首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We describe the recognition by Thermus thermophilus prolyl-tRNA synthetase (ProRSTT) of proline, ATP and prolyl-adenylate and the sequential conformational changes occurring when the substrates bind and the activated intermediate is formed. Proline and ATP binding cause respectively conformational changes in the proline binding loop and motif 2 loop. However formation of the activated intermediate is necessary for the final conformational ordering of a ten residue peptide ("ordering loop") close to the active site which would appear to be essential for functional tRNA 3' end binding. These induced fit conformational changes ensure that the enzyme is highly specific for proline activation and aminoacylation. We also present new structures of apo and AMP bound histidyl-tRNA synthetase (HisRS) from T. thermophilus which we compare to our previous structures of the histidine and histidyl-adenylate bound enzyme. Qualitatively, similar results to those observed with T. thermophilus prolyl-tRNA synthetase are found. However histidine binding is sufficient to induce the co-operative ordering of the topologically equivalent histidine binding loop and ordering loop. These two examples contrast with most other class II aminoacyl-tRNA synthetases whose pocket for the cognate amino acid side-chain is largely preformed. T. thermophilus prolyl-tRNA synthetase appears to be the second class II aminoacyl-tRNA synthetase, after HisRS, to use a positively charged amino acid instead of a divalent cation to catalyse the amino acid activation reaction.  相似文献   

2.
Four minimal (119-145 residue) active site fragments of Escherichia coli Class II histidyl-tRNA synthetase were constructed, expressed as maltose-binding protein fusions, and assayed for histidine activation as fusion proteins and after TEV cleavage, using the (32)PP(i) exchange assay. All contain conserved Motifs 1 and 2. Two contain an N-terminal extension of Motif 1 and two contain Motif 3. Five experimental results argue strongly for the authenticity of the observed catalytic activities: (i) active site titration experiments showing high (~0.1-0.55) fractions of active molecules, (ii) release of cryptic activity by TEV cleavage of the fusion proteins, (iii) reduced activity associated with an active site mutation, (iv) quantitative attribution of increased catalytic activity to the intrinsic effects of Motif 3, the N-terminal extension and their synergistic effect, and (v) significantly altered K(m) values for both ATP and histidine substrates. It is therefore plausible that neither the insertion domain nor Motif 3 were essential for catalytic activity in the earliest Class II aminoacyl-tRNA synthetases. The mean rate enhancement of all four cleaved constructs is ~10(9) times that of the estimated uncatalyzed rate. As observed for the tryptophanyl-tRNA synthetase (TrpRS) Urzyme, these fragments bind ATP tightly but have reduced affinity for cognate amino acids. These fragments thus likely represent Urzymes (Ur = primitive, original, earliest + enzyme) comparable in size and catalytic activity and coded by sequences proposed to be antisense to that coding the previously described Class I TrpRS Urzyme. Their catalytic activities provide metrics for experimental recapitulation of very early evolutionary events.  相似文献   

3.
The role of histidine transfer ribonucleic acid (tRNA) in repression of synthesis of histidyl-tRNA synthetase was examined in two strains of Salmonella typhimurium, one of which was a histidine tRNA (hisR) mutant possessing 52% of the wild-type (hisR(+)) histidine tRNA and a derepressed level of the histidine biosynthetic enzymes during histidine-unrestricted growth. Histidine-restricted growth caused a derepression of the rate of formation of histidyl-tRNA synthetase in both strains. In the case of the wild-type strain, addition of histidine to the derepressed culture caused a repression of synthesis of histidyl-tRNA synthetase for at least one generation of growth. In contrast, when histidine was restored to the derepressed hisR mutant culture, synthesis of histidyl-tRNA synthetase was continued at the initial derepressed rate. These results suggest that histidine must be attached to histidine tRNA for repression of synthesis of histidyl-tRNA synthetase.  相似文献   

4.
ATP phosphoribosyl transferase (ATP-PRT) joins ATP and 5-phosphoribosyl-1-pyrophosphate (PRPP) in a highly regulated reaction that initiates histidine biosynthesis. The unusual hetero-octameric version of ATP-PRT includes four HisG(S) catalytic subunits based on the periplasmic binding protein fold and four HisZ regulatory subunits that resemble histidyl-tRNA synthetases. Here, we present the first structure of a PRPP-bound ATP-PRT at 2.9 A and provide a structural model for allosteric activation based on comparisons with other inhibited and activated ATP-PRTs from both the hetero-octameric and hexameric families. The activated state of the octameric enzyme is characterized by an interstitial phosphate ion in the HisZ-HisG interface and new contacts between the HisZ motif 2 loop and the HisG(S) dimer interface. These contacts restructure the interface to recruit conserved residues to the active site, where they activate pyrophosphate to promote catalysis. Additionally, mutational analysis identifies the histidine binding sites within a region highly conserved between HisZ and the functional HisRS. Through the oligomerization and functional re-assignment of protein domains associated with aminoacylation and phosphate binding, the HisZ-HisG octameric ATP-PRT acquired the ability to initiate the synthesis of a key metabolic intermediate in an allosterically regulated fashion.  相似文献   

5.
Control of formation of the histidyl-transfer ribonucleic acid (tRNA) synthetase with an increased K(m) for histidine was studied in a hisS mutant of Salmonella typhimurium. Histidine restriction of both the hisS and hisS(+) strains resulted in a derepression of synthesis of histidyl-tRNA synthetase. When grown in a concentration less than the K(m) (100 mug/ml) of l-histidine, the hisS mutant maintained a higher level of histidyl-tRNA synthetase than the hisS(+) strain. Addition of excess amounts of l-histidine to the growth medium of the hisS mutant culture grown with 100 mug of l-histidine per ml resulted in a repression of histidyl-tRNA synthetase formation to equal that of the hisS(+) strain grown in 100 mug of l-histidine per ml. These data confirm previous findings that histidine tRNA is involved in the repression of synthesis of histidyl-tRNA synthetase.  相似文献   

6.
S P Williams  W A Bridger 《Biochemistry》1987,26(14):4483-4487
Succinyl-CoA synthetase of Escherichia coli has an alpha 2 beta 2 subunit structure. The enzyme shows strict half-sites reactivity with respect to the phosphorylation of a histidine residue in the alpha subunit that represents a step in catalysis. Several lines of evidence indicate that this behavior may result from cooperative interactions between alternatingly functional active sites, so that subsequent steps in catalysis at one site may be promoted by phosphoryl transfer to the site on the neighboring half of the molecule. This study is directed toward learning more about the nature of these cooperative interactions. Here we have used positional isotope exchange (i.e., exchange of 18O between the beta, gamma bridge and the beta nonbridge position of ATP) as a test for transient bisphosphorylation. Succinyl-CoA synthetase was ATP) as a test for transient bisphosphorylation. Succinyl-CoA synthetase was prepared in which one of the two active sites was thiophosphorylated; this species thus has one of its two active-site histidine residues occupied and unavailable for further reaction with ATP. Treatment of this monothiophosphorylated enzyme with [beta, gamma-18O]ATP resulted in no significant scrambling of isotope into the nonbridge position, clearly indicating that the enzyme does not undergo even transient bisphosphorylation. We interpret the results in terms of a model of catalysis in which phosphoryl transfer to the second site occurs in concerted fashion with transfer from the first.  相似文献   

7.
Hawko SA  Francklyn CS 《Biochemistry》2001,40(7):1930-1936
Transfer RNA (tRNA) identity determinants help preserve the specificity of aminoacylation in vivo, and prevent cross-species interactions. Here, we investigate covariation between the discriminator base (N73) element in histidine tRNAs and residues in the histidyl-tRNA synthetase (HisRS) motif 2 loop. A model of the Escherichia coli HisRS--tRNA(His) complex predicts an interaction between the prokaryotic conserved glutamine 118 of the motif 2 loop and cytosine 73. The substitution of Gln 118 in motif 2 with glutamate decreased discrimination between cytosine and uracil some 50-fold, but left overall rates of adenylation and aminoacylation unaffected. By contrast, substitutions at neighboring Glu 115 and Arg 121 affected both adenylation and aminoacylation, consistent with their predicted involvement in both half-reactions. Additional evidence for the involvement of the motif 2 loop was provided by functional analysis of a hybrid Saccharomyces cerevisiae-- E. coli HisRS possessing the 11 amino acid motif 2 loop of the yeast enzyme. Despite an overall decreased activity of nearly 1000-fold relative to the E. coli enzyme, the chimera nevertheless exhibited a modest preference for the yeast tRNA(His) over the E. coli tRNA, and preferred wild-type yeast tRNA(His) to a variant with C at the discriminator position. These experiments suggest that part of, but not all of, the specificity is provided by the motif 2 loop. The close interaction between enzyme loop and RNA sequence elements suggested by these experiments reflects a covariation between enzyme and tRNA that may have acted to preserve aminoacylation fidelity over evolutionary time.  相似文献   

8.
o-Succinylbenzoyl coenzyme A (OSB-CoA) synthetase, when treated with diethylpyrocarbonate (DEP), showed a time-dependent loss of enzyme activity. The inactivation follows pseudo-first-order kinetics with a second-order rate constant of 9.2 x 10(-4) +/- 1.4 x 10(-4) microM(-1) min(-1). The difference spectrum of the modified enzyme versus the native enzyme showed an increase in A242 that is characteristic of N-carbethoxyhistidine and was reversed by treatment with hydroxylamine. Inactivation due to nonspecific secondary structural changes in the protein and modification of tyrosine, lysine, or cysteine residues was ruled out. Kinetics of enzyme inactivation and the stoichiometry of histidine modification indicate that of the eight histidine residues modified per subunit of the enzyme, a single residue is responsible for the enzyme activity. A plot of the log reciprocal of the half-time of inactivation against the log DEP concentration further suggests that one histidine residue is involved in the catalysis. Further, the enzyme was partially protected from inactivation by either o-succinylbenzoic acid (OSB), ATP, or ATP plus Mg2+ while inactivation was completely prevented by the presence of the combination of OSB, ATP, and Mg2+. Thus, it appears that a histidine residue located at or near the active site of the enzyme is essential for activity. When His341 present in the previously identified ATP binding motif was mutated to Ala, the enzyme lost 65% of its activity and the Km for ATP increased 5.4-fold. Thus, His341 of OSB-CoA synthetase plays an important role in catalysis since it is probably involved in the binding of ATP to the enzyme.  相似文献   

9.
A preliminary investigation was carried out to determine how conditional lethal mutants affected in particular aminoacyl-tRNA synthetases may be used to study the role of tRNA charging levels in protein synthesis. The relationship between rate of protein synthesis and level of histidyl-tRNA in wild-type cultured Chinese hamster ovary cells was determined using the analogue histidinol to inhibit histidyl-tRNA synthetase activity. This response was compared with that obtained using a mutant strain with a defective histidyl-tRNA synthetase that phenotypically shows decreased rates of protein synthesis at reduced concentrations of histidine in the growth medium. The approach used was based on measuring the histidyl-tRNA levels in live cells. The percentage charging was estimated by comparing [14C]histidine incorporated into alkali-labile material in paired samples, one of which was treated with cycloheximide, five minutes before terminating during the incubation, to produce maximal aminoacylation. Wild-type cells under histidinol inhibition exhibited a sensitive, sigmoidal relationship between the level of histidyl-tRNA and the rate of protein synthesis. A decrease in the relative percentage of acylated tRNA (His) from 46% to 35% elicited a large reduction in the rate of protein synthesis from 90% to 30% relative to untreated cells. An unpredicted result was that the relationship between protein synthesis and histidyl-tRNA in the mutant was essentially linear. High acylation values for tRNA (His) were associated with rates of protein synthesis that were not nearly as high as in wild-type cells. These findings suggest that the charging charging levels of tRNA (His) isoacceptors could play a regulatory role in determining the rate of protein synthesis under conditions of histidine starvation in normal cells. The mutant appears to be a potentially useful system for studying the pivotal role of tRNA charging in protein synthesis, assuming that the altered response in the mutant is caused by its altered synthetase.  相似文献   

10.
Structural requirements for substrate binding to histidyl-tRNA synthetase from Salmonella typhimurium have been investigated using ATP analogues. Ki values and the relative binding affinity of the enzyme for these analogues have been determined in the tRNA aminoacylation reaction. The enzyme is highly specific for ATP: no binding was found for GTP, CTP, TTP and UTP. dATP is a very poor substrate for acylation of tRNA, with a Km 40-fold higher than that of ATP. Binding of adenosine 5'-triphosphate requires interactions of the amino group of adenosine and the sugar moiety; the 2' and the 5' positions of the ribose appear to be essential for recognition; the phosphate groups enhance the binding. AMP is a noncompetitive inhibitor with ATP. The interaction of histidyl-tRNA synthetase, a dimeric enzyme, with histidine and ATP was examined by fluorescence measurements at equilibrium and by equilibrium dialysis. Binding with L-histidine is significantly tighter at pH 6 than at pH 7, while the ATP binding is independent of pH. The stoichiometry was measured at pH 6 than at pH 7, while the ATP binding is independent of pH. The stoichiometry was measured at pH 7.5 by equilibrium dialysis and is 1 mol ATP/mol enzyme and, variably, close to 2 or 1 mol histidine/mol enzyme.  相似文献   

11.
The regulation of formation of histidyl-transfer ribonucleic acid (tRNA) synthetase was examined in strains of Salmonella typhimurium. When the first of the histidine-forming enzymes was wild type, the presence of 2-thiazolealanine in the growth medium prevented repression of histidyl-tRNA synthetase formation elicited by the addition of 1, 2, 4-triazole-3-alanine to these cultures. Conversely, thiazolealanine had no effect on repression of histidyl-tRNA synthetase formation by triazolealanine in hisG mutant strains. These data suggest a relationship between the control of histidyl-tRNA synthetase formation and the functional state of the histidine operon.  相似文献   

12.
The low temperature crystal structure of the ternary complex of Thermus thermophilus seryl-tRNA synthetase with tRNA(Ser) (GGA) and a non-hydrolysable seryl-adenylate analogue has been refined at 2.7 angstrom resolution. The analogue is found in both active sites of the synthetase dimer but there is only one tRNA bound across the two subunits. The motif 2 loop of the active site into which the single tRNA enters interacts within the major groove of the acceptor stem. In particular, a novel ring-ring interaction between Phe262 on the extremity of this loop and the edges of bases U68 and C69 explains the conservation of pyrimidine bases at these positions in serine isoaccepting tRNAs. This active site takes on a significantly different ordered conformation from that observed in the other subunit, which lacks tRNA. Upon tRNA binding, a number of active site residues previously found interacting with the ATP or adenylate now switch to participate in tRNA recognition. These results shed further light on the structural dynamics of the overall aminoacylation reaction in class II synthetases by revealing a mechanism which may promote an ordered passage through the activation and transfer steps.  相似文献   

13.
We have determined the sequence of cDNA for the human histidyl-tRNA synthetase (HRS) in a hepatoma cell line and confirmed it in fetal myoblast and fibroblast cell lines. The newly determined sequence differs in 48 places, including insertions and deletions, from a previously published sequence. By sequence specific probing and by direct sequencing, we have established that only the newly determined sequence is present in genomic DNA and we have sequenced 500 hundred bases upstream of the translation start site. The predicted amino acid sequence now clearly demonstrates all three motifs recognized in class 2 aminoacyl-tRNA synthetases. Alignment of E. coli, yeast, and when available, mammalian predicted amino acid sequences for three of the four members of the class 2a subgroup (his, pro, ser, and thr) shows strong preservation of amino acid specific signature regions proximal to motif 2 and proximal to motif 3. These probably represent the active site binding regions for the proximal acceptor stem and for the amino acid. The first two exons of human HRS contain a 32 amino acid helical motif, first described in human QRS, a class 1 synthetase, which is found also in a yeast RNA polymerase, a rabbit termination factor, and both bovine and human WRS, suggesting that it may be an RNA binding motif.  相似文献   

14.
The crystal structures of threonyl-tRNA synthetase (ThrRS) from Staphylococcus aureus, with ATP and an analogue of threonyl adenylate, are described. Together with the previously determined structures of Escherichia coli ThrRS with different substrates, they allow a comprehensive analysis of the effect of binding of all the substrates: threonine, ATP and tRNA. The tRNA, by inserting its acceptor arm between the N-terminal domain and the catalytic domain, causes a large rotation of the former. Within the catalytic domain, four regions surrounding the active site display significant conformational changes upon binding of the different substrates. The binding of threonine induces the movement of as much as 50 consecutive amino acid residues. The binding of ATP triggers a displacement, as large as 8A at some C(alpha) positions, of a strand-loop-strand region of the core beta-sheet. Two other regions move in a cooperative way upon binding of threonine or ATP: the motif 2 loop, which plays an essential role in the first step of the aminoacylation reaction, and the ordering loop, which closes on the active site cavity when the substrates are in place. The tRNA interacts with all four mobile regions, several residues initially bound to threonine or ATP switching to a position in which they can contact the tRNA. Three such conformational switches could be identified, each of them in a different mobile region. The structural analysis suggests that, while the small substrates can bind in any order, they must be in place before productive tRNA binding can occur.  相似文献   

15.
Histidinol-resistant (HisOHR) mutants with up to a 30-fold increase in histidyl-tRNA synthetase activity have been isolated by stepwise adaptation of wild-type Chinese hamster ovary (CHO) cells to increasing amounts of histidinol in the medium. Immunoprecipitation of [35S]methionine-labeled cell lysates with antibodies to histidyl-tRNA synthetase showed increased synthesis of the enzyme in histidinol-resistant cells. The histidinol-resistant cell lines had an increase in translatable polyadenylated mRNA for histidyl-tRNA synthetase. A cDNA for CHO histidyl-tRNA synthetase has been cloned, using these histidyl-tRNA synthetase-overproducing mutants as the source of mRNA. Southern blot analysis of wild-type and histidinol-resistant cells with this cDNA showed that the histidyl-tRNA synthetase DNA bands were amplified in the resistant cells. These HisOHR cells owed their resistance to histidinol to amplification of the gene for histidyl-tRNA synthetase.  相似文献   

16.
In this paper, we report the cloning and sequencing of the C. elegans histidyl-tRNA synthetase gene. The complete genomic sequence, and most of the cDNA sequence, of this gene is now determined. The gene size including flanking and coding regions is 2230 nucleotides long. Three small introns (45-50 bp long) are found to interrupt the open reading frame. The open reading frame translates to 523 amino acids. This putative protein sequence shows extensive homology with the human and yeast histidyl-tRNA the histidyl-tRNA synthetase gene is a single copy gene. Hence, it is very likely that it encodes both the cytoplasmic and the mitochondrial histidyl-tRNA synthetases. It is likely to be trans-spliced since it contains a trans-splice site in its 5' untranslated region.  相似文献   

17.
Crystal structures of histidyl-tRNA synthetase (HisRS) from the eukaryotic parasites Trypanosoma brucei and Trypanosoma cruzi provide a first structural view of a eukaryotic form of this enzyme and reveal differences from bacterial homologs. HisRSs in general contain an extra domain inserted between conserved motifs 2 and 3 of the Class II aminoacyl-tRNA synthetase catalytic core. The current structures show that the three-dimensional topology of this domain is very different in bacterial and archaeal/eukaryotic forms of the enzyme. Comparison of apo and histidine-bound trypanosomal structures indicates substantial active-site rearrangement upon histidine binding but relatively little subsequent rearrangement after reaction of histidine with ATP to form the enzyme's first reaction product, histidyladenylate. The specific residues involved in forming the binding pocket for the adenine moiety differ substantially both from the previously characterized binding site in bacterial structures and from the homologous residues in human HisRSs. The essentiality of the single HisRS gene in T. brucei is shown by a severe depression of parasite growth rate that results from even partial suppression of expression by RNA interference.  相似文献   

18.
Class 2 aminoacyl-tRNA synthetases, which include the enzymes for alanine, aspartic acid, asparagine, glycine, histidine, lysine, phenylalanine, proline, serine and threonine, are characterised by three distinct sequence motifs 1,2 and 3 (reference 1). The structural and evolutionary relatedness of these ten enzymes are examined using alignments of primary sequences from prokaryotic and eukaryotic sources and the known three dimensional structure of seryl-tRNA synthetase from E. coli. It is shown that motif 1 forms part of the dimer interface of seryl-tRNA synthetase and motifs 2 and 3 part of the putative active site. It is further shown that the seven alpha 2 dimeric synthetases can be subdivided into class 2a (proline, threonine, histidine and serine) and class 2b (aspartic acid, asparagine and lysine), each subclass sharing several important characteristic sequence motifs in addition to those characteristic of class 2 enzymes in general. The alpha 2 beta 2 tetrameric enzymes (for glycine and phenylalanine) show certain special features in common as well as some of the class 2b motifs. In the alanyl-tRNA synthetase only motif 3 and possibly motif 2 can be identified. The sequence alignments suggest that the catalytic domain of other class 2 synthetases should resemble the antiparallel domain found in seryl-tRNA synthetase. Predictions are made about the sequence location of certain important helices and beta-strands in this domain as well as suggestions concerning which residues are important in ATP and amino acid binding. Strong homologies are found in the N-terminal extensions of class 2b synthetases and in the C-terminal extensions of class 2a synthetases suggesting that these putative tRNA binding domains have been added at a later stage in evolution to the catalytic domain.  相似文献   

19.
A mutant form of ATP phosphoribosyltranferase (EC 2.4.2.17), hisG1708c, which results in abnormally slow growth of Salmonella typhimurium at 20 °C was purified to homogeneity and kinetic and chemical behavior were characterized. Initial velocity steady-state substrate kinetics of wild-type and mutant enzymes at 37 °C were consistent with sequential kinetics and demonstrated that standard assay concentrations of substrates were sufficient to substantially saturate both enzymes. Nearly time-independent inhibition by histidine at 37 °C could be obtained only after incubation in the presence of product and histidine. Studies at 37 °C showed that the mutant enzyme is 24 times more sensitive to histidine than the wild type in a negatively cooperative manner instead of the positively cooperative manner seen for wild type. Pure mutant enzyme exhibits two major electrophoretic species of native enzyme. Although one less cysteine is titratable in native mutant enzyme, the amino acid compositions of mutant and wild-type enzymes are similar. Histidine produces an ultraviolet difference spectrum in mutant enzyme closely resembling that produced in wild type. Binding of histidyl-tRNA to mutant enzyme is substantially inhibited by histidine. It is concluded that the hisG1708c mutation alters some conformational processes coupled to the histidine binding site while not affecting others.  相似文献   

20.
The URA7-encoded CTP synthetase [EC 6.3.4.2, UTP:ammonia ligase (ADP-forming)] in the yeast Saccharomyces cerevisiae is phosphorylated on a serine residue and stimulated by cAMP-dependent protein kinase (protein kinase A) in vitro. In vivo, the phosphorylation of CTP synthetase is mediated by the RAS/cAMP pathway. In this work, we examined the hypothesis that amino acid residue Ser424 contained in a protein kinase A sequence motif in the URA7-encoded CTP synthetase is the target site for protein kinase A. A CTP synthetase synthetic peptide (SLGRKDSHSA) containing the protein kinase A motif was a substrate (Km = 30 microM) for protein kinase A. This peptide also inhibited (IC50 = 45 microM) the phosphorylation of purified wild-type CTP synthetase by protein kinase A. CTP synthetase with a Ser424 --> Ala (S424A) mutation was constructed by site-directed mutagenesis. The mutated enzyme was not phosphorylated in response to the activation of protein kinase A activity in vivo. Purified S424A mutant CTP synthetase was not phosphorylated and stimulated by protein kinase A. The S424A mutant CTP synthetase had reduced Vmax and elevated Km values for ATP and UTP when compared with the protein kinase A-phosphorylated wild-type enzyme. The specificity constants for ATP and UTP for the S424A mutant CTP synthetase were 4.2- and 2.9-fold lower, respectively, when compared with that of the phosphorylated enzyme. In addition, the S424A mutant enzyme was 2.7-fold more sensitive to CTP product inhibition when compared with the phosphorylated wild-type enzyme. These data indicated that the protein kinase A target site in CTP synthetase was Ser424 and that the phosphorylation of this site played a role in the regulation of CTP synthetase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号