cardew, G.), New York: Wiley, 1996, 3-7.
2. Nighom, A., Hildebrand. J. G.. Dissecting the molecular mechanisms of olfaction in a malaria-vector mosquito, PNAS, 2002, 99(3): 1113-… 相似文献
11.
Boulesteix M Simard F Antonio-Nkondjio C Awono-Ambene HP Fontenille D Biémont C 《Molecular ecology》2007,16(2):441-452
The insertion polymorphism of five transposable element (TE) families was studied by Southern blots in several populations of the M and S molecular forms of the mosquito Anopheles gambiae sensu stricto from southern Cameroon. We showed that the mean TE insertion site number and the within-population insertion site polymorphism globally differed between the M and S molecular forms. The comparison of the TE insertion profiles of the populations revealed a significant differentiation between these two molecular forms (0.163 < Phi(ST) < 0.371). We cloned several insertions of a non-LTR retrotransposon (Aara8) that were fixed in one form and absent in the other one. The only insertion that could be clearly located on a chromosome arm mapped to cytological division 6 of chromosome X, confirming the importance of this region in the ongoing speciation between the M and S molecular forms. 相似文献
12.
A. E. P. MNZAVA R. T. RWEGOSHORA T. J. WILKES M. TANNER C. F. CURTIS† 《Medical and veterinary entomology》1995,9(3):316-324
Abstract. Differential responses of the mosquitoes Anopheles arabiensis and An. gambiae sensu stricto to house-spraying with DDT or lambda-cyhalothrin were evaluated in relation to chromosomal inversion polymorphism, feeding and resting behaviour of these malaria vectors in Tanzania. Blood-fed mosquitoes from pit traps outdoors, exit traps on windows and indoor-resting catches were identified cytogenetically and the chromosomal inversion frequencies compared between samples and species. Their outdoor-resting behaviour was assessed by a mark–release–recapture experiment and by determining the proportion of freshly blood-fed individuals in exit traps. The source of bloodmeals was analysed by an ELISA method. Endophagic females of An. arabiensis were more likely than those of An. gambiae to exit from a house on the night of blood-feeding. Only in one out of three villages was there evidence that chromosomally distinct individuals within a species had different preferences for resting sites. There were indications, but not conclusive evidence, that mosquitoes caught indoors or outdoors had a tendency to return to the same type of resting site. In villages sprayed with either insecticide, the mean age of the vector populations was greatly reduced, compared with those in the unsprayed villages. An. arabiensis females exited from DDT sprayed houses after blood-feeding, whereas with lambda-cyhalothrin those exiting were mostly unfed and there was a decline in the human blood index. The excitorepellency of DDT was perceived as a disadvantage, whereas lambda-cyhalothrin apparently had more impact on malaria transmission by An. arabiensis. 相似文献
13.
Studies on the resting behaviour and host choice of Anopheles gambiae and An. arabiensis from Muleba,Tanzania 下载免费PDF全文
J. D. Charlwood E. Kessy K. Yohannes N. Protopopoff M. Rowland C. LeClair 《Medical and veterinary entomology》2018,32(3):263-270
The relative efficacy of a mechanical (Prokopack) collection method vs. manual aspiration in the collection of resting mosquitoes was evaluated in northern Tanzania before and after an intervention using indoor residual spraying and longlasting insecticide‐treated nets. In smoke‐free houses mosquitoes were collected from the roof and walls, but in smoky houses mosquitoes were found predominantly on the walls. Anopheles gambiae (Diptera: Culicidae) constituted 97.7% of the 312 An. gambiae complex specimens identified before but only 19.3% of the 183 identified after the intervention. A single sampling with the Prokopack collected a third of the available insects. Anopheles gambiae completed its gonotrophic development indoors, whereas Anopheles arabiensis did so outdoors. In both species gonotrophic development took 2 days. Most unfed resting An. arabiensis collected outdoors were virgins, whereas the majority of engorged insects were parous (with well‐contracted sacs). Daily survival was estimated to be 80.0%. Only 9.4% of the engorged An. arabiensis collected outdoors and 47.1% of those collected indoors had fed on humans. Using the Prokopack sampler is more efficient than manual methods for the collection of resting mosquitoes. Malaria transmission may have been affected by a change in vector composition resulting from a change in feeding, rather than reduced survival. Monitoring the proportions of members of the An. gambiae complex may provide signals of an impending breakdown in control. 相似文献
14.
Observations on the Anopheles gambiae complex in the Senegal River Basin, West Africa 总被引:1,自引:0,他引:1
1. Three sibling species of mosquitoes of the Anopheles gambiae complex are found in the Senegal River Basin: An. melas Theobald, An. gambiae Giles and An. arabiensis Patton. 2. An. melas is restricted to the river delta and environs where saltwater breeding places are present. 3. An. gambiae and An. arabiensis are sympatric in the study area; An. arabiensis predominates in coastal zones where it breeds also during the dry season; An. gambiae predominates in inland areas where breeding is mostly restricted to the rainy season (July-September). 4. An. arabiensis is chromosomally polymorphic all over the study area, with much variation of inversion frequencies, particularly for the 2Ra arrangement. 5. An. gambiae is characterized by a very high frequency of the 2Rb-2La inversion arrangement which is typical of the Savanna chromosomal form. 相似文献
15.
Y. A. Derua S. C. Kahindi F. W. Mosha E. J. Kweka H. E. Atieli G. Zhou M.‐C. Lee A. K. Githeko G. Yan 《Medical and veterinary entomology》2019,33(2):220-227
The microbial larvicides Bacillus thuringiensis var. israelensis (Bti) and Bacillus sphaericus (Bs) (Bacillales: Bacillaceae) are well known for their efficacy and safety in mosquito control. In order to assess their potential value in future mosquito control strategies in western Kenya, the current study tested the susceptibility of five populations of Anopheles gambiae complex mosquitoes (Diptera: Culicidae), collected from five diverse ecological sites in this area, to Bti and Bs under laboratory conditions. In each population, bioassays were conducted with eight concentrations of larvicide (Bti/Bs) in four replicates and were repeated on three separate days. Larval mortality was recorded at 24 h or 48 h after the application of larvicide and subjected to probit analysis. A total of 2400 An. gambiae complex larvae from each population were tested for their susceptibility to Bti and Bs. The mean (± standard error of the mean, SEM) lethal concentration values of Bti required to achieve 50% and 95% larval mortality (LC50 and LC95) across the five populations were 0.062 (± 0.005) mg/L and 0.797 (± 0.087) mg/L, respectively. Corresponding mean (± SEM) values for Bs were 0.058 (± 0.005) mg/L and 0.451 (± 0.053) mg/L, respectively. Statistical analysis indicated that the five populations of An. gambiae complex mosquitoes tested were fully susceptible to Bti and Bs, and there was no significant variation in susceptibility among the tested populations. 相似文献
16.
J. W. WEKESA W. G. BROGDON W. A. HAWLEY & N. J. BESANSKY 《Physiological Entomology》1998,23(3):289-294
Abstract.Laboratory colonies of the human malaria vectors Anopheles gambiae Giles and An. arabiensis Patton have distinct flight tones. If flight tone similarly distinguishes natural populations of these sympatric sibling species, it may play a role in reproductive isolation of swarms that are otherwise behaviourally identical. To assess the fidelity of flight tone differences in natural populations, flight tone was measured in the F1 progeny of mosquitoes of both species captured in western Kenya. Flight tone distributions of wild An . gambiae and An. arabiensis were similar to their laboratory conspecifics. However, interspecies comparisons of flight tone of wild mosquitoes revealed significantly different but overlapping distributions for both sexes. Furthermore, when the effect of body size on flight tone was determined, there was a positive correlation between wing length and flight tone for both sexes of An. gambiae and An. arabiensis , suggesting that mosquito size is a significant variable affecting flight tone. Although these findings diminish any practical benefit of flight tone as a diagnostic tool in species identification, its potential role in pre‐mating species recognition needs further investigation. 相似文献
17.
The M and S molecular forms of the African malaria vector Anopheles gambiae (Diptera: Culicidae) are morphologically identical incipient species in which reproductive isolation is incomplete, enabling low-level gene flow between forms. In an attempt to find differences between the M and S forms, sequence variation was studied at loci along the X chromosome in adult female An. gambiae from Angola. A high proportion of M form specimens from Angola (79% of the 456 X chromosomes sampled) were found to contain a 16-bp insertion in intron 4 of the X-linked GPRCCK1 locus, relative to the AgamP3 release of the An. gambiae PEST genome sequence. The insertion was in Hardy-Weinberg equilibrium in Angolan M form populations. The same insertion was found in all S form specimens examined, regardless of where in Africa they were sampled, but was absent from a sample of M form specimens collected in Ghana, Bioko and Mali. In M form specimens from Angola, there was an association between alleles at the GPRCCK1 locus and those at a microsatellite locus, AGXH678, close to the centromere of the X chromosome, with significant linkage disequilibrium between loci separated by 0.472 Mbp (P < 0.033). We show that the insertion results from introgression from the S form into the M form, rather than from the retention of an ancestral character. Gene flow from the S to M form could allow genes of adaptive value to be transferred, including those conferring insecticide resistance and others influencing ecology and behaviour, and thus malaria transmission and control. We discuss factors that may have led to this introgression event. 相似文献
18.
Petrarca V Nugud AD Ahmed MA Haridi AM Di Deco MA Coluzzi M 《Medical and veterinary entomology》2000,14(2):149-164
The species composition of malaria vector mosquitoes belonging to the Anopheles gambiae complex (Diptera: Culicidae) from >40 localities in Sudan, representing most ecological situations, was determined by analysis of ovarian polytene chromosomes. Of 2162 females, 93% were identified as An. arabiensis Patton and 7% were An. gambiae Giles sensu stricto. No hybrids were found between the two species. Anopheles arabiensis occurred in all but two sites, whereas An. gambiae s.s. was effectively limited to the southernmost, more humid localities. For chromosomal paracentric inversions, the degree of polymorphism was low in An. gambiae s.s. (inversions 2La, 2Rb and 2Rd), higher in An. arabiensis (inversions Xe, 2Ra, b, bc, d1, s; 3Ra, d). Anopheles gambiae samples from Sudan were all apparently panmictic, i.e. they did not show restricted gene flow such as observed among West African populations (interpreted as incipient speciation). Chromosomal inversion patterns of An. gambiae in southern Sudan showed characteristics of intergrading Savanna/Forest populations similar to those observed in comparable eco-climatic situations of West Africa. Anopheles arabiensis was polymorphic for inversion systems recorded in West Africa (2Ra, 2Rb, 2Rdl, 3Ra) and for a novel 2Rs polymorphism, overlapping with inversion systems 2Rb and 2Rd1. Samples carrying the 2Rs inversion were mostly from Khashm-el-Girba area in central-eastern Sudan. In the great majority of the samples all polymorphic inversions were found to be in Hardy-Weinberg equilibrium. Sudan populations of An. arabiensis should therefore be considered as generally panmictic. Anopheles arabiensis shows more inversion polymorphism in west than in east African populations. Sudan populations have more evident similarities with those from westwards than those from eastwards of the Great Rift Valley. The possible influence of the Rift on evolution of An. arabiensis is discussed. 相似文献
19.
Mosquito larvae of the sibling species Anopheles arabiensis Patton and An. gambiae Giles sensu stricto (Diptera: Culicidae) were investigated for interspecific competition. Single-species and mixed-species populations were reared at 27 degrees C from the first instar to pupation at different densities (100, 200 or 400 larvae/200 cm2 tray) with a constant amount of food, 0.2 mg/larva/day. Pupae obtained from mixed populations were identified to species using PCR. Both species had a 1:1 sex ratio at pupation. Development time to pupation averaged about one day less for An. arabiensis compared to An. gambiae, ranging from 0.93-1.49d for males and from 0.44-0.84 d for females in single populations. In mixed species populations the difference for males ranged from 0.99-1.58d and for females from 0.93-1.62d. Survival rates of An. gambiae s.s. were significantly higher than those of An. arabiensis in both the single-species and mixed-species populations. Mixed-species rearing did not have an effect on the survival of An. gambiae, whereas the mortality rate of An. arabiensis was significantly higher in mixed populations than when only this species was reared at the same densities, suggesting a competitive disadvantage for An. arabiensis in mixed populations. High proportions of larvae (4-35%) were lost during development; these losses could not be accounted for by corpses found in the rearing pans. The possibility of cannibalism was investigated by rearing each species separately in small containers (five per 50 ml), inspected every 6h, but no cannibalism was detected at any stage of development in either species. It was concluded that, under these experimental circumstances, interspecific competition between both species did occur but with a detrimental effect on An. arabiensis only. Relevance of these findings to the ecology of both species in the field is discussed briefly. 相似文献
20.
Slotman MA Tripet F Cornel AJ Meneses CR Lee Y Reimer LJ Thiemann TC Fondjo E Fofana A Traoré SF Lanzaro GC 《Molecular ecology》2007,16(3):639-649
The principal vector of malaria in sub-Saharan Africa, Anopheles gambiae is subdivided into two molecular forms M and S. Additionally, several chromosomal forms, characterized by the presence of various inversion polymorphisms, have been described. The molecular forms M and S each contain several chromosomal forms, including the Savanna, Mopti and Forest forms. The M and S molecular forms are now considered to be the reproductive units within A. gambiae and it has recently been argued that a low recombination rate in the centromeric region of the X chromosome has facilitated isolation between these forms. The status of the chromosomal forms remains unclear however. Therefore, we studied genetic differentiation between Savanna S, Forest S, Forest M and Mopti M populations using microsatellites. Genetic differentiation between Savanna S and Forest S populations is very low (F(ST) = 0.0053 +/- 0.0049), even across large distances. In comparison, the Mopti M and Forest M populations show a relatively high degree of genetic differentiation (F(ST) = 0.0406 +/- 0.0054) indicating that the M molecular form may not be a single entity, but could be subdivided into at least two distinct chromosomal forms. Previously it was proposed that inversions have played a role in the origin of species within the A. gambiae complex. We argue that a possible subdivision within the M molecular form could be understood through this process, with the acquisition of inversions leading to the expansion of the M molecular form into new habitat, dividing it into two distinct chromosomal forms. 相似文献