首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the effects of sustained embryonic hypoxia on the neonatal ventilatory chemosensitivity. White Leghorn chicken eggs were incubated at 38 degrees C either in 21% O(2) throughout incubation (normoxia, Nx) or in 15% O(2) from embryonic day 5 (hypoxia, Hx), hatching time included. Hx embryos hatched approximately 11 h later than Nx, with similar body weights. Measurements of gaseous metabolism (oxygen consumption, Vo(2)) and pulmonary ventilation (Ve) were conducted either within the first 8 h (early) or later hours (late) of the first posthatching day. In resting conditions, Hx had similar Vo(2) and body temperature (Tb) and slightly higher Ve and ventilatory equivalent (Ve/Vo(2)) than Nx. Ventilatory chemosensitivity was evaluated from the degree of hyperpnea (increase in Ve) and of hyperventilation (increase in Ve/Vo(2)) during acute hypoxia (15 and 10% O(2), 20 min each) and acute hypercapnia (2 and 4% CO(2), 20 min each). The chemosensitivity differed between the early and late hours, and at either time the responses to hypoxia and hypercapnia were less in Hx than in Nx because of a lower increase in Ve and a lower hypoxic hypometabolism. In a second group of Nx and Hx hatchlings, the Ve response to 10% O(2) was tested in the same hatchlings at the early and late hours. The results confirmed the lower hypoxic chemosensitivity of Hx. We conclude that hypoxic incubation affected the development of respiratory control, resulting in a blunted ventilatory chemosensitivity.  相似文献   

2.
We aimed to investigate whether newborn rats respond to acute hypoxia with a biphasic pattern as other newborn species, the characteristics of their ventilatory response to hypercapnia, and the ventilatory response to combined hypoxic and hypercapnic stimuli. First, we established that newborn unanesthetized rats (2-4 days old) exposed to 10% O2 respond as other species. Their ventilation (VE), measured by flow plethysmography, immediately increased by 30%, then dropped and remained around normoxic values within 5 min. The drop was due to a decrease in tidal volume, while frequency remained elevated. Hence, alveolar ventilation was about 10% below normoxic value. At the same time O2 consumption, measured manometrically, dropped (-23%), possibly indicating a mechanism to protect vital organs. Ten percent CO2 in O2 breathing determined a substantial increase in VE (+47%), indicating that the respiratory pump is capable of a marked sustained hyperventilation. When CO2 was added to the hypoxic mixture, VE increased by about 85%, significantly more than without the concurrent hypoxic stimulus. Thus, even during the drop in VE of the biphasic response to hypoxia, the respiratory control system can respond with excitation to a further increase in chemical drive. Analysis of the breathing patterns suggests that in the newborn rat in hypoxia the inspiratory drive is decreased but the inspiratory on-switch mechanism is stimulated, hypercapnia increases ventilation mainly through an increase in respiratory drive, and moderate asphyxia induces the most powerful ventilatory response by combining the stimulatory action of hypercapnia and hypoxia.  相似文献   

3.
We examined the effects of carotid body denervation on ventilatory responses to normoxia (21% O2 in N2 for 240 s), hypoxic hypoxia (10 and 15% O2 in N2 for 90 and 120 s, respectively), and hyperoxic hypercapnia (5% CO2 in O2 for 240 s) in the spontaneously breathing urethane-anesthetized mouse. Respiratory measurements were made with a whole body, single-chamber plethysmograph before and after cutting both carotid sinus nerves. Baseline measurements in air showed that carotid body denervation was accompanied by lower minute ventilation with a reduction in respiratory frequency. On the basis of measurements with an open-circuit system, no significant differences in O2 consumption or CO2 production before and after chemodenervation were found. During both levels of hypoxia, animals with intact sinus nerves had increased respiratory frequency, tidal volume, and minute ventilation; however, after chemodenervation, animals experienced a drop in respiratory frequency and ventilatory depression. Tidal volume responses during 15% hypoxia were similar before and after carotid body denervation; during 10% hypoxia in chemodenervated animals, there was a sudden increase in tidal volume with an increase in the rate of inspiration, suggesting that gasping occurred. During hyperoxic hypercapnia, ventilatory responses were lower with a smaller tidal volume after chemodenervation than before. We conclude that the carotid bodies are essential for maintaining ventilation during eupnea, hypoxia, and hypercapnia in the anesthetized mouse.  相似文献   

4.
Ventilatory responses to hypoxia and hypercapnia were measured by indirect plethysmography in unanesthetized unrestrained adult rats injected neonatally with capsaicin (50 mg/kg) or vehicle. Such capsaicin treatment ablates a subpopulation of primary afferent fibers containing substance P and various other neuropeptides. Ventilation was measured while the rats breathed air, 12% O2 in N2, 8% O2 in N2, 5% CO2 in O2, or 8% CO2 in O2. Neonatal treatment with capsaicin caused marked alterations in both the magnitude and composition of the hypoxic but not hypercapnic ventilatory response. The increase in minute ventilation evoked by hypoxia in the vehicle-treated rats resulted entirely from an increase in respiratory frequency. In the capsaicin-treated rats the hypoxic ventilatory response was significantly reduced owing to an attenuation of the frequency response. Although both groups responded to hypoxia with a shortening in inspiratory and expiratory times, rats treated with capsaicin displayed less shortening of both respiratory phases. By contrast, hypercapnia induced a brisk ventilatory response in the capsaicin-treated group that was similar in magnitude and pattern to that observed in the vehicle-treated group. Analysis of the components of the hypercapnic ventilatory responses revealed no significant differences between the two groups. We, therefore, conclude that neuropeptide-containing C-fibers are essential for the tachypnic component of the ventilatory response to hypoxia but not hypercapnia.  相似文献   

5.
The purpose of this study was to test whether chronically enhanced O2 delivery to tissues, without arterial hyperoxia, can change acute ventilatory responses to hypercapnia and hypoxia. The effects of decreased hemoglobin (Hb)-O2 affinity on ventilatory responses during hypercapnia (0, 5, 7, and 9% CO2 in O2) and hypoxia (10 and 15% O2 in N2) were assessed in mutant mice expressing Hb Presbyterian (mutation in the beta-globin gene, beta108 Asn --> Lys). O2 consumption during normoxia, measured via open-circuit methods, was significantly higher in the mutant mice than in wild-type mice. Respiratory measurements were conducted with a whole body, unrestrained, single-chamber plethysmograph under conscious conditions. During hypercapnia, there was no difference between the slopes of the hypercapnic ventilatory responses, whereas minute ventilation at the same levels of arterial PCO2 was lower in the Presbyterian mice than in the wild-type mice. During both hypoxic exposures, ventilatory responses were blunted in the mutant mice compared with responses in the wild-type mice. The effects of brief hyperoxia exposure (100% O2) after 10% hypoxia on ventilation were examined in anesthetized, spontaneously breathing mice with a double-chamber plethysmograph. No significant difference was found in ventilatory responses to brief hypoxia between both groups of mice, indicating possible involvement of central mechanisms in blunted ventilatory responses to hypoxia in Presbyterian mice. We conclude that chronically enhanced O2 delivery to peripheral tissues can reduce ventilation during acute hypercapnic and hypoxic exposures.  相似文献   

6.
We hypothesized that, in male rats, 10% fructose in drinking water would depress ventilatory responsiveness to acute hypoxia (10% O2 in N2) and hypercapnia (5% CO2 in O2) that would be depressed further by exposure to intermittent hypoxia. Minute ventilation (Ve) in air and in response to acute hypoxia and hypercapnia was evaluated in 10 rats before fructose feeding (FF), during 6 wk of FF, and after FF was removed for 2 wk. During FF, five rats were exposed to intermittent air and five to intermittent hypoxia for 13 days. Six rats given tap water acted as control and were exposed to intermittent air and subsequently intermittent hypoxia. In FF rats, plasma insulin levels increased threefold in the rats exposed to intermittent hypoxia and during washout returned to levels observed in rats exposed to intermittent air. During FF, ventilatory responsiveness to acute hypoxia was depressed because of decreased tidal volume (Vt) responsiveness. During washout, Ve decreased as a result of decreased Vt and frequency of breathing, and the ventilatory responsiveness to hypoxia in intermittent hypoxia rats did not recover. In all rats, the ventilatory responses to hypercapnia were decreased during FF and recovered after washout because of an increased Vt responsiveness. In the control group, hypoxic responsiveness was not depressed after intermittent hypoxia and was augmented after washout. Thus FF attenuated the ventilatory responsiveness of conscious rats to hypoxia and hypercapnia. Intermittent hypoxia interacted with FF to increase insulin levels and depress ventilatory responses to acute hypoxia that remained depressed during washout.  相似文献   

7.
The effects of body position on ventilatory responses to chemical stimuli have rarely been studied in experimental animals, despite evidence that position may be a factor in respiratory results. The purpose of this study was to test whether body position could affect acute ventilatory responses to 4-min periods of moderate hypercapnia (5% CO(2) in O(2)) and poikilocapnic hypoxia (15% O(2) in N(2)) in the urethane-anaesthetised mouse. Respiratory measurements were conducted with mice in the prone and supine positions with a whole-body, single-chamber plethysmograph. During hypoxia, the time course of minute ventilation (V (E)) was similar in the two positions, but the breathing pattern was different. After the response peak, V (E) depended on respiratory frequency (f) and tidal volume (V(T)) in the prone position but mainly on V(T) in the supine position. In the supine position, f declined below the baseline values toward the end of hypoxic exposure. During hypercapnia, there were no ventilatory differences between the prone and supine positions. Brief hypoxic exposure elicited f depression in the supine position in the anaesthetised mouse. The depressive effect on f suggests that the supine position may not be optimal for sustaining ventilation, particularly during hypoxia.  相似文献   

8.
Amphibious crabs, Cardisoma guanhumi, were acclimated to breathing either air or water and exposed to altered levels of oxygen and/or carbon dioxide in the medium. Hypercapnia (22, 36 and 73 torr CO(2)) stimulated a significant hypercapnic ventilatory response (HCVR) in both groups of crabs, with a much greater effect on scaphognathite frequency (Deltaf(SC)=+700%) in air-breathing crabs than water-breathing crabs (Deltaf(SC)=+100%). In contrast, hyperoxia induced significant hypoventilation in both sets of crabs. However, simultaneous hyperoxia and hypercapnia triggered a greater than 10-fold increase in f(SC) in air-breathing crabs but no change in water-breathing crabs. For water-breathing crabs hypoxia simultaneous with hypercapnia triggered the same response as hypoxia alone-bradycardia (-50%), and a significant increase in f(SC) at moderate exposures but not at the more extreme levels. The response of air-breathing crabs to hypoxia concurrent with hypercapnia was proportionally closer to the response to hypercapnia alone than to hypoxia. Thus, C. guanhumi were more sensitive to ambient CO(2) than O(2) when breathing air, characteristic of fully terrestrial species, and more sensitive to ambient O(2) when breathing water, characteristic of fully aquatic species. C. guanhumi possesses both an O(2)- and a CO(2)-based ventilatory drive whether breathing air or water, but the relative importance switches when the respiratory medium is altered.  相似文献   

9.
Role of substance P in hypercapnic excitation of carotid chemoreceptors   总被引:1,自引:0,他引:1  
Experiments were performed on 17 anesthetized, paralyzed, and artificially ventilated cats to evaluate the importance of substance P-like peptide (SP) on the carotid body responses to CO2. Single or paucifiber carotid chemoreceptor activity was recorded from the peripheral end of the cut carotid sinus nerve. In eight of the cats the influence of SP on hyperoxic hypercapnic responses was studied. While the animals breathed 100% O2, intracarotid infusion of SP (1 microgram.kg-1.min-1, 3 min) increased chemoreceptor activity by +4.8 +/- 0.3 impulses/s. After SP infusion, inhalation of CO2 in O2 caused a rapid increase in activity that reached a peak and then adapted to a lower level, whereas similar levels of CO2 before SP caused only a gradual increase in carotid body discharge rate without any overshoot in response. Furthermore SP significantly increased the magnitude and slope of the CO2 response. In the other nine cats the effect of intracarotid infusion of an SP antagonist, [D-Pro2,D-Trp7,9] SP (10-15 micrograms.kg-1.min-1), on carotid body responses to 1) hyperoxic hypercapnia (7% CO2-93% O2), 2) isocapnic hypoxia (11% O2-89% N2), and 3) hypoxic hypercapnia (11% O2-7% CO2-82% N2) was examined. SP antagonist had no effect on carotid body response to hyperoxic hypercapnia but significantly attenuated the chemoreceptor excitation caused by isocapnic hypoxia and hypoxic hypercapnia. These results suggest that 1) SP may play an important role in carotid body responses to hypoxia but not to CO2, and 2) the mechanisms of stimulation of the carotid body by hypercapnia and by hypoxia differ.  相似文献   

10.
To determine whether changes in partial pressure of CO2 participate in mechanism enlarging the lung functional residual capacity (FRC) during chronic hypoxia, we measured FRC and ventilation in rats exposed either to poikilocapnic (group H, F(I)O2 0.1, F(I)CO2 <0.01) or hypercapnic (group H+CO2, F(I)O2 0.1, F(I)CO2 0.04-0.05) hypoxia for the three weeks and in the controls (group C) breathing air. At the end of exposure a body plethysmograph was used to measure ventilatory parameters (V'(E), f(R), V(T)) and FRC during air breathing and acute hypoxia (10 % O2 in N2). The exposure to hypoxia for three weeks increased FRC measured during air breathing in both experimental groups (H: 3.0+/-0.1 ml, H+CO2: 3.1+/-0.2 ml, C: 1.8+/-0.2 ml). During the following acute hypoxia, we observed a significant increase of FRC in the controls (3.2+/-0.2 ml) and in both experimental groups (H: 3.5+/-0.2 ml, H+CO2: 3.6+/-0.2 ml). Because chronic hypoxia combined with chronic hypercapnia and chronic poikilocapnic hypoxia induced the same increase of FRC, we conclude that hypercapnia did not participate in the FRC enlargement during chronic hypoxia.  相似文献   

11.
Ventilatory acclimatization to hypoxia (VAH) consists of a progressive increase in ventilation and decrease in end-tidal Pco(2) (Pet(CO(2))). Underlying VAH, there are also increases in the acute ventilatory sensitivities to hypoxia and hypercapnia. To investigate whether these changes could be induced with very mild alterations in end-tidal Po(2) (Pet(O(2))), two 5-day exposures were compared: 1) mild hypoxia, with Pet(O(2)) held at 10 Torr below the subject's normal value; and 2) mild hyperoxia, with Pet(O(2)) held at 10 Torr above the subject's normal value. During both exposures, Pet(CO(2)) was uncontrolled. For each exposure, the entire protocol required measurements on 13 consecutive mornings: 3 mornings before the hypoxic or hyperoxic exposure, 5 mornings during the exposure, and 5 mornings postexposure. After the subjects breathed room air for at least 30 min, measurements were made of Pet(CO(2)), Pet(O(2)), and the acute ventilatory sensitivities to hypoxia and hypercapnia. Ten subjects completed both protocols. There was a significant increase in the acute ventilatory sensitivity to hypoxia (Gp) after exposure to mild hypoxia, and a significant decrease in Gp after exposure to mild hyperoxia (P < 0.05, repeated-measures ANOVA). No other variables were affected by mild hypoxia or hyperoxia. The results, when combined with those from other studies, suggest that Gp varies linearly with Pet(O(2)), with a sensitivity of 3.5%/Torr (SE 1.0). This sensitivity is sufficient to suggest that Gp is continuously varying in response to normal physiological fluctuations in Pet(O(2)). We conclude that at least some of the mechanisms underlying VAH may have a physiological role at sea level.  相似文献   

12.
We have previously observed that the guinea-pig appears to have a relatively poor ventilatory (V (E)) response to hypoxia, compared to other mammals. Therefore, in this study, we questioned the ability of the carotid bodies (primary peripheral chemoreceptors) in the guinea-pig to detect hypoxia. The ventilatory responses to poikilocapnic hypoxia (8% O(2)), poikilooxic hypercapnia (8% CO(2)), hyperoxia (100% O(2)) and cyanide (NaCN - 200 mug/kg, i.v.) were assessed before and after carotid body denervation (CBD) in anaesthetized guinea-pigs. Although CBD attenuated the V (E) responses to hypercapnia and cyanide, it had no effect on normoxic breathing or the V (E) responses to hypoxia or hyperoxia. In a separate group of guinea-pigs, nerve activity was recorded from single or few-fibre preparations of the carotid sinus nerve (CSN). Basal chemoreceptor activity could not be detected from any of the nerve preparations. NaCN and hypercapnia consistently provoked an increase in neural activity. In contrast, hypoxia never clearly increased activity in any of the single or few-fibre preparations isolated from the CSN. In conclusion, although the carotid bodies of the guinea-pig, like those of other mammals, are able to detect hypercapnia and histotoxic hypoxia and elicit a reflex increase in V (E), they are essentially hypoxia-insensitive. The latter may explain, at least in part, the relatively poor V (E) response to hypoxia shown by the guinea-pig.  相似文献   

13.
Somatostatin inhibits the ventilatory response to hypoxia in humans   总被引:2,自引:0,他引:2  
The effects of a 90-min infusion of somatostatin (1 mg/h) on ventilation and the ventilatory responses to hypoxia and hypercapnia were studied in six normal adult males. Minute ventilation (VE) was measured with inductance plethysmography, arterial 02 saturation (SaO2) was measured with ear oximetry, and arterial PCO2 (Paco2) was estimated with a transcutaneous CO2 electrode. The steady-state ventilatory response to hypoxia (delta VE/delta SaO2) was measured in subjects breathing 10.5% O2 in an open circuit while isocapnia was maintained by the addition of CO2. The hypercapnic response (delta VE/delta PaCO2) was measured in subjects breathing first 5% and then 7.5% CO2 (in 52-55% O2). Somatostatin greatly attenuated the hypoxic response (control mean -790 ml x min-1.%SaO2 -1, somatostatin mean -120 ml x min-1.%SaO2 -1; P less than 0.01), caused a small fall in resting ventilation (mean % fall - 11%), but did not affect the hypercapnic response. In three of the subjects progressive ventilatory responses (using rebreathing techniques, dry gas meter, and end-tidal Pco2 analysis) and overall metabolism were measured. Somatostatin caused similar changes (mean fall in hypoxic response -73%; no change in hypercapnic response) and did not alter overall O2 consumption nor CO2 production. These results show an hitherto-unsuspected inhibitory potential of this neuropeptide on the control of breathing; the sparing of the hypercapnic response is suggestive of an action on the carotid body but does not exclude a central effect.  相似文献   

14.
Carbon dioxide effects on the ventilatory response to sustained hypoxia   总被引:1,自引:0,他引:1  
We examined the interrelation between CO2 and the ventilatory response to moderate (80% arterial saturation) sustained hypoxia in normal young adults. On a background of continuous CO2-stimulated hyperventilation, hypoxia was introduced and sustained for 25 min. Initially, with the introduction of hypoxia onto hypercapnia, there was a brisk additional increase in inspiratory minute ventilation (VI) to 284% of resting VI, but the response was not sustained and hypoxic VI declined by 36% to a level intermediate between the initial increase and the preexisting hypercapnic hyperventilation. Through the continuous hypercapnia, the changes in hypoxic ventilation resulted from significant alterations in tidal volume (VT) and mean inspiratory flow (VT/TI) without changes in respiratory timing. In another experiment, sustained hypoxia was introduced on the usual background of room air, either with isocapnia or without maintenance of end-tidal CO2 (ETCO2) (poikilocapnic hypoxia). Regardless of the degree of maintenance of ETCO2, during 25 min of sustained hypoxia, VI showed an initial brisk increase and then declined by 35-40% of resting VI to a level intermediate between the initial response and resting room air VI. For both isocapnia and poikilocapnic conditions, the attenuation of VI was an expression of a diminished VT. Thus the decline in ventilation with sustained hypoxia occurred regardless of the background ETCO2, suggesting that the mechanism underlying the hypoxic decline is independent of CO2.  相似文献   

15.
The pygmy marmoset (Cebuella pygmaea) is the smallest New World Monkey (average body mass of 120-130 g). As such, it faces possible challenges to thermoregulation. Small mammals (e.g., rats) are well known to lower body temperature and metabolism in response to hypoxia; however, small primates have not been studied in this respect nor have, in general, the interactions between metabolism and ventilation. Because little is known about these responses in small primates, it seemed of great interest to assess the hypoxia-induced metabolic depression and drop in body temperature and the associated ventilatory requirements in this species under hypoxic conditions. Exposure to graded hypoxia (30 min at each of 18, 16, 14, 12, and 10% O(2)) caused body temperature to drop from the normoxic value of 39 to 37 degrees C. This was accompanied by a marked metabolic depression (O(2) consumption was approximately 68% of the normoxic value, implying a suppression of metabolism greater than that predicted from a typical value of the effect of 10 degrees C change on metabolism of 2-3 times). Minute ventilation declined in parallel to metabolism, maintaining a constant air-convection requirement during hypoxia; thus this species did not show the typical mammalian hyperventilation. Acute exposure to 10% O(2) led to a similar overall decline in metabolism and body temperature and qualitative differences in the timing of these changes. The pygmy marmoset shares some similarities in its hypoxic metabolic response with other mammals of similar size yet appears to be unique in its much diminished ventilatory response to hypoxia.  相似文献   

16.
Lymnaea stagnalis were exposed to hypoxic and chemical challenges while ventilation, heart rate and metabolism were monitored. Hypoxia increased ventilatory behavior, but this response was eliminated by immersion in 0.75 mM nitric oxide synthase (NOS) inhibitor, 7-nitroindazole (7 NI). 7 NI also suppressed ventilatory behavior under normoxia. 10.0 mM L-arginine (ARG, the NOS substrate) increased ventilatory behavior under normoxia, but dampened the hypoxic response. The heart-rate response to NOS inhibition exhibited dose-dependent contradictory characteristics. Under both normoxia and hypoxia 0.25 mM 7 NI increased heart rate, while 0.75 mM 7 NI suppressed it. The effect of 0.50 mM 7 NI depended on whether normoxia or hypoxia was coincident; under normoxia 0.50 mM 7 NI increased heart rate, while under hypoxia this concentration suppressed heart rate. Exposure to ARG did not elicit dose-dependent contradictory responses. Heart rate increased when treated with 10.0 mM ARG under normoxia and hypoxia, while 1.0 mM ARG increased heart rate only under hypoxia. Metabolic responses to NOS inhibition also exhibited dose-dependent contradictory changes. V.O2 decreased over 60% in response to 0.75 mM 7 NI, and baseline V.O2 was restored when exposure ceased. In contrast, 0.25 mM 7 NI increased V.O2 10%, and the increase continued after exposure ceased. 0.50 mM 7 NI decreased V.O2 40%, but V.O2 increased when exposure ceased. ARG had only the effect of increasing V.O2, and only at 10.0 mM concentration. Based on these results and on NO's known role as a neuromodulator, we conclude that the cardio-respiratory responses to hypoxia are, in part, mediated by NO.  相似文献   

17.
18.
The relationship between CO2 and ventilatory response to sustained hypoxia was examined in nine normal young adults. At three different levels of end-tidal partial pressure of CO2 (PETCO2, approximately 35, 41.8, and 44.3 Torr), isocapnic hypoxia was induced for 25 min and after 7 min of breathing 21% O2, isocapnic hypoxia was reinduced for 5 min. Regardless of PETCO2 levels, the ventilatory response to sustained hypoxia was biphasic, characterized by an initial increase (acute hypoxic response, AHR), followed by a decline (hypoxic depression). The biphasic response pattern was due to alteration in tidal volume, which at all CO2 levels decreased significantly (P less than 0.05), without a significant change in breathing frequency. The magnitude of the hypoxic depression, independent of CO2, correlated significantly (r = 0.78, P less than 0.001) with the AHR, but not with the ventilatory response to CO2. The decline of minute ventilation was not significantly affected by PETCO2 [averaged 2.3 +/- 0.6, 3.8 +/- 1.3, and 4.5 +/- 2.2 (SE) 1/min for PETCO2 35, 41.8, and 44.3 Torr, respectively]. This decay was significant for PETCO2 35 and 41.8 Torr but not for 44.3 Torr. The second exposure to hypoxia failed to elicit the same AHR as the first exposure; at all CO2 levels the AHR was significantly greater (P less than 0.05) during the first hypoxic exposure than during the second. We conclude that hypoxia exhibits a long-lasting inhibitory effect on ventilation that is independent of CO2, at least in the range of PETCO2 studied, but is related to hypoxic ventilatory sensitivity.  相似文献   

19.
Effect of brain blood flow on hypoxic ventilatory response in humans   总被引:1,自引:0,他引:1  
To assess the effect of brain blood flow on hypoxic ventilatory response, we measured arterial and internal jugular venous blood gases and ventilation simultaneously and repeatedly in eight healthy male humans in two settings: 1) progressive and subsequent sustained hypoxia, and 2) stepwise and progressive hypercapnia. Ventilatory response to progressive isocapnic hypoxia [arterial O2 partial pressure 155.9 +/- 4.0 (SE) to 46.7 +/- 1.5 Torr] was expressed as change in minute ventilation per change in arterial O2 saturation and varied from -0.16 to -1.88 [0.67 +/- 0.19 (SE)] l/min per % among subjects. In the meanwhile, jugular venous PCO2 (PjCO2) decreased significantly from 51.0 +/- 1.1 to 47.3 +/- 1.0 Torr (P less than 0.01), probably due to the increase in brain blood flow, and stayed at the same level during 15 min of sustained hypoxia. Based on the assumption that PjCO2 reflects the brain tissue PCO2, we evaluated the depressant effect of fall in PjCO2 on hypoxic ventilatory response, using a slope for ventilation-PjCO2 line which was determined in the second set of experiments. Hypoxic ventilatory response corrected with this factor was -1.31 +/- 0.33 l/min per %, indicating that this factor modulated hypoxic ventilatory response in humans. The ventilatory response to progressive isocapnic hypoxia did not correlate with this factor but significantly correlated with the withdrawal test (modified transient O2 test), which was performed on a separate day. Accordingly we conclude that an increase in brain blood flow during exposure to moderate hypoxia may substantially attenuate the ventilatory response but that it is unlikely to be the major factor of the interindividual variation of progressive isocapnic hypoxic ventilatory response in humans.  相似文献   

20.
The purpose of this study was to compare chemoresponses following two different intermittent hypoxia (IH) protocols in humans. Ten men underwent two 7-day courses of poikilocapnic IH. The long-duration IH (LDIH) protocol consisted of daily 60-min exposures to normobaric 12% O(2). The short-duration IH (SDIH) protocol comprised twelve 5-min bouts of 12% O(2), separated by 5-min bouts of room air, daily. Isocapnic hypoxic ventilatory response (HVR) was measured daily during the protocol and 1 and 7 days following. Hypercapnic ventilatory response (HCVR) and CO(2) threshold and sensitivity (by the modified Read rebreathing technique) were measured on days 1, 8, and 14. Following 7 days of IH, the mean HVR was significantly increased from 0.47 +/- 0.07 and 0.47 +/- 0.08 to 0.70 +/- 0.06 and 0.79 +/- 0.06 l.min(-1).%Sa(O(2))(-1) (LDIH and SDIH, respectively), where %Sa(O(2)) is percent arterial oxygen saturation. The increase in HVR reached a plateau after the third day. One week post-IH, HVR values were unchanged from baseline. HCVR increased from 3.0 +/- 0.4 to 4.0 +/- 0.5 l.min(-1).mmHg(-1). In both the hyperoxic and hypoxic modified Read rebreathing tests, the slope of the CO(2)/ventilation plot was unchanged by either intervention, but the CO(2)/ventilation curve shifted to the left following IH. There were no correlations between the changes in response to hypoxia and hypercapnia. There were no significant differences between the two IH protocols for any measures, indicating that comparable changes in chemoreflex control occur with either protocol. These results also suggest that the two methods of measuring CO(2) response are not completely concordant and that the changes in CO(2) control do not correlate with the increase in the HVR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号