首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pulmonary surfactant is a mixture of lipids and proteins that is secreted by alveolar Type II cells. It reduces alveolar surface tension and hence the work of breathing. Despite the tremendous diversity of lung structures amongst the vertebrates, the composition of surfactant is highly conserved. Conserved elements of the surfactant system amongst distantly related species are likely to be crucial factors for successful lung development. Understanding the mechanisms by which the surfactant system becomes operational in animals with dramatically different birthing strategies and in distantly related species will provide important information about the role of the surfactant system in the commencement of air breathing and the processes regulating surfactant maturation and secretion. In mammals, the embryonic maturation of the surfactant system is controlled by a host of factors, including glucocorticoids, thyroid hormones, and autonomic neurotransmitters. Here we review the mechanisms controlling the maturation of surfactant production, including birthing strategy, phylogeny, lung structure, and posthatching environment. Using four species of egg-laying amniote (chicken, dragon lizard, sea turtle, and crocodile) previously described in detail and the large amount of information available for mammals, we examine the hypothesis that the control of surfactant production is dependent on glucocorticoids (dexamethasone [Dex]), thyroid hormones (T3), and autonomic neurotransmitters (epinephrine and carbachol). We also examine whether the overall intrinsic pattern of the control of surfactant maturation is conserved throughout the vertebrate radiation and then how the environment (extrinsic factors) may account for the observed differences in the patterns of development. We also discuss the utility of a coculture system of embryonic Type II cells and fibroblasts to determine the evolutionary pattern behind the control of surfactant and to demonstrate that the surfactant system matures under multihormonal control. We demonstrate that Dex and T3 are stimulators of surfactant production during embryonic development, but they lose their efficacy closer to hatching or birth. Epinephrine stimulates surfactant secretion beyond 75% of development and also after hatching or birth. Carbachol stimulates surfactant secretion in the bearded dragon and saltwater crocodile but not in the sea turtle, chicken, or mammals. It is likely that the differences in control of surfactant development are likely to be primarily related to metabolic activity and the duration of incubation (i.e., the "speed" of development). Moreover, the hormones examined appear important in promoting development and therefore appear conserved within the amniotes. However, the autonomic neurotransmitters induced different responses in different species. Hence, some factors are crucial for the proper maturation of the surfactant system, whereas others vary throughout evolution without being detrimental to the overall function of the system.  相似文献   

2.
3.
Pulmonary surfactant is a lipid-protein complex, synthesized and secreted by the respiratory epithelium of lungs to the alveolar spaces, whose main function is to reduce the surface tension at the air-liquid interface to minimize the work of breathing. The activity of surfactant at the alveoli involves three main processes: (i) transfer of surface active molecules from the aqueous hypophase into the interface, (ii) surface tension reduction to values close to 0 mN/m during compression at expiration and (iii) re-extension of the surface active film upon expansion at inspiration. Phospholipids are the main surface active components of pulmonary surfactant, but the dynamic behaviour of phospholipids along the breathing cycle requires the necessary participation of some specific surfactant associated proteins. The present review summarizes the current knowledge on the structure, disposition and lipid-protein interactions of the hydrophobic surfactant proteins SP-B and SP-C, the two main actors participating in the surface properties of pulmonary surfactant. Some of the methodologies currently used to evaluate the surface activity of the proteins in lipid-protein surfactant preparations are also revised. Working models for the potential molecular mechanism of SP-B and SP-C are finally discussed. SP-B might act in surfactant as a sort of amphipathic tag, directing the lipid-protein complexes to insert and re-insert very efficiently into the air-liquid interface along successive breathing cycles. SP-C could be essential to maintain association of lipid-protein complexes with the interface at the highest compressed states, at the end of exhalation. The understanding of the mechanisms of action of these proteins is critical to approach the design and development of new clinical surfactant preparations for therapeutical applications.  相似文献   

4.
Pulmonary surfactant has previously been shown to change during development, both in composition and function. Adult pinnipeds, unlike adult terrestrial mammals, have an altered lung physiology to cope with the high pressures associated with deep diving. Here, we investigated how surfactant composition and function develop in California sea lions (Zalophus californianus). Phosphatidylinositol was the major anionic phospholipid in the newborn, whereas phosphatidylglycerol was increased in the adult. This increase in phosphatidylglycerol occurred at the expense of phosphatidylinositol and phosphatidylserine. There was a shift from long chain and polyunsaturated phospholipid molecular species in the newborn to shorter chain and mono- and disaturated molecular species in the adult. Cholesterol and SP-B concentrations were also higher in the adult. Adult surfactant could reach a lower equilibrium surface tension, but newborn surfactant could reach a lower minimum surface tension. The composition and function of surfactant from newborn California sea lions suggest that this age group is similar to terrestrial newborn mammals, whereas the adult has a diving mammal surfactant that can aid the lung during deep dives. The onset of diving is probably a trigger for surfactant development in these animals.  相似文献   

5.
W. D. Cohen 《Protoplasma》1982,113(1):23-32
Summary Cytomorphic structure was studied in erythrocytes ofBatrachoseps salamanders, a genus unique among non-mammalian vertebrates because most of the erythrocytes are anucleate. These anucleate erythrocytes are highly flattened, quite variable in size, and generally elliptical. All of them were found to contain marginal bands of microtubules (MBs), as observed in phase contrast and darkfield after Triton lysis. The MBs of larger cells typically twisted into figure-8 forms upon lysis. Whole mounts of the lysed anucleate cells consisted only of the MB plus a trans-MB network of material (TBM), as observed by electron microscopy. If lysis was carried out in the presence of 0.5 M KCl, all of the MBs circularized immediately and none were twisted. The network (TBM) was now missing, suggesting that it is needed for maintenance of MB ellipticity and plays a role in MB twisting. Small numbers of living anucleate erythrocytes were constricted in their mid-region, and others were pointed at one end. Correspondingly pointed MBs were observed after lysis, exhibiting a range of forms compatible with the mechanism proposed byEmmel (1924) in which the anucleate erythrocytes arise by amitotic division of nucleated ones.The results show that these erythrocytes retain the typical nonmammalian cytomorphic system, and are thus unlike those of adult mammals. The network component (TBM) is present even though nuclei are absent, making it unlikely that it functions simply to position the nucleus. The observations are consistent with the hypothesis that the flattened, elliptical shape of non-mammalian vertebrate erythrocytes is generated by TBM tension applied across the faces of the MB frame, and that excessive tension induced by lysis (without KCl) produces MB twisting.  相似文献   

6.
The origin of the amniote egg is one of the most significant events in the evolution of terrestrial vertebrates. This innovation was probably driven by increased egg size, and to find potential parallels, we can examine the derived development of extant amphibians with large eggs. The embryo of the Puerto Rican tree frog, Eleutherodactylus coqui, exhibits an alteration of its fate map and a secondary coverage of its yolky cells, reflecting the large 3.5 mm egg. Comparable changes may have occurred with the derivation of an amniote pattern of development. Future investigations should focus on the molecular organization of the egg. In the model amphibian for development, Xenopus laevis, information for embryonic germ layers, the dorsal axis, and germ cells is stored mainly as localized RNAs at the vegetal pole of the egg. These localizations would likely be changed with increased egg size. A review of the orthologues of the key X. laevis genes raises the possibility that their activities are not conserved in other vertebrates.  相似文献   

7.
Developing rabbits reutilize the phosphatidylcholine of surfactant with an efficiency of about 95%. The efficiency of reutilization of other components of surfactant have not been determined. 3-day-old rabbits were injected intratracheally with [3H]dipalmitoylphosphatidylcholine (DPPC) mixed with unlabeled natural surfactant and either disaturated [32P]phosphatidylglycerol (DSPG) or [14C]dipalmitoylphosphatidyl-ethanolamine (DPPE). The recovery of [3H]DPPC, [14C]DPPE, and [32P]DSPG in the alveolar wash was measured at different times after injection. By plotting the ratio of [32P]DSPG to [3H]DPPC or [14C]DPPE to [3H]DPPC counts/min in the alveolar wash vs. time after injection we showed that these two phospholipids are reutilized less efficiently than phosphatidylcholine. Based on other studies, several assumptions were made about the kinetics of surfactant phosphatidylethanolamine and phosphatidylglycerol. From the slopes of the semilog plots of total [14C]DPPE and total [32P]DSPG counts/min in the alveolar wash vs. time and these assumptions, we determined that these two phospholipids were reutilized at an efficiency of only 79%.  相似文献   

8.
Calcium interactions in pulmonary surfactant   总被引:2,自引:0,他引:2  
The surfactant properties of natural bovine pulmonary surfactant, its lipid extracts and acetone precipitates of lipid extracts have been examined with an artificial alveolus model, the pulsating-bubble surfactometer. At bulk concentrations of 0.4% (wt./vol.) phospholipid in saline, all three preparations exhibited surfactant activity, i.e., were capable of reducing the surface tension of the pulsating bubble to approx. 27 dynes/cm at maximum bubble radius and to near zero at minimum bubble radius. At a concentration of 0.1% (wt./vol.) in saline, only natural surfactant was effective. Acetone-precipitated surfactant at 0.1% (wt./vol.) achieved these criteria in the presence of 5 mM calcium, but 15-20 mM calcium was required to restore the surfactant activity of lipid extract surfactant. Chemical analysis revealed that lipid extraction decreases the protein content but does not alter the endogenous calcium levels. A calcium requirement for natural surfactant could only be demonstrated after repeated treatment with chelators for divalent cations. Surfactant activity was restored by low levels of calcium or high levels of magnesium. Paradoxically, a calcium requirement could not be demonstrated by treating acetone-precipitated lipid extract with chelators. The subtle differences noted between natural, lipid extract and acetone-precipitated lipid extract surfactant with the pulsating-bubble assay show that the latter preparations do not represent simplified model systems for the natural product.  相似文献   

9.
Pulmonary surfactant is a mixture of lipids and proteins that controls the surface tension of the fluid lining the inner lung. Its composition is conserved among the vertebrates. Here we hypothesize that the in ovo administration of glucocorticoids and thyroid hormones during late incubation will accelerate surfactant development in the saltwater crocodile, Crocodylus porosus. We also hypothesize that the increased maturation of the type II cells in response to hormone pretreatment will result in enhanced responsiveness of the cells to surfactant secretagogues. We sampled embryos at days 60, 68, and 75 of incubation and after hatching. We administered dexamethasone (Dex), 3,5,3'-triiodothyronine (T(3)), or a combination of both hormones (Dex + T(3)), 48 and 24 h before each prehatching time point. Lavage analysis indicated that the maturation of the phospholipids (PL) in the lungs of embryonic crocodiles occurs rapidly. Only T(3) and Dex + T(3) increased total PL in lavage at embryonic day 60, but Dex, T(3), and Dex + T(3) increased PL at day 75. The saturation of the PLs was increased by T(3) and Dex + T(3) at day 68. Swimming exercise did not increase the amount or alter the saturation of the surfactant PLs. Pretreatment of embryos with Dex, T(3), or Dex + T(3) changed the secretion profiles of the isolated type II cells. Dex + T(3) increased the response of the cells to agonists at days 60 and 68. Therefore, glucocorticoids and thyroid hormones regulate surfactant maturation in the crocodile.  相似文献   

10.
11.
《CMAJ》1969,101(7):109-110
  相似文献   

12.
Antiserum raised against a mammalian neurophysin, porcine neurophysin-II, was used in conjugation with the immunoperoxidase histochemical technique to detect neurophysin in the hypothalamus of the chickens, frog and goldfish. In the chickens, the paraventricular and supraoptic nuceli as well as the internal and external zones of the median eminence stained for neurophysin. Material in the perikarya of the frog and goldfish preoptic nucleus also cross-reacted immunologically against anti-porcine neurophysin-II serum. Serial dilutions of the anti-mammalian neurophysins serum were carried out in order to ascertain at which point the 3-layer immunocytochemical reaction ceased to localize neurophysin. In the chicken, frog and goldfish as well as in the rat, neurosecretory structures became difficult to visualize between 12800 and 25400 fold dilution of antiserum. The results demonstrate that the immunological cross-reactivity previously observed between an anti-mammalian neurophysin serum and the neurophysin isolated from mammals of varying phylogeny also extends to certain non-mammalian vertebrates and is suggestive of a structural homology of neurophysin from different species.  相似文献   

13.
Pulmonary surfactant is a mixture of phospholipids, neutral lipids, and proteins that controls the surface tension of the fluid lining the lung. Surfactant amounts and composition are influenced by such physiological parameters as metabolic rate, activity, body temperature, and ventilation. Microchiropteran bats experience fluctuations in these parameters throughout their natural daily cycle of activity and torpor. The activity cycle of the microchiropteran bat Chalinolobus gouldii was studied over a 24-h period. Bats were maintained in a room at constant ambient temperature (24 degrees C) on an 8L : 16D cycle. Diurnal changes in the amount and composition of surfactant were measured at 4-h intervals throughout a 24-h period. The C. gouldii were most active at 2 a.m. and were torpid at 2 p.m. Alveolar surfactant increased 1.5-fold immediately after arousal. The proportion of disaturated phospholipid remained constant, while surfactant cholesterol levels increased 1.5-fold during torpor. Alveolar cholesterol in C. gouldii was six times lower than in other mammals. Cholesterol appears to function in maintaining surfactant fluidity during torpor in this species of bat.  相似文献   

14.
Pulmonary surfactant is a surface active material composed of both lipids and proteins that is produced by alveolar type II pneumocytes. Abnormalities of surfactant in the immature lung or in the acutely inflamed mature lung are well described. However, in a variety of subacute diseases of the mature lung, abnormalities of lung surfactant may also be of importance. These diseases include chronic obstructive pulmonary disease, asthma, cystic fibrosis, interstitial lung disease, pneumonia, and alveolar proteinosis. Understanding of the mechanisms that disturb the lung surfactant system may lead to novel rational therapies for these diseases.  相似文献   

15.
16.
17.
Experiments on 23 white rats and 10 guinea pigs have shown that preliminarily indomethacin-induced inhibition of prostaglandins synthesis prevented development of pulmonary oedema, evoked by heterologous serum in rats and by vagotomy in guinea pigs. Fourfold infusion of indomethacin in experiments on 29 rats decreased extracellular fraction activity of the pulmonary surfactant and exhausted its cellular reserve.  相似文献   

18.
Mammalian lungs secrete a mixture of surface-active lipids (surfactant), which greatly reduces the surface tension of the fluid coating the inner lung surface, thereby reducing the risk of collapse upon deflation and increasing compliance upon inflation. During foetal lung maturation, these lipids become enriched in the primary and active ingredient, a disaturated phopholipid. However, disaturated phospholipids exist in their inactive gellike form at temperatures below 37°C and thus are inappropriate for controlling surface tension in the lungs of many ectotherms. We examined the development of the composition and function of the surfactant system of the tiger salamander (Ambystoma tigrinum) during metamorphosis from the fully aquatic larva (termed stage I) through an intermediate air-breathing larval form (stage IV) to the terrestrial adult (stage VII). Biochemical analysis of lung washings from these three life stages revealed a decrease in the percentage of disaturated phospholipid per total phospholipid (23.03 versus 15.92%) with lung maturity. The relative cholesterol content remained constant. The increased level of phospholipid saturation in the fully aquatic larvae may reflect their generally higher body temperature and the higher external hydrostatic compression forces exerted on the lungs, compared to the terrestrial adults. Opening pressure (pressure required for initial lung opening) prior to lavage decreased from larval to adult salamanders (7.96 versus 4.69 cm H2O), indicating a decrease in resistance to opening with lung development. Opening pressure increased after lavage in older aquatic (stage IV) larvae (5.36 versus 9.80 cm H2O) and in the adults (4.69 versus 7.65 cm H2O), indicating that the surfactant system in salamanders may have an antiglue function which prevents apposing epithelial surfaces from adhering together.Abbreviations bm body mass - Chol cholesterol - DSP disaturated phospholipid - PC phosphatidylcholine - PL phospholipid - postlav postlavage - prelav prelavage - P-V pressure-volume - RH relative humidity - Tb body temperature - USP unsaturated phospholipid - WL wet lung mass  相似文献   

19.
Schram V  Hall SB 《Biophysical journal》2001,81(3):1536-1546
We determined the influence of the two hydrophobic proteins, SP-B and SP-C, on the thermodynamic barriers that limit adsorption of pulmonary surfactant to the air-water interface. We compared the temperature and concentration dependence of adsorption, measured by monitoring surface tension, between calf lung surfactant extract (CLSE) and the complete set of neutral and phospholipids (N&PL) without the proteins. Three stages generally characterized the various adsorption isotherms: an initial delay during which surface tension remained constant, a fall in surface tension at decreasing rates, and, for experiments that reached approximately 40 mN/m, a late acceleration of the fall in surface tension to approximately 25 mN/m. For the initial change in surface tension, the surfactant proteins accelerated adsorption for CLSE relative to N&PL by more than ten-fold, reducing the Gibbs free energy of transition (DeltaG(O)) from 119 to 112 kJ/mole. For the lipids alone in N&PL, the enthalpy of transition (DeltaH(O), 54 kJ/mole) and entropy (-T. DeltaS, 65 kJ/mole at 37 degrees C) made roughly equal contributions to DeltaG(O). The proteins in CLSE had little effect on -T. DeltaS(O) (68 kJ/mole), but lowered DeltaG(O) for CLSE by reducing DeltaH(O) (44 kJ/mole). Models of the detailed mechanisms by which the proteins facilitate adsorption must meet these thermodynamic constraints.  相似文献   

20.
Cholesterol is the major neutral lipid in lung surfactant, accounting for up to 8-10% of surfactant mass, while surfactant protein SP-C (∼ 4.2 kDa) accounts for no more than 1-1.5% of total surfactant weight but plays critical roles in formation and stabilization of pulmonary surfactant films. It has been reported that surfactant protein SP-C interacts with cholesterol in lipid/protein interfacial films and this interaction could have a potential role on modulating surfactant function. In the present study, we have analyzed the effect of cholesterol on the structure, orientation and dynamic properties of SP-C embedded in physiologically relevant model membranes. The presence of cholesterol does not induce substantial changes in the secondary structure of SP-C, as analyzed by Attenuated Reflection Fourier Transformed Infrared spectroscopy (ATR-FTIR). However, the presence of cholesterol modifies the orientation of the transmembrane helix and the dynamic properties of the protein, as demonstrated by hydrogen/deuterium exchange kinetics. The effect of cholesterol on SP-C reconstituted in zwitterionic, entirely fluid, membranes made of POPC (palmitoyloleoylphospatidylcholine) or in anionic membranes with coexistence of ordered and disordered phases, such as those made of dipalmitoylphosphatidylcholine (DPPC):POPC:Palmitoyloleoylphosphatidylglycerol (POPG) (50:25:15) is dual. Cholesterol decreases the exposure of the protein to the aqueous environment and the tilt of its transmembrane helical segment up to a ratio Cholesterol:SP-C of 4.8 and 2.4 (mol/mol) in the two lipid systems tested, respectively, and it increases the exposure and tilt at higher cholesterol proportions. The results presented here suggest the existence of an interaction between SP-C and cholesterol-enriched phases, with consequences on the behavior of the protein, which could be of relevance for cholesterol-dependent structure-function relationships in pulmonary surfactant membranes and films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号