首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Effects of acute and chronic morphine treatment on the expression of diazepam binding inhibitor (DBI) mRNA in the mouse brain were examined. Cerebral DBI mRNA expression significantly increased in morphine-dependent mice, and this increase is more remarkable in morphine-withdrawn mice, whereas a single administration of morphine (50 mg/kg) produced no changes in the expression. Simultaneous administration of naloxone (3 mg/kg) with morphine completely abolished the increase in cerebral DBI mRNA expression observed in morphine-dependent and -withdrawn mice. These results indicate that a chronic functional interaction between morphine and opioid receptors has a critical role in increases in DBI mRNA expression.  相似文献   

2.
Effects of morphine administration were studied on cyclic AMP metabolism in several regions of rat brain. In the cortex, cerebellum and thalamus-hypothalamus, morphine dependence did not alter the activity of either adenylate cyclase or phosphodiesterase. However, during withdrawal from the opiate treatment, adenylate cyclase activity declined in all three regions studied. In contrast, the striatal cyclic AMP metabolism was enhanced during morphine treatment as reflected by elevated endogenous cyclic AMP and increased adenylate cyclase. Furthermore, narcotic dependence produced significant increases in acetylcholinesterase activity of rat striatum. Whereas morphine withdrawal reversed the changes in striatal acetylcholine levels and acetylcholinesterase activity, the enhanced striatal dopamine remained unaltered. Although the activity of striatal adenylate cyclase was significantly reduced when compared to the morphine-dependent rats, the drop in cyclic AMP levels was not significant. Methadone replacement did not affect the changes in striatal dopamine seen in morphine-withdrawn rats. Whereas dopamine stimulated equally well the striatal adenylate cyclase from control or morphine-dependent animals, it failed to stimulate the striatal enzyme from rats undergoing withdrawal. The crude synaptosomal fraction of the whole brain from morphine-dependent rats exhibited an increase in cyclic AMP which was accompanied by elevated adenylate cyclase and protein kinase activity. Naloxone administration suppressed this rise in cyclic AMP and reversed the morphine-stimulated increases in the activities of adenylate cyclase and protein kinase. Following the withdrawal of morphine treatment, alterations in cyclic AMP metabolism were similar to those noted in morphine-naloxone group. Furthermore, substitution of morphine with methadone antagonized the observed alterations in cyclic nucleotide metabolism during withdrawal.  相似文献   

3.
《Life sciences》1995,57(17):PL247-PL252
The effect of pretreatment with a δ opioid receptor antagonist, naltrindole (NTI), on the development of physical dependence on morphine was investigated in mice. Several withdrawal signs, an increase in cortical noradrenaline (NA) turnover and a decrease in dopamine (DA) turnover in the limbic forebrain were observed following naloxone challenge in morphine-dependent mice. Pretreatment with NTI (0.3–5 mg/Kg, S.c.) during chronic morphine treatment dose-dependently suppressed the behavioral and biochemical changes after withdrawal. The blocking effects of NTI suggest that δ opioid receptors may play a significant role in modulating the development of physical dependence on morphine.  相似文献   

4.
Axonal transport of [3H]protein in the nigro-neostriatal pathway in rats was examined during acute and chronic morphine administration and during morphine abstinence. Two days after a microinjection of [3H]lysine into the left substantia nigra zona compacta, more than 95% of the radioactivity present in the rat forebrain was protein-bound. Examination of frozen frontal brain sections revealed that 80–90% of the labelled protein of the injected side was located in brain areas traversed by the nigro-neostriatal pathway. As a positive control, intranigrally administered colchicine reduced the amount of [3H]protein transported after 5 days to the nucleus caudatus-putamen (neostriatum) to approx 18-26% of control. In animals rendered morphine-dependent by subcutaneous implantation of tablets containing 75 mg of morphine base, 27–86% more radioactivity accumulated in the neostriatum at 3, 4 and 5 days after [3H]lysine injection. In contrast, 23–48% less radioactivity was recovered in the neostriatal areas of animals withdrawing from morphine 24 h after [3H]lysine. Gel electrophoresis of soluble and particulate [3H]protein fractions from neostriatal tissues indicated that the gel patterns of radioactivity were not altered by chronic morphine administration. Neither morphine administration nor morphine abstinence altered the rate or amount of [3H]lysine incorporation into protein of the substantia nigra. These data demonstrate that chronic morphine administration was accompanied by a generalized increase in the amount of labelled protein transported to the neostriatum but the procedure was not sufficiently sensitive to detect a minor qualitative alteration of any particular protein(s). Furthermore, these data suggest that either the capacity or the rate of nigro-neostriatal protein transport may be increased during chronic morphine administration in the rat.  相似文献   

5.
Administration of naloxone to morphine-dependent rats results in an elevation of tail skin temperature and a fall in core temperature. Previous studies have demonstrated a role of the adrenal gland in the thermal responses that accompany morphine withdrawal in the rat. In the present study, experiments were designed to determine if the duration of adrenalectomy significantly influenced the thermal response observed in morphine withdrawal. In addition we evaluated the influence of the adrenal medulla and glucocorticoid replacement in adrenalectomized rats in mediating the thermal responses of the morphine-dependent rat. Ovariectomized rats were addicted to morphine and subsequently withdrawn by administration of naloxone. This treatment results in a significant rise in tail skin temperature and subsequent fall in colonic temperature. These thermal responses were not observed in morphine-naive rats. Adrenalectomy resulted in a significant attenuation of the rise in tail skin temperature associated with withdrawal. This reduced tail skin temperature response was not different among animals adrenalectomized for 1, 7, 14, 21, or 28 days. Likewise, the moderate increase in core temperature associated with morphine treatment was not observed in the adrenalectomized rats. Serum corticosteroid determinations confirmed the loss of the adrenal steroids in the adrenalectomized rats. In a subsequent experiment it was determined that adrenal demedullation did not reduce the tail skin temperature response during morphine withdrawal, and corticosteroids restored the naloxone-induced surge in tail skin temperature in morphine-dependent, adrenalectomized rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
7.
Studies were undertaken to evaluate the role of peripheral adrenergic mechanisms and the adrenal gland in the thermal responses which accompany morphine withdrawal in the rat. Ovariectomized rats were addicted to morphine and subsequently withdrawn by administration of naloxone. This treatment resulted in a significant rise (5-6 degrees C) in tail skin temperature (TST) and fall in colonic temperature (2-4 degrees C). Systemic administration of clonidine (0.5 mg/kg) completely suppressed this surge in TST and significantly attenuated the fall in core temperature. Similar results were observed following the systemic administration of ST-91, another alpha 2-adrenergic agonist which does not cross the blood-brain barrier. Central administration of ST-91 (50 micrograms/5 microliters, icv) was also successful in attenuating these temperature changes in the morphine-dependent rat. Adrenalectomy and peripheral administration of propranolol (10 mg/kg sc) both resulted in a significant attenuation of the surge in TST and the fall in core temperature in the morphine-dependent rat which suggest some peripherally mediated event is necessary to produce the full skin temperature surge. Collectively, the data suggest a role for the adrenal gland and adrenergic receptors in producing the surge in TST in morphine-dependent rats. It also suggests that the blocking effects of the alpha 2-adrenergic agonist can be mediated both centrally and peripherally.  相似文献   

8.
The isolated cat superior cervical ganglion (SCG) was labeled in vitro with either 3H-norepinephrine (3H-NE) or 3H-choline and stimulated through its preganglionic trunk. The release of 3H-NE and 3H-acetylcholine (3H-ACh) elicited by the stimulation was measured under control conditions and in the presence of drugs. The incubation during 30 min with 10 microM morphine lead to a 70% decrease in the amount of 3H-NE released in response to the preganglionic stimulation (10 Hz, 80 V, during 5 min). No further decrease in 3H-NE release was produced by a 10 times higher concentration of morphine. The reduction in 3H-NE release caused by morphine was coincident with a 60% increase in the endogenous content of NE. Both effects of morphine were entirely prevented by an antagonist of opioid receptors, 1.0 microM naltrexone. The opioid antagonist did not modify by itself either the stimulation-induced release of 3H-NE or the endogenous content of NE. The basal efflux of 3H-NE was not altered by morphine. In ganglia labeled with 3H-choline, morphine (10 and 100 microM) did not modify either the basal efflux of 3H-ACh or the release of 3H-ACh evoked by stimulation of the preganglionic trunk (5 Hz, 40 V, during 5 min). These observations suggest that in the cat SCG morphine has a direct action on the dendrites of the postganglionic neuron which store and release NE. The effects of morphine in vitro on 3H-NE release and on the tissue levels of NE may be mediated through the interaction with dendritic opioid receptors.  相似文献   

9.
The influence of orphanin FQ/nociceptin (OFQ/N) on the morphine-withdrawal symptom was investigated. Withdrawal syndrome was induced in the morphine-dependent rats by an intraperitoneal (i.p.) injection of 2 mg/kg naloxone hydrochloride--an opioid receptors antagonist. Wet-dog shakes were used as a measure of the abstinence syndrome. Intraventricular injections of OFQ/N (5-20 microg/animal) caused significant inhibition of the withdrawal signs at doses between 15-20 microg, in the morphine-dependent rats. OFQ/N alone did not change behavior of the morphine-dependent animals. The obtained results indicate that OFQ/N can inhibit the morphine withdrawal symptoms induced by naloxone.  相似文献   

10.
Liu HF  Zhou WH  Xie XH  Cao JL  Gu J  Yang GD 《生理学报》2004,56(1):95-100
应用鞘内注射反义寡脱氧核苷酸技术和RT—PCR反应,观察毒蕈碱型乙酰胆碱受体(muscarinic acetylcholine receptor,M)对吗啡依赖大鼠脊髓和脑干NMDA受体NR1A和NR2A mRNA表达和中脑导水管周围灰质区(periaqueductal grey,PAG)中谷氨酸释放的影响。结果显示,吗啡依赖大鼠脊髓NR1A和NR2A mRNA表达明显升高,而脑干中NR1A和NR2A mRNA表达没有显著变化;注射纳洛酮后1h,吗啡戒断大鼠脊髓和脑干中NR1A和NR2A表达显著高于依赖组,经NMDA受体拮抗剂MK801(0.125mg/kg,i.p.)、M受体拮抗剂东莨菪碱(0.5mg/kg,i.p.)、M1受体拮抗剂呱伦西平(10mg/kg,i.p.)和NOS抑制剂L-NAME(10mg/kg,i.p.)处理后,脊髓和脑干中NR1A和NR2A基因表达都较戒断组明显减少。在纳洛酮激发前24h鞘内注射NR1A和M2受体的反义寡脱氧核苷酸(4μg/只),戒断症状评分值及脊髓和脑干的NR1A mRNA的表达均较对照组明显减少。吗啡依赖大鼠在纳洛酮注射前24h鞘内注射M2受体反义寡脱氧核苷酸(4μg/只),可以明显减少PAG内透析液中谷氨酸含量。上述结果提示:NMDA受体的基因表达和谷氨酸释放参与吗啡戒断过程,而这种表达受到M受体的调节。  相似文献   

11.
1. The present study compares the direct actions of morphine on two brain sites known to be rich in opiate receptors, namely, the caudate nucleus and the central gray. Recordings and morphine injections were made through a multibarrel glass micropipette using microiontophoresis. 2. Four different patterns of neuronal response to increasing currents of morphine were recorded in both brain regions. 3. Differences in the response to morphine between the two sites were detected in morphine-dependent rats. While the caudate neurons exhibited super-sensitivity to morphine, the neurons in the central gray displayed tolerance, and in some instances, dependence was evident when naloxone was administered. 4. The distribution of spontaneously active neurons within these two brain areas was found to be different in morphine-naive and morphine-dependent rats. 5. The electrophysiological findings of this study support the hypothesis of multiple opiate receptors.  相似文献   

12.
Phe-Leu-Phe-Gln-Pro-Gln-Arg-Phe-NH2 (NPFF), an endogenous mammalian antiopioid peptide, has been shown by other laboratories to attenuate the acute antinociceptive effects of morphine, the development of morphine tolerance, and naloxone-induced withdrawal in morphine-dependent rats. The present study determined the effect of chronic NPFF on mu opioid receptors and mRNA for the endogenous opioids dynorphin and enkephalin. Rats received ICV infusions of either saline or NPFF (5 μg/h) for 13 days via Alzet 2002 osmotic minipumps. Homogenate binding studies, which used whole brain membranes, demonstrated that NPFF decreased the Bmax of mu binding sites (labeled by [3H][ -Ala2-MePhe4,Gly-ol5]enkephalin) from 262 ± 12 to 192 ± 12 fmolmg protein, and increased the Kd from 1.1 to 2.3 nM. Quantitative receptor autoradiography and in situ hybridization experiments were conducted with sections collected at the level of the striatum. The density of mu opioid binding sites labeled by [3H][ -Ala2-MePhe4,Gly-ol5]enkephalin was decreased in all brain areas measured except the corpus callosum, and there was no change in dynorphin mRNA or enkephalin mRNA in the caudate, the nucleus accumbens, or the ventral pallidum. Rats chronically administered ICV morphine sulfate (20 μg/h) for 14 days developed tolerance to morphine and a low degree of dependence, as measured by naloxone-precipitated withdrawal. Chronic administration of NPFF concurrently with morphine sulfate did not significantly alter naloxone-induced withdrawal signs or the development of morphine tolerance. Viewed collectively with previous findings that chronic ICV infusion of anti-NPFF IgG upregulates mu receptors, these data provide additional evidence that the density of CNS mu receptors is tonically regulated by NPFF in the extracellular fluid. The action of NPFF to decrease mu receptors is consistent with an antiopioid role for this peptide; however, the fact that NPFF (administered into the lateral ventricle) did not appreciably alter expression of morphine tolerance and dependence contrasts with previous findings and reinforces the view that this effect is most reliably seen after third ventricle administration.  相似文献   

13.
The effect of morphine on circulating levels of prolactin and growth hormone (GH) in the lactating female model was determined at various time intervals following the termination of suckling. Morphine administration did not produce an increase in prolactin levels when dams remained suckling. Four days after suckling was terminated, 50% of the dams tested showed a morphine induced prolactin increase. The prolactin secretory response to morphine gradually returned in dams, so that after 8 days of non-suckling, all animals tested showed a morphine induced prolactin increase. Consistent with the lack of prolactin stimulation, the tuberoinfundibular dopaminergic (TIDA) neurons, were insensitive to the morphine induced inhibition of activity during lactation. In contrast, circulating levels of GH were increased in these dams following morphine administration. These results suggest that the lactating female rat is insensitive to the mu mediated stimulation of prolactin release while suckling. However, sensitivity begins to return following at least 4 days of non-suckling.  相似文献   

14.
Abstract: Based on the established role of β-adrenergic receptor kinase (βARK) and β-arrestin in the desensitization of several G protein-coupled receptors, we investigated the effect of chronic morphine administration on βARK and β-arrestin levels in selected brain areas. Levels of βARK were measured by blot immunolabeling analysis using antibodies specific for two known forms of βARK, i.e., βARK1 and βARK2. It was found that chronic morphine treatment produced an ∼35% increase in levels of βARK1 immunoreactivity in the locus coeruleus, but not in several other brain regions studied. In contrast, chronic morphine treatment failed to alter levels of βARK2 immunoreactivity in any of the brain regions studied. Levels of β-arrestin immunoreactivity, measured using an antiserum that recognizes two major forms of this protein in brain, were also found to increase (by ∼20%) in the locus coeruleus. It is proposed that chronic morphine regulation of βARK1 and β-arrestin levels may contribute to opioid-receptor tolerance that is known to occur in this brain region.  相似文献   

15.
A novel clonal cell line transfected with the delta-opioid receptor (delta-OR) encoding gene was used to study agonist-activated regulation of cell proliferation. In this cell line, endogenous beta2-adrenergic receptors (beta2-ARs) are coexpressed with the exogenous delta-ORs. Upon individual acute treatments with morphine and procaterol (a selective beta2-AR agonist), both the delta-OR and beta2-AR are coupled to differential modulation of cyclic AMP (cAMP) levels in accord with the classical second messenger response patterns to these agonists in the normal cellular settings of the receptors. But chronic morphine activation of the delta-OR inhibits cellular proliferation, while chronic procaterol activation of the beta2-AR stimulates it. Chronic treatment with the individual agonists is accompanied by differential activation of the mitogen-activated protein kinase (MAPK) isozymes, extracellular-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK). The findings suggest that chronic beta2-AR activation stimulates proliferation by interacting with the ERK signalling cascade independent of a cAMP-mediated pathway. In contrast to treatment with individual agonists, chronic dual agonist treatment suppresses procaterol-induced stimulation of ERK activity and stimulation of proliferation indicating that a cross-regulatory interaction occurs between the delta-OR and beta2-AR signalling systems in the cells under these conditions.  相似文献   

16.
Studies were undertaken to determine the effects of cellular glucoprivation on temperature responses in morphine-addicted and placebo-treated rats and to compare these responses to those observed during naloxone-precipitated morphine withdrawal. Naloxone caused a tail skin temperature (TST) response of 5.7 +/- 0.5 degrees C in morphine-dependent rats. Intraperitoneal administration 2-deoxyglucose (2DG) caused TST responses in placebo-treated and morphine-dependent rats of 4.8 +/- 0.6 and 6.2 +/- 0.5 degrees C, respectively. These data indicate that the activation of the sympathetic nervous system by cellular glucoprivation causes a TST response which is equivalent in magnitude to that induced by precipitating withdrawal with naloxone. This effect of 2DG appears to be mediated by the brain, since icy administration of 2DG caused a TST response, similar to that induced by naloxone treatment of morphine-dependent rats. Collectively, these data suggest that a TST increase is a component of the response of rats to local brain glucoprivation induced by 2DG.  相似文献   

17.
《Life sciences》1995,58(4):PL55-PL61
The behavioral effects of MK-801 were compared in morphine-dependent and non-dependent mice. The dose of MK-801 selected for these studies was previously demonstrated to attenuate some of the morphine withdrawal signs. Subjects were repeatedly exposed to morphine (8 days, b.i.d., 10–100 mg/kg, s.c.). Twenty-four hours after last morphine injection mice received naloxone (0.1 mg/kg, s.c.) and the observation was commenced. Animals were pretreated with either MK-801 (0.1 mg/kg, i.p.) or saline 30 min prior to testing. It was found that the behavioral effects of MK-801 (decreased sociability and increased rate of transitions between behavioral elements, locomotion, grooming) were less pronounced in morphine-dependent compared to non-dependent subjects. However, the intensified almost stereotypic eating possibly reflected increased psychotomimetic potency of MK-801 in morphine-withdrawn animals.  相似文献   

18.
The localization of PKC-beta was studied in rat sympathetic neurons using a polyclonal antibody specific for the beta 1- and beta 2-subspecies. The tissues studied included the superior cervical (SCG) and hypogastric (HGG) ganglia and the target tissues of the SCG and HGG neurons: the submandibular gland, iris, prostate and vas deferens. PKC-beta-LI was found in nerve fibers in both ganglia. A proportion of the fibers in the SCG disappeared after decentralization, suggesting that the fibers were of both pre- and postganglionic origin. The somata of the HGG and SCG neurons expressed varying amounts of PKC-beta-LI, the majority of SCG neurons being labelled only after colchicine treatment. In all target tissues there were PKC-beta-immunoreactive nerve fibers in bundles, but the most peripheral branches of the fibers were negatively labelled. The results show that PKC-beta-LI is widely present in sympathetic postganglionic neurons with mainly quantitative differences. The lack of PKC-beta in the most peripheral branches of nerve fibers might be a general feature of sympathetic postganglionic neurons, suggesting that the participation of PKC-beta in neurotransmitter release and in other functions in nerve terminals in sympathetic adrenergic neurons is unlikely.  相似文献   

19.
Selective vulnerability of particular groups of neurons is a characteristic of the aging nervous system. We have studied the role of neurotrophin (NT) signalling in this phenomenon using rat sympathetic (SCG) neurons projecting to cerebral blood vessels (CV) and iris which are, respectively, vulnerable to and protected from atrophic changes during old age. RT-PCR was used to examine NT expression in iris and CV in 3- and 24-month-old rats. NGF and NT3 expression in iris was substantially higher compared to CV; neither target showed any alterations with age. RT-PCR for the principal NT receptors, trkA and p75, in SCG showed increased message during early postnatal life. However, during mature adulthood and old age, trkA expression remained stable while p75 declined significantly over the same period. In situ hybridization was used to examine receptor expression in subpopulations of SCG neurons identified using retrograde tracing. Eighteen to 20 h following local treatment of iris and CV with NGF, NT3 or vehicle, expression of NT receptor protein and mRNA was higher in iris- compared with CV-projecting neurons from both young and old rats. NGF and NT3 treatment had no effect on NT receptor expression in CV-projecting neurons at either age. However, similar treatment up-regulated p75 and trkA expression in iris-projecting neurons from 3-month-old, but not 24-month-old, rats. We conclude that lifelong exposure to low levels of NTs combined with impaired plasticity of NT receptor expression are predictors of neuronal vulnerability to age-related atrophy.  相似文献   

20.
The mu opioid receptor, MOR, displays spontaneous agonist-independent (basal) G protein coupling in vitro. To determine whether basal MOR signaling contributes to narcotic dependence, antagonists were tested for intrinsic effects on basal MOR signaling in vitro and in vivo, before and after morphine pretreatment. Intrinsic effects of MOR ligands were tested by measuring GTPgammaS binding to cell membranes and cAMP levels in intact cells. beta-CNA, C-CAM, BNTX, and nalmefene were identified as inverse agonists (suppressing basal MOR signaling). Naloxone and naltrexone were neutral antagonists (not affecting basal signaling) in untreated cells, whereas inverse agonistic effects became apparent only after morphine pretreatment. In contrast, 6alpha- and 6beta-naltrexol and -naloxol, and 6beta-naltrexamine were neutral antagonists regardless of morphine pretreatment. In an acute and chronic mouse model of morphine-induced dependence, 6beta-naltrexol caused significantly reduced withdrawal jumping compared to naloxone and naltrexone, at doses effective in blocking morphine antinociception. This supports the hypothesis that naloxone-induced withdrawal symptoms result at least in part from suppression of basal signaling activity of MOR in morphine-dependent animals. Neutral antagonists have promise in treatment of narcotic addiction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号