首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
The simian immunodeficiency virus (SIV)-rhesus macaque model of heterosexual human immunodeficiency virus transmission consists of atraumatic application of cell-free SIVmac onto the intact vaginal mucosa of mature female rhesus macaques. This procedure results in systemic infection, and eventually infected animals develop the clinical signs and pathologic changes of simian AIDS. To achieve 100% transmission with the virus stocks used to date, multiple intravaginal inoculations are required. The current titration study utilized two stocks of SIVmac and demonstrated that a single intravaginal dose of cell-free SIV can reliably produce infection in rhesus macaques. This study also demonstrated that some animals intravaginally inoculated with cell-free SIVmac develop transient viremia characterized by a limited ability to isolate virus from peripheral blood mononuclear cells and lymph node mononuclear cells and no seroconversion to SIV antigen. SIV could be isolated from the peripheral lymph nodes of transiently viremic animals only during periods of viremia and not at times when SIV was not detected in circulating mononuclear cells. Thus, peripheral lymphoid tissues were not reservoirs of infection in the transiently viremic animals. Taken together, these results suggest either that the SIV infection was cleared in the transiently viremic animals or that SIV infection is limited to a compartment of the genital mucosal immune system that cannot be assessed by monitoring SIV infection in peripheral blood mononuclear cells and peripheral lymphoid tissue.  相似文献   

2.
Nontraumatic vaginal inoculation of rhesus macaques with a simian/human immunodeficiency virus (SIV/HIV) chimera containing the envelope gene from HIV-1 89.6 (SHIV 89.6) results in systemic infection (Y. Lu, B. Brosio, M. Lafaile, J. Li, R. G. Collman, J. Sodroski, and C. J. Miller, J. Virol. 70:3045-3050, 1996). A total of five rhesus macaques have each been infected by exposure to at least three intravaginal inoculations of SHIV 89.6. The SHIV 89.6 infection is characterized by a transient viremia that evokes humoral and cellular immune responses to HIV and SIV antigens, but disease does not develop in animals infected with SHIV 89.6. To determine if a previous infection with SHIV 89.6 by vaginal inoculation could protect animals from vaginal challenge with pathogenic SIV, all five animals were intravaginally inoculated twice with pathogenic SIV-mac239. After challenge, all of the SHIV-immunized animals had low or undetectable viral RNA levels in plasma compared to control animals. Three of the five of the SHIV-immunized animals remained virus isolation negative for more than 8 months, while two became virus isolation positive. The presence of SIV Gag-specific cytotoxic T lymphocytes in peripheral blood mononuclear cells and SIV-specific antibodies in cervicovaginal secretions at the time of challenge was associated with resistance to pathogenic SIV infection after vaginal challenge. These results suggest that protection from sexual transmission of HIV may be possible by effectively stimulating both humoral and cellular antiviral immunity in the systemic and genital mucosal immune compartments.  相似文献   

3.
Simian immunodeficiency virus (SIV) infection of macaques can result in central nervous system disorders, such as meningitis and encephalitis. We studied 10 animals inoculated with brain-derived virus from animals with SIV encephalitis. Over half of the macaques developed SIV-induced neurologic disease. Elevated levels of systemic immune activation were observed to correlate with viral RNA in the cerebral spinal fluid but not with plasma viral load, consistent with a role for SIV in the pathogenesis of neurologic disease.  相似文献   

4.
Ma ZM  Abel K  Rourke T  Wang Y  Miller CJ 《Journal of virology》2004,78(24):14048-14052
In rhesus macaques, classic systemic infection, characterized by persistent viremia and seroconversion, occurred after multiple low-dose (10(3) 50% tissue culture infective doses) intravaginal (IVAG) inoculations with simian immunodeficiency virus (SIV) strain SIVmac251. Monkeys developed classic SIV infections after a variable number of low-dose IVAG exposures to SIVmac251. Once established, the systemic infection was identical to SIV infection following high-dose IVAG SIV inoculation. However, occult systemic infection characterized by transient cell-associated or cell-free viremia consistently occurred early in the series of multiple vaginal SIV exposures. Further, antiviral cellular immune responses were present prior to the establishment of a classic systemic infection in the low-dose vaginal SIV transmission model.  相似文献   

5.
从取材于3只SIV感染治疗猴和4只SIV艾滋病模型猴治疗前后的11份石蜡包埋淋巴结活检组织中提成基因组DNA,分别用PCR和巢式PCR方法检测SIV病毒基因,PCR共检出10份阳性,巢式PCR检测11价样品均阳性,而同期采样的猴外周血标本病毒分离仅3份阳性,PCR扩增产物的特异性用限制性内切酶酶切反应得到证实。实验说明,从淋巴结组织中检测SIV的病毒基因较外周血病毒分离更能真实地反映病毒感染状况,本研究将对全面和正确评价艾滋病药吻和疫苗治疗效果提供帮助。  相似文献   

6.
Smallpox preparedness research has led to development of antiviral therapies for treatment of serious orthopoxvirus infections. Monkeypox virus is an emerging, zoonotic orthopoxvirus which can cause severe and transmissible disease in humans, generating concerns for public health. Monkeypox virus infection results in a systemic, febrile-rash illness closely resembling smallpox. Currently, there are no small-molecule antiviral therapeutics approved to treat orthopoxvirus infections of humans. The prairie dog, using monkeypox virus as a challenge virus, has provided a valuable nonhuman animal model in which monkeypox virus infection closely resembles human systemic orthopoxvirus illness. Here, we assess the efficacy of the antiorthopoxvirus compound ST-246 in prairie dogs against a monkeypox virus challenge of 65 times the 50% lethal dose (LD(50)). Animals were infected intranasally and administered ST-246 for 14 days, beginning on days 0, 3, or after rash onset. Swab and blood samples were collected every 2 days and analyzed for presence of viral DNA by real-time PCR and for viable virus by tissue culture. Seventy-five percent of infected animals that received vehicle alone succumbed to infection. One hundred percent of animals that received ST-246 survived challenge, and animals that received treatment before symptom onset remained largely asymptomatic. Viable virus and viral DNA were undetected or at greatly reduced levels in animals that began treatment on 0 or 3 days postinfection, compared to control animals or animals treated post-rash onset. Animals treated after rash onset manifested illness, but all recovered. Our results indicate that ST-246 can be used therapeutically, following onset of rash illness, to treat systemic orthopoxvirus infections.  相似文献   

7.
Human cytomegalovirus (HCMV) possesses low pathogenic potential in an immunocompetent host. In the immunosuppressed host, however, a wide spectrum of infection outcomes, ranging from asymptomatic to life threatening, can follow either primary or nonprimary infection. The variability in the manifestations of HCMV infection in immunosuppressed individuals implies that there is a threshold of host antiviral immunity that can effectively limit disease potential. We used a nonhuman primate model of CMV infection to assess the relationship between CMV disease and the levels of developing anti-CMV immunity. Naive rhesus macaques were inoculated with rhesus cytomegalovirus (RhCMV) followed 2 or 11 weeks later by inoculation with pathogenic simian immunodeficiency virus SIVmac239. Two of four monkeys inoculated with SIV at 2 weeks after inoculation with RhCMV died within 11 weeks with simian AIDS (SAIDS), including activated RhCMV infection. Neither animal had detectable anti-SIV antibodies. The other two animals died 17 and 27 weeks after SIV inoculation with either SAIDS or early lymphoid depletion, although no histological evidence of activated RhCMV was observed. Both had weak anti-SIV antibody titers. RhCMV antibody responses for this group of monkeys were significantly below those of control animals inoculated with only RhCMV. In addition, all animals of this group had persistent RhCMV DNA in plasma and high copy numbers of RhCMV in tissues. In contrast, animals that were inoculated with SIV at 11 weeks after RhCMV infection rarely exhibited RhCMV DNA in plasma, had low copy numbers of RhCMV DNA in most tissues, and did not develop early onset of SAIDS or activated RhCMV. SIV antibody titers were mostly robust and sustained in these monkeys. SIV inoculation blunted further development of RhCMV humoral responses, unlike the normal pattern of development in control monkeys following RhCMV inoculation. Anti-RhCMV immunoglobulin G levels and avidity were slightly below control values, but levels maintained were higher than those observed following SIV infection at 2 weeks after RhCMV inoculation. These findings demonstrate that SIV produces long-lasting insults to the humoral immune system beginning very early after SIV infection. The results also indicate that anti-RhCMV immune development at 11 weeks after infection was sufficient to protect the host from acute RhCMV sequelae following SIV infection, in contrast to the lack of protection afforded by only 2 weeks of immune response to RhCMV. As previously observed, monkeys that were not able to mount a significant immune response to SIV were the most susceptible to SAIDS, including activated RhCMV infection. Rapid development of SAIDS in animals inoculated with SIV 2 weeks after RhCMV inoculation suggests that RhCMV can augment SIV pathogenesis, particularly during primary infection by both viruses.  相似文献   

8.
Attenuated primate lentivirus vaccines provide the most consistent protection against challenge with pathogenic simian immunodeficiency virus (SIV). Thus, they provide an excellent model to examine the influence of the route of immunization on challenge outcome and to study vaccine-induced protective anti-SIV immune responses. In the present study, rhesus macaques were immunized with live nonpathogenic simian-human immunodeficiency virus (SHIV) 89.6 either intravenously or mucosally (intranasally or intravaginally) and then challenged intravaginally with pathogenic SIVmac239. The route of immunization did not affect mucosal challenge outcome after a prolonged period of systemic infection with the nonpathogenic vaccine virus. Further, protection from the SIV challenge was associated with the induction of multiple host immune effector mechanisms. A comparison of immune responses in vaccinated-protected and vaccinated-unprotected animals revealed that vaccinated-protected animals had higher frequencies of SIV Gag-specific cytotoxic T lymphocytes and gamma interferon (IFN-gamma)-secreting cells during the acute phase postchallenge. Vaccinated-protected animals also had a more pronounced increase in peripheral blood mononuclear cell IFN-alpha mRNA levels than did the vaccinated-unprotected animals in the first few weeks after challenge. Thus, innate as well as cellular anti-SIV immune responses appeared to contribute to the SHIV89.6-induced protection against intravaginal challenge with pathogenic SIVmac239.  相似文献   

9.
AIDS dementia and encephalitis are complications of AIDS occurring most frequently in patients who are immunosuppressed. The simian immunodeficiency virus (SIV) model used in this study was designed to reproducibly induce AIDS in macaques in order to examine the effects of a neurovirulent virus in this context. Pigtailed macaques (Macaca nemestrina) were coinoculated with an immunosuppressive virus (SIV/DeltaB670) and a neurovirulent molecularly cloned virus (SIV/17E-Fr), and more than 90% of the animals developed moderate to severe encephalitis within 6 months of inoculation. Viral load in plasma and cerebrospinal fluid (CSF) was examined longitudinally to onset of AIDS, and viral load was measured in brain tissue at necropsy to examine the relationship of systemic and central nervous system (CNS) viral replication to the development of encephalitis. In all animals, plasma viral load peaked at 10 to 14 days postinfection and remained high throughout infection with no correlation found between plasma viremia and SIV encephalitis. In contrast, persistent high levels of CSF viral RNA after the acute phase of infection correlated with the development of encephalitis. Although high levels of viral RNA were found in the CSF of all macaques (six of six) during the acute phase, this high level was maintained only in macaques developing SIV encephalitis (five of six). Furthermore, the level of both viral RNA and antigen in the brain correlated with the severity of the CNS lesions. The single animal in this group that did not have CNS lesions had no detectable viral RNA in any of the regions of the brain. The results substantiate the use of CSF viral load measurements in the postacute phase of SIV infection as a marker for encephalitis and CNS viral replication.  相似文献   

10.
T-cell-mediated immune effector mechanisms play an important role in the containment of human immunodeficiency virus/simian immunodeficiency virus (HIV/SIV) replication after infection. Both vaccination- and infection-induced T-cell responses are dependent on the host major histocompatibility complex classes I and II (MHC-I and MHC-II) antigens. Here we report that both inherent, host-dependent immune responses to SIVmac251 infection and vaccination-induced immune responses to viral antigens were able to reduce virus replication and/or CD4+ T-cell loss. Both the presence of the MHC-I Mamu-A*01 genotype and vaccination of rhesus macaques with ALVAC-SIV-gag-pol-env (ALVAC-SIV-gpe) contributed to the restriction of SIVmac251 replication during primary infection, preservation of CD4+ T cells, and delayed disease progression following intrarectal challenge exposure of the animals to SIV(mac251 (561)). ALVAC-SIV-gpe immunization induced cytotoxic T-lymphocyte (CTL) responses cumulatively in 67% of the immunized animals. Following viral challenge, a significant secondary virus-specific CD8+ T-cell response was observed in the vaccinated macaques. In the same immunized macaques, a decrease in virus load during primary infection (P = 0.0078) and protection from CD4 loss during both acute and chronic phases of infection (P = 0.0099 and P = 0.03, respectively) were observed. A trend for enhanced survival of the vaccinated macaques was also observed. Neither boosting the ALVAC-SIV-gpe with gp120 immunizations nor administering the vaccine by the combination of mucosal and systemic immunization routes increased significantly the protective effect of the ALVAC-SIV-gpe vaccine. While assessing the role of MHC-I Mamu-A*01 alone in the restriction of viremia following challenge of nonvaccinated animals with other SIV isolates, we observed that the virus load was not significantly lower in Mamu-A*01-positive macaques following intravenous challenge with either SIV(mac251 (561)) or SIV(SME660). However, a significant delay in CD4+ T-cell loss was observed in Mamu-A*01-positive macaques in each group. Of interest, in the case of intravenous or intrarectal challenge with the chimeric SIV/HIV strains SHIV(89.6P) or SHIV(KU2), respectively, MHC-I Mamu-A*01-positive macaques did not significantly restrict primary viremia. The finding of the protective effect of the Mamu-A*01 molecule parallels the protective effect of the B*5701 HLA allele in HIV-1-infected humans and needs to be accounted for in the evaluation of vaccine efficacy against SIV challenge models.  相似文献   

11.
Simian immunodeficiency virus (SIV) infection of macaques is a model for human immunodeficiency virus (HIV) infection. We have previously reported the construction and characterization of an SIV vector with a deletion in the nef gene (SIV(delta nef)) and expressing gamma interferon (SIV(HyIFN)) (L. Giavedoni and T. Yilma, J. Virol. 70:2247-2251, 1996). We now show that rhesus macaques vaccinated with SIV(HyIFN) have a lower viral load than a group similarly immunized with SIV(delta nef). Viral loads remained low in the SIV(HyIFN)-vaccinated group even though SIV expressing gamma interferon could not be isolated after 6 weeks postimmunization in these animals. All immunized and two naive control macaques became infected when challenged with virulent SIV(mac251), at 25 weeks postvaccination. In contrast to the two naive controls that died by 12 and 18 weeks postchallenge, all vaccinated animals remained healthy for more than 32 weeks. In addition, postchallenge cell-associated virus load was significantly lower in SIV(HyIFN)-immunized animals than in the group vaccinated with SIV(delta nef). These findings indicate that cytokine-expressing viruses can provide a novel approach for development of safe and efficacious live attenuated vaccines for AIDS.  相似文献   

12.
13.
In the current global AIDS pandemic, more than half of new human immunodeficiency virus type 1 (HIV-1) infections are acquired by women through intravaginal HIV exposure. For this study, we explored pathogenesis issues relevant to the development of effective vaccines to prevent infection by this route, using an animal model in which female rhesus macaques were exposed intravaginally to a high dose of simian immunodeficiency virus (SIV). We examined in detail the events that transpire from hours to a few days after intravaginal SIV exposure through week 4 to provide a framework for understanding the propagation, dissemination, and establishment of infection in lymphatic tissues (LTs) during the acute stage of infection. We show that the mucosal barrier greatly limits the infection of cervicovaginal tissues, and thus the initial founder populations of infected cells are small. While there was evidence of rapid dissemination to distal sites, we also show that continuous seeding from an expanding source of production at the portal of entry is likely critical for the later establishment of a productive infection throughout the systemic LTs. The initially small founder populations and dependence on continuous seeding to establish a productive infection in systemic LTs define a small window of maximum vulnerability for the virus in which there is an opportunity for the host, vaccines, or other interventions to prevent or control infection.  相似文献   

14.
Use of simian immunodeficiency virus for vaccine research   总被引:2,自引:0,他引:2  
Rhesus monkeys were immunized with purified, disrupted, noninfectious simian immunodeficiency virus (SIV) in adjuvant induced SIV neutralizing antibodies. Two of six previously vaccinated macaques were protected against infection when challenged with 200-1,000 animal infectious doses of uncloned, pathogenic SIV and both have remained free of signs of virus infection for 19 and 30 months. Prior vaccination appeared to be of benefit in decreasing the virus load and in delaying the onset of AIDS in animals that became infected. Nonetheless, two of four previously vaccinated monkeys that became infected following challenge eventually developed AIDS and died 505 and 538 days after infection. Thus, for a vaccine to be truly effective against AIDS, it may have to protect absolutely against initial infection.  相似文献   

15.
Live attenuated simian immunodeficiency virus (SIV) is the most efficient vaccine yet developed in monkey models of human immunodeficiency virus infection. In all successful vaccine trials, attenuation was achieved by inactivating at least the nef gene. We investigated some virological and immunological characteristics of five rhesus macaques immunized with a nef-inactivated SIVmac251 molecular clone (SIVmac251Deltanef) and challenged 15 months later with the pathogenic SIVmac251 isolate. Three animals were killed 2 weeks postchallenge (p.c.) to search for the challenge virus and to assess immunological changes in various organs. The other two animals have been monitored up for 7 years p.c., with clinical and nef gene changes being noted. The animals killed showed no increase in viral load and no sign of a secondary immune response, although the challenged virus was occasionally detected by PCR. In one of the monkeys being monitored, the vaccine virus persisted and an additional deletion occurred in nef. In the other monkey that was monitored, the challenge and the vaccine (Deltanef) viruses were both detected by PCR until a virus with a hybrid nef allele was isolated 48 months p.c. This nef hybrid encodes a 245-amino-acid protein. Thus, our results show (i) that monkeys were not totally protected against homologous virus challenge but controlled the challenge very efficiently in the absence of a secondary immune response, and (ii) that the challenge and vaccine viruses may persist in a replication-competent form for long periods after the challenge, possibly resulting in recombination between the two viruses.  相似文献   

16.
Intrarectal simian immunodeficiency virus (SIV) infection in rhesus macaques is a model for sexual transmission of primate retroviruses. Phylogenetic studies on envelope gene sequences that were present in blood following intrarectal SIV inoculation provided evidence for selective amplification of a subset of viruses present in the inoculum and defined one amino acid sequence uniquely associated with intrarectal infection. Both persistent and transient viremia states were observed after intrarectal infection. Immune responses in persistently infected animals accounted for slower rates of disease progression despite the presence of highly pathogenic viruses that were documented by transfusion studies. Transient viremia elicited protective immunity against subsequent intrarectal virus challenge but did not protect against intravenous virus challenge. Transient viremia usually but not always led to self-limiting infection. In one animal, we documented a relapse to active viremia long after the initial transient viremia. SIV transmission across mucosal barriers affects pathogenesis in the short term by limiting the types of viruses established in the host and in the longer term by establishing host responses that slow disease progression despite the presence of highly pathogenic viruses in blood.  相似文献   

17.
18.
Receptive ano-rectal intercourse is a major cause of HIV infection in men having sex with men and in heterosexuals. Current knowledge of the mechanisms of entry and dissemination during HIV rectal transmission is scarce and does not allow the development of preventive strategies. We investigated the early steps of rectal infection in rhesus macaques inoculated with the pathogenic isolate SIVmac251 and necropsied four hours to nine days later. All macaques were positive for SIV. Control macaques inoculated with heat-inactivated virus were consistently negative for SIV. SIV DNA was detected in the rectum as early as four hours post infection by nested PCR for gag in many laser-microdissected samples of lymphoid aggregates and lamina propria but never in follicle-associated epithelium. Scarce SIV antigen positive cells were observed by immunohistofluorescence in the rectum, among intraepithelial and lamina propria cells as well as in clusters in lymphoid aggregates, four hours post infection and onwards. These cells were T cells and non-T cells that were not epithelial cells, CD68(+) macrophages, DC-SIGN(+) cells or fascin(+) dendritic cells. DC-SIGN(+) cells carried infectious virus. Detection of Env singly spliced mRNA in the mucosa by nested RT-PCR indicated ongoing viral replication. Strikingly, four hours post infection colic lymph nodes were also infected in all macaques as either SIV DNA or infectious virus was recovered. Rapid SIV entry and dissemination is consistent with trans-epithelial transport. Virions appear to cross the follicle-associated epithelium, and also the digestive epithelium. Viral replication could however be more efficient in lymphoid aggregates. The initial sequence of events differs from both vaginal and oral infections, which implies that prevention strategies for rectal transmission will have to be specific. Microbicides will need to protect both digestive and follicle-associated epithelia. Vaccines will need to induce immunity in lymph nodes as well as in the rectum.  相似文献   

19.
20.
The recognition of naturally occurring rhadinoviruses in macaque monkeys has spurred interest in their use as models for human infection with Kaposi sarcoma-associated herpesvirus (human herpesvirus 8). Rhesus macaques (Macaca mulatta) and pig-tailed macaques (Macaca nemestrina) were inoculated intravenously with rhadinovirus isolates derived from these species (rhesus rhadinovirus [RRV] and pig-tailed rhadinovirus [PRV]). Nine rhadinovirus antibody-negative and two rhadinovirus antibody-positive monkeys were used for these experimental inoculations. Antibody-negative animals clearly became infected following virus inoculation since they developed persisting antibody responses to virus and virus was isolated from peripheral blood on repeated occasions following inoculation. Viral sequences were also detected by PCR in lymph node, oral mucosa, skin, and peripheral blood mononuclear cells following inoculation. Experimentally infected animals developed peripheral lymphadenopathy which resolved by 12 weeks following inoculation, and these animals have subsequently remained free of disease. No increased pathogenicity was apparent from cross-species infection, i.e., inoculation of rhesus macaques with PRV or of pig-tailed macaques with RRV, whether the animals were antibody positive or negative at the time of virus inoculation. Coinoculation of additional rhesus monkeys with simian immunodeficiency virus (SIV) isolate SIVmac251 and macaque-derived rhadinovirus resulted in an attenuated antibody response to both agents and shorter mean survival compared to SIVmac251-inoculated controls (155.5 days versus 560.1 days; P < 0.019). Coinfected and immunodeficient macaques died of a variety of opportunistic infections characteristic of simian AIDS. PCR analysis of sorted peripheral blood mononuclear cells indicated a preferential tropism of RRV for CD20(+) B lymphocytes. Our results demonstrate persistent infection of macaque monkeys with RRV and PRV following experimental inoculation, but no specific disease was readily apparent from these infections even in the context of concurrent SIV infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号