首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Abstract Thirty isolates of Helicobacter pylori from gastric biopsies agglutinated human erthyrocyte suspensions. Crude mucin preparation derived from saliva of 20 different donors were examined for their ability to inhibit haemagglutination. All mucin preparations exhibited strong inhibitory activity. Removal of sialic residues from mucin preparations by treatment with neuraminidase resulted in a substantial reduction of their inhibitory activity. The mucin prepations had no bactericidal or aggregation activity for H. pylori . These results are discussed in the context of the role of mucins in colonization of the gastric mucosa by H. pylori  相似文献   

2.
The role of human gastric mucin in mucosal protection against Helicobacter pylori colonization was investigated. H. pylori cells were incubated with purified intact mucin or its acidic fractions and then examined for their inhibitory capacity of H. pylori attachment to erythrocytes. Titration data established that the inhibitory activity of mucin was associated with its acidic component as the fraction enriched in sialic acid and sulfate showed 16-fold higher inhibitory titer than that of the intact mucin. While the inhibitory titer of acidic mucin fraction was not affected by the removal of sialic acid, the desulfation led to a complete loss of its inhibitory activity, thus pointing towards the importance of sulfate ester groups in this process. The results for the first time point towards the involvement of sulfomucins in the protection of gastric mucosa against colonization by H. pylori.  相似文献   

3.
The emergence of antibiotic-resistant Helicobacter pylori is of concern in the treatment of H. pylori-associated gastroduodenal diseases. As the organism was reported to bind gastric mucin, we used porcine gastric mucin as substrate to assess the antiadhesive property of polysaccharides derived from Spirulina (PS), a commercially available microalga, against the binding of H. pylori to gastric mucin. Results show that polysaccharides prevented H. pylori from binding to gastric mucin optimally at pH 2.0, without affecting the viability of either bacteria or gastric epithelial cells, thus favouring its antiadhesive action in a gastric environment. Using ligand overlay analysis, polysaccharide was demonstrated to bind H. pylori alkyl hydroperoxide reductase (AhpC) and urease, which have shown here to possess mucin-binding activity. An in vivo study demonstrated that bacteria load was reduced by >90% in BALB/c mice treated with either Spirulina or polysaccharides. It is thus suggested that polysaccharides may function as a potential antiadhesive agent against H. pylori colonization of gastric mucin.  相似文献   

4.
Helicobacter pylori colonizes the mucus niche of the gastric mucosa and is a risk factor for gastritis, ulcers and cancer. The main components of the mucus layer are heavily glycosylated mucins, to which H. pylori can adhere. Mucin glycosylation differs between individuals and changes during disease. Here we have examined the H. pylori response to purified mucins from a range of tumor and normal human gastric tissue samples. Our results demonstrate that mucins from different individuals differ in how they modulate both proliferation and gene expression of H. pylori. The mucin effect on proliferation varied significantly between samples, and ranged from stimulatory to inhibitory, depending on the type of mucins and the ability of the mucins to bind to H. pylori. Tumor-derived mucins and mucins from the surface mucosa had potential to stimulate proliferation, while gland-derived mucins tended to inhibit proliferation and mucins from healthy uninfected individuals showed little effect. Artificial glycoconjugates containing H. pylori ligands also modulated H. pylori proliferation, albeit to a lesser degree than human mucins. Expression of genes important for the pathogenicity of H. pylori (babA, sabA, cagA, flaA and ureA) appeared co-regulated in response to mucins. The addition of mucins to co-cultures of H. pylori and gastric epithelial cells protected the viability of the cells and modulated the cytokine production in a manner that differed between individuals, was partially dependent of adhesion of H. pylori to the gastric cells, but also revealed that other mucin factors in addition to adhesion are important for H. pylori-induced host signaling. The combined data reveal host-specific effects on proliferation, gene expression and virulence of H. pylori due to the gastric mucin environment, demonstrating a dynamic interplay between the bacterium and its host.  相似文献   

5.
BACKGROUND: Extracellular urease proteins located on the surface of Helicobacter pylori are gastric mucin-targeted adhesins, which play an important role in infection and colonization to the host. In this study we have determined the inhibitory activity of a variety of melanoidins, protein-derived advanced Maillard reaction products, ubiquitously found in heat-treated foods, on urease-gastric mucin adhesion. In addition, we have determined the anticolonization effect of melanoidin I, prepared by the Maillard reaction between casein and lactose, in an animal model and in human subjects infected with this bacterium. METHODS: The inhibitory activity of each compound was determined by a competitive binding assay of labeled gastric mucin to plate-immobilized urease. Melanoidin I was used in an in vivo trial using euthymic hairless mice as an infection model. Melanoidin I was consumed for 8 weeks by subjects infected with H. pylori. The [(13)C] urease breath test and H. pylori-specific antigen in the stool (HpSA) test were performed on subjects at week 0 and week 8. RESULTS: A variety of food protein-derived melanoidins strongly inhibited urease-gastric mucin adhesion in the concentration range of 10 micro g/ml to 100 micro g/ml. In particular, melanoidin I significantly (p <.05) suppressed colonization of H. pylori in mice when given for 10 weeks via the diets. Eight weeks daily intake of 3 g melanoidin I significantly (p <.05) decreased the optical density of HpSA in subjects. CONCLUSION: Foods containing protein-derived melanoidins may be an alternative to antibiotic-based therapy to prevent H. pylori that combines safety, ease of administration and efficacy.  相似文献   

6.
Peroxisome proliferator-activated receptor gamma (PPARgamma) plays a critical role in the regulation of the expression of genes associated with inflammation. In this study, we report that PPARgamma activation leading to the impedance of H. pylori lipopolysaccharide (LPS) inhibitory effect on gastric mucin synthesis occurs with the involvement of phosphatidylinositol 3-kinase (PI3K) and extracellular signal-regulated kinase (ERK) pathways. Using gastric mucosal cells in culture, we show that activation of PPARgamma with a specific synthetic agonist, ciglitazone, prevents in a dose-dependent fashion (up to 90.2%) the LPS-induced reduction in mucin synthesis, and the effect is reflected in a marked decrease in the LPS-induced apoptosis (72.4%), NO generation (80.1%), and the expression of NOS-2 activity (90%). The impedance by ciglitazone of the LPS-induced reduction in mucin synthesis was blocked by wortmannin, a specific inhibitor of P13K and PD98059, an inhibitor of ERK. Both inhibitors, moreover, caused further enhancement in the LPS-induced NO generation and countered the inhibitory effect of ciglitazone on the LPS-induced upregulation in NOS-2. Our findings point to PI3K and ERK as mediators of PPARgamma agonist effect leading to the impedance of H. pylori LPS inhibition on gastric mucin synthesis.  相似文献   

7.
Helicobacter pylori is a primary factor in the etiology of gastric disease, and its early pathogenic effects are manifested by up-regulation of inflammatory processes and the loss of mucus coat continuity. We investigated the role of extracellular signal-regulated kinase (ERK) and p38 mitogen activated protein kinase (MAPK) in the disturbances in gastric mucin synthesis and apoptotic processes evoked by H. pylori lipopolysaccharide (LPS). Exposure of gastric mucosal cells to the LPS led to a dose-dependent decrease (up to 59.5%) in mucin synthesis, accompanied by a marked increase in caspase-3 activity and apoptosis. Inhibition of ERK with PD98059 accelerated (up to 36.1%) the LPS-induced decrease in mucin synthesis, and caused further enhancement in caspase-3 activity and apoptosis. Blockade of p38 kinase with SB203580 produced reversal in the LPS-induced reduction in mucin synthesis, and substantially countered the LPS-induced increases in caspas-3 activity and apoptosis. Moreover, inhibition of caspase-3 blocked the LPS-induced increase in caspse-3 activity and produced an increase in mucin synthesis. Thus the detrimental influence of H. pylori LPS on gastric mucin synthesis is closely linked to caspase-3 activation and apoptosis, and involves ERK and p38 kinase participation.  相似文献   

8.
Platelet-activating factor (PAF) is now recognized as the most proximal mediator of cellular events triggered by bacterial infection. In this study, we report that a specific PAF antagonist, BN52020, impedes the reduction in mucin synthesis evoked in gastric mucosal cells by H. pylori LPS. The impedance by BN52020 of the LPS inhibitory effect on mucin synthesis was blocked by wortmannin, an inhibitor of phosphatidylinositol 3-kinase (P13K), which also obviated the inhibitory effect of BN52020 on the LPS-induced upregulation in apoptosis, TNF-alpha, and NO generation. A reduction in the impedance by BN52020 of the LPS detrimental effect on mucin synthesis was also attained with cNOS inhibitor, L-NNA, whereas NOS-2 inhibitor, 1400W caused a potentiation in the impedance effect of BN52020. However, while 1400W and BN52020 countered the potentiating effect of wortmannin on the LPS-induced decrease in mucin synthesis, a further exacerbation of the potentiating effect of wortmannin was attained in the presence of cNOS inhibitor, L-NNA. Our findings suggest that PAF, through the interference with PI3K-dependent cNOS activation, plays a critical role in influencing the extent of pathological consequences of H. pylori infection on the synthesis of gastric mucin.  相似文献   

9.
BACKGROUND: Helicobacter pylori is found within the gastric surface mucous gel layer and in the epithelial surface. Gastric cancer cells have been used in experimental H. pylori infection in vitro, although cancer cells have some abnormalities in cellular properties. The aim of this study was to develop an in vitro H. pylori infection model using normal gastric surface cells that produce gastric mucin. MATERIALS AND METHODS: Normal murine gastric surface mucous cells (GSM06) were cultured by the liquid interface method using a serum-free medium and a collagen gel containing a fibroblast cell line (L929) and infected with H. pylori. Infection by H. pylori was assessed by enumerating the colony-forming units (CFU) of H. pylori adhered to GSM06 cells and by transmission electron microscopy. The production of mucin was determined by a lectin binding assay, sugar analysis, and MUC5AC gene expression. RESULTS: GSM06 cells cultured under these conditions produced mucin containing N-acetylgalactosamine and MUC5AC as the core protein. Significantly higher numbers of H. pylori adhered to GSM06 cells under mucin-producing conditions than under nonproducing conditions. Microscopic observation showed a filamentous structure resembling a type IV secretion system apparatus formed between the surface of GSM06 cells and H. pylori. CONCLUSIONS: This study demonstrates a novel in vitro H. pylori infection model using mucin-producing murine GSM06 cells for early stages of infection.  相似文献   

10.
Cell surface characteristics of Helicobacter pylori   总被引:4,自引:0,他引:4  
Abstract Helicobacter pylori is an important gastroduodenal pathogen of humans. Immunological and structural studies have been performed on the phospholipids, lipopolysaccharides (LPS) and some surface proteins of H. pylori strains. H. pylori LPS has, in general, low immunological activity and this property may aid the survival of this chronic infection. Nevertheless, H. pylori LPS has been found to influence the quality of gastric mucin and to stimulate pepsinogen secretion, thereby contributing to gastric disease. A number of putative adhesins of the bacterium have been described. This multiplicity of adhesins may reflect that H. pylori adherence is a multi-step process involving different interactions, and that different adhesins may mediate adherence to various sites in gastric tissue.  相似文献   

11.
Activation of cytosolic phospholipase A(2) (cPLA(2)) by bacterial LPS for the rapid release of arachidonic acid from membrane phospholipids is considered a key step in the generation of platelet-activating factor (PAF), recognized as the most proximal mediator of inflammatory events triggered by bacterial infection. In this study, we report on the role of leptin in modulation of the detrimental consequences of H. pylori LPS-induced cPLA(2) activation that result in the disturbances in gastric mucin synthesis. Employing gastric mucosal cells labeled with [(3)H] arachidonic acid, we show that H. pylori LPS-induced cPLA(2) activation, associated with up-regulation in apoptosis and PAF generation, and the impairment in gastric mucin synthesis, was subject to a dose-dependent suppression by leptin, as well as the inhibition by MAFP, a specific inhibitor of cPLA(2). A potentiation in the countering capacity of leptin on the LPS-induced up-regulation in apoptosis, arachidonic acid release and PAF generation was attained in the presence of ERK inhibitor, PD98059, while PI3K inhibitor, wortmannin had no effect. On the other hand, the prevention by leptin of the LPS detrimental effect on mucin synthesis was subject to suppression by wortmannin, an inhibitor of PI3K as well as the inhibitor of ERK, PD98059. Moreover, potentiation in the effect of leptin on the LPS-induced decrease in mucin synthesis was attained with cPLA(2) inhibitor, MAFP as well as PAF receptor antagonist, BN52020. The results of our findings point to H. pylori LPS-induced ERK-dependent cPLA(2) activation as a critical factor influencing the level of PAF generation, and hence the extent of pathological consequences of H. pylori infection on the synthesis of gastric mucin. Furthermore, we show that leptin counters the pathological consequences of H. pylori-induced cPLA(2) activation on gastric mucin synthesis through the involvement in signaling events controlled by MAPK/ERK and PI3K pathways.  相似文献   

12.
Slomiany BL  Slomiany A 《IUBMB life》2006,58(4):217-223
Release of arachidonic acid from membrane glycerophospholipids by cytosolic phospholipase A2 (cPLA2) is a key step in the generation of platelet-activating factor (PAF), recognized as the most proximal mediator of inflammatory events triggered by bacterial infection. Here, we report on the role of cPLA2 in the disturbances in gastric mucin synthesis evoked by the LPS of H. pylori, a bacterium identified as a primary cause of gastric disease. Using rat gastric mucosal cells, we show that H. pylori LPS detrimental effect on gastric mucin synthesis, associated with up-regulation in PAF and endothelin-1 (ET-1) generation, was subject to suppression by a specific inhibitor of cPLA2, MAFP. Moreover, the LPS-induced changes in mucin synthesis and ET-1 generation were countered by PAF receptor antagonist, BN52020. The impedance by PAF antagonist of the LPS-induced reduction in mucin synthesis was countered by wortmannin, an inhibitor of PI3K, as well as by ERK inhibitor, PD98059. The blockade of ERK caused also inhibition of the LPS-induced cPLA2 activation and amplification in the impedance capacity of PAF antagonist on the LPS-induced ET-1 generation, while the inhibitor of PI3K had no effect. Our findings are the first to demonstrate that the detrimental consequences of H. pylori LPS on gastric mucin synthesis involve ERK-dependent cPLA2 activation that leads to up-regulation in PAF generation and ET-1 production.  相似文献   

13.
The effect of H. pylori lipopolysaccharide on the synthesis and secretion of sulfated mucin in gastric mucosa was investigated using mucosal segments incubated in the presence of [3H]proline, [3H]glucosamine and [35S]Na2SO4. The lipopolysaccharide, while showing no discernible effect on the apomucin synthesis was found to inhibit the process of mucin glycosylation and sulfation, which at 100 micrograms/ml lipopolysaccharide reached the optimal inhibition of 65%. The analysis of mucin secretory responses revealed that the lipopolysaccharide by first 15 min caused a 57% stimulation in sulfomucin secretion followed thereafter by inhibition, which reached maximum of 32% by 45 min. The results suggest that colonization of gastric mucosa by H. pylori may be detrimental to the process of gastric sulfomucin synthesis and secretion.  相似文献   

14.
As all bacteria studied to date, the gastric pathogen Helicobacter pylori has an alternate lifestyle as a biofilm. H. pylori forms biofilms on glass surfaces at the air-liquid interface in stationary or shaking batch cultures. By light microscopy, we have observed attachment of individual, spiral H. pylori to glass surfaces, followed by division to form microcolonies, merging of individual microcolonies, and growth in the third dimension. Scanning electron micrographs showed H. pylori arranged in a matrix on the glass with channels for nutrient flow, typical of other bacterial biofilms. To understand the importance of biofilms to the H. pylori life cycle, we tested the effect of mucin on biofilm formation. Our results showed that 10% mucin greatly increased the number of planktonic H. pylori while not affecting biofilm bacteria, resulting in a decline in percent adherence to the glass. This suggests that in the mucus-rich stomach, H. pylori planktonic growth is favored over biofilm formation. We also investigated the effect of specific mutations in several genes, including the quorum-sensing gene, luxS, and the cagE type IV secretion gene. Both of these mutants were found to form biofilms approximately twofold more efficiently than the wild type in both assays. These results indicate the relative importance of these genes to the production of biofilms by H. pylori and the selective enhancement of planktonic growth in the presence of gastric mucin.  相似文献   

15.
16.
BACKGROUND: The gastric mucosal protective barrier consists of two essential elements: mucus glycoprotein, mucin, secreted by gastric mucosal cells, and the mucin binding protein (MBP), an integral component of the apical epithelial membrane. The studies described here provide evidence on the structure of MBP, its interaction with mucin, and the susceptibility to phospholipase C (PLC) and Helicobacter pylori protease. MATERIAL AND METHODS: The rat gastric mucosa was used to isolate mucin and the apical epithelial membranes. A buffered saline extract of the mucosal cells was used for the isolation of mucin and the 1% Triton X-100-insoluble gastric apical membranes for the preparation of MBP. RESULTS: The studies on MBP, the mucosal mucin receptor revealed that the protein is anchored in apical membrane through glycosylphosphatidylinositol (GPI). The deamination of MBP with nitrous acid afforded phosphatidylinositols (PIs) and a water soluble, 97 kDa glycosylated protein. The in situ studies with untreated rat gastric mucosa and the mucosa depleted of mucin showed that MBP without mucin was susceptible to the proteolytic degradation with pepsin and H. pylori proteases, but was not released from the apical membrane by the treatment with bacterial PLC. CONCLUSION: The study of carbohydrate ligands for MBP revealed binding of octa- and decasaccharides of gastric mucin. The severe impairment in mucin adhesion to MBP, induced by the diet containing ethanol, supports the conclusion that specific carbohydrate determinants participate in mucin attachment to MBP and epigenetic control of the processes that coordinates its interaction with apical mucosal epithelium in the formation of innate protective barrier.  相似文献   

17.
The specificity of Campylobacter pylori cell surface lectin, a presumptive colonization factor, was investigated using various sulfated and sialic acid containing glycolipids. C. pylori cells, cultured from human antral mucosal biopsies, were incubated with intact and modified glycolipid preparations and examined for agglutination inhibition of human erythrocytes. Titration data revealed that the inhibitory activity was highest with lactosylceramide sulfate and GM3 ganglioside, while galactosylceramide sulfate GM1, GD1a and GD1b gangliosides were less effective. A strong inhibitory activity towards C. pylori hemagglutin was also observed with an antiulcer agent, sucralfate. The inhibitory effect of both types of glycolipids was abolished by the removal of sialic acid and sulfate ester groups, thus indicating that sulfated and sialic acid containing glycolipids with terminal lactosyl moieties serve as mucosal receptors for colonization of gastric epithelium by C. pylori.  相似文献   

18.
Helicobacter pylori infects over half the world's population, but only 3% of those infected develop peptic ulcer, gastric cancer, and mucosa-associated lymphoid tissue (MALT) lymphoma. In H. pylori, alpha-glucosyl cholesterol constitutes more than 25% of cell wall lipids, and it has been suggested that alpha-glucosyl cholesterol is essential for H. pylori viability. Here, we identified cholesterol alpha-glucosyltransferase (CHLalphaGcT) using an expression cloning strategy and showed that this enzyme is distinctively inhibited by mucin-type O-glycans similar to those present in deeper portions of the gastric mucosa. Moreover, inactivation of CHLalphaGcT by homologous recombination led to H. pylori lethality. These results indicate that H. pylori CHLalphaGcT is a unique enzyme targeted by a natural antibiotic mucin and constitutes an excellent therapeutic target to prevent H. pylori-induced peptic ulcer, gastric carcinoma, and MALT lymphoma.  相似文献   

19.
Colonization by Helicobacter pylori partly depends on acid-dependent adherence by urease to gastric mucin. To further verify the relevance of urease adherence to colonization, the influence of acidity on the binding sites of H. pylori urease was investigated. When enzyme-based in vitro ligand capture assays were used, the effect of acidity on the binding site of H. pylori urease was determined against a backdrop medium consisting of acidic buffers simulating the luminal side of gastric mucus. A high degree of stability was exhibited by adherent urease, suggesting a pivotal role by the denatured enzyme in the persistence of the bacterium within the acidified compartment of gastric mucus.  相似文献   

20.
Helicobacter pylori colonizes the human gastric epithelium and induces an inflammatory response that is a trigger for gastric carcinogenesis. Matrix metalloproteinases (MMPs) have recently been shown to be up-regulated in gastric epithelial cells infected with H. pylori and might contribute to the pathogenesis of peptic ulcer. The aim of this study was to extend the knowledge about the effect of H. pylori infection on MMP-1 expression by gastric epithelial cells, the kinetics of induction, the pathogenetic properties of the bacterium, and the intracellular signaling pathways required for MMP-1 up-regulation. Expression of MMP-1 was induced more than 10-fold by co-culture of AGS+cells with H. pylori strains carrying the pathogenicity island (PAI). H. pylori strains with mutations in the PAI and a defective type IV secretion system had no effect on MMP-1. Double immunofluorescence revealed strong MMP-1 staining in epithelial cells of gastric biopsies at sites of bacterial attachment. In vitro, MMP-1 is up-regulated by interleukin-1beta and tumor necrosis factor-alpha, but these regulatory mechanisms are not operating in H. pylori infection as shown by inhibitory antibodies. Specific inhibitors of JNK kinase and ERK1/2 kinase were found to suppress the H. pylori-induced MMP-1 expression and activity. AGS cells treated with antisense MMP-1 showed a significantly reduced potential to degrade reconstituted basement membrane. Our results suggest that in gastric epithelial cells, H. pylori up-regulates MMP-1 in a type IV secretion system-dependent manner via JNK and ERK1/2. Induction of MMP-1 is further implicated in complex processes induced by H. pylori, resulting in tissue degradation and remodeling of the gastric mucosa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号