首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Localization of nanos (nos) mRNA to the posterior pole of the Drosophila oocyte is essential for abdominal segmentation and germline development during embryogenesis. Posterior localization is mediated by a complex cis-acting localization signal in the nos 3' untranslated region that comprises multiple partially redundant elements. Genetic analysis suggests that this signal is recognized by RNA-binding proteins and associated factors that package nos mRNA into a localization competent ribonucleoprotein complex. However, functional redundancy among localization elements has made the identification of individual localization factors difficult. Indeed, only a single direct-acting nos localization factor, Rumpelstiltskin (Rump), has been identified thus far. Through a sensitized genetic screen, we have now identified the Argonaute family member Aubergine (Aub) as a nos localization factor. Aub interacts with nos mRNA in vivo and co-purifies with Rump in an RNA-dependent manner. Our results support a role for Aub, independent of its function in RNA silencing, as a component of a nos mRNA localization complex.  相似文献   

2.
3.
4.
5.
6.
Genes in the odd-skipped (odd) family encode a discrete subset of C2H2 zinc finger proteins that are widely distributed among metazoan phyla. Although the initial member (odd) was identified as a Drosophila pair-rule gene, various homologs are expressed within each of the three germ layers in complex patterns that suggest roles in many pathways beyond segmentation. To further investigate the evolutionary history and extant functions of genes in this family, we have initiated a characterization of two homologs, odd-1 and odd-2, identified in the genome of the nematode, Caenorhabditis elegans. Sequence comparisons with homologs from insects (Drosophila and Anopheles) and mammals suggest that two paralogs were present within an ancestral metazoan; additional insect paralogs and both extant mammalian genes likely resulted from gene duplications that occurred after the split between the arthropods and chordates. Analyses of gene function using RNAi indicate that odd-1 and odd-2 play essential and distinct roles during gut development. Specific expression of both genes in the developing intestine and other cells in the vicinity of the gut was shown using GFP-reporters. These results indicate primary functions for both genes that are most like those of the Drosophila paralogs bowel and drumstick, and support a model in which gut specification represents the ancestral role for genes in this family.Edited by C. Desplan  相似文献   

7.
8.
The regulation of antagonistic OVO isoforms is critical for germline formation and differentiation in Drosophila. However, little is known about genes related to ovary development. In this study, we cloned the Bombyx mori ovo gene and investigated its four alternatively spliced isoforms. BmOVO-1, BmOVO-2 and BmOVO-3 all had four C2H2 type zinc fingers, but differed at the N-terminal ends, while BmOVO-4 had a single zinc finger. Bmovo-1, Bmovo-2 and Bmovo-4 showed the highest levels of mRNA in ovaries, while Bmovo-3 was primarily expressed in testes. The mRNA expression pattern suggested that Bmovo expression was related to ovary development. RNAi and transgenic techniques were used to analyze the biological function of Bmovo. The results showed that when the Bmovo gene was downregulated, oviposition number decreased. Upregulation of Bmovo-1 in the gonads of transgenic silkworms increased oviposition number and elevated the trehalose contents of hemolymph and ovaries. We concluded that Bmovo-1 was involved in protein synthesis, contributing to the development of ovaries and oviposition number in silkworms.  相似文献   

9.
10.
The translational repressor Nanos is required in the germ line stem cells of the Drosophila ovary to maintain their capacity for self‐renewal. Following division of the stem cells, Nanos is inhibited in the daughters that differentiate into cysts and ultimately become mature oocytes. The control of Nanos activity is thus an important aspect of the switch from self‐renewal to differentiation. In this report, we describe a genetic interaction between nanos and Enhancer of nos, an allele of the previously uncharacterized locus CG4699. We find that E(nos) protein is required for normal accumulation of Nanos in the ovary and thus for maintenance of the germ line. The mechanism by which E(nos)/CG4699 protein acts is not clear, although it has been found in a complex with Mof acetylase. Consistent with the finding that E(nos) interacts with Mof, we observe that nanos and mof also interact genetically to maintain normal oogenesis. genesis 48:161–170, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
RecQ5, a member of the conserved RecQ DNA helicase family, is required for the maintenance of genome stability. The human RECQL5 gene is expressed ubiquitously in almost all tissues, with strong expression in the testes (Shimamoto et al., 2000). However, it remains to be elucidated in which cells RecQ5 is expressed and how RecQ5 functions in the testes. In this present study we analyzed the expression of RecQ5 in Drosophila testes. The RecQ5 protein was specifically expressed in germline cells in larval, pupal, and adult testes. Drosophila RecQ5 was localized in nuclei of male germline stem cells, spermatogoniablasts, spermatogonia, and early spermatocytes. As growth of the early spermatocyte proceeded, the amount of RecQ5 increased in the nuclei. However, before maturation of the spermatocyte, the level of RecQ5 declined. Thus, RecQ5 expression was regulated. Furthermore, we compared recq5 mutant testes with the wild-type ones. The most conspicuous alterations were swelling of the apical region of and an increase in the number of spermatocytes in the recq5 testis, suggesting a relative accumulation of spermatocytes in the recq5 mutant testes. Therefore, Drosophila RecQ5 may contribute to the proper progression from germline stem cells to spermatocytes for maintenance of genome stability.  相似文献   

12.
In the Drosophila female germline, spatially and temporally specific translation of mRNAs governs both stem cell maintenance and the differentiation of their progeny. However, the mechanisms that control and coordinate different modes of translational repression within this lineage remain incompletely understood. Here we present data showing that Mei-P26 associates with Bam, Bgcn and Sxl and nanos mRNA during early cyst development, suggesting that this protein helps to repress the translation of nanos mRNA. Together with recently published studies, these data suggest that Mei-P26 mediates both GSC self-renewal and germline differentiation through distinct modes of translational repression depending on the presence of Bam.  相似文献   

13.
14.
Genomic cloning, chromosomal mapping, and expression analysis of Msal-2   总被引:6,自引:0,他引:6  
Mutations of SALL1 related to spalt of Drosophila have been found to cause Townes-Brocks syndrome, suggesting a function of SALL1 for the development of anus, limbs, ears, and kidneys. No function is yet known for SALL2, another human spalt-like gene. The structure of SALL2 is different from SALL1 and all other vertebrate spalt-like genes described in mouse, Xenopus, and Medaka, suggesting that SALL2-like genes might also exist in other vertebrates. Consistent with this hypothesis, we isolated and characterized a SALL2 homologous mouse gene, Msal-2. In contrast to other vertebrate spalt-like genes both SALL2 and Msal-2 encode only three double zinc finger domains, the most carboxyterminal of which only distantly resembles spalt-like zinc fingers. The evolutionary conservation of SALL2/Msal-2 suggests that two lines of sal-like genes with presumably different functions arose from an early evolutionary duplication of a common ancestor gene. Msal-2 is expressed throughout embryonic development but also in adult tissues, predominantly in brain. However, the function of SALL2/Msal-2 still needs to be determined. Received: 1 June 1999 / Accepted: 26 August 1999  相似文献   

15.
The BarH1 and BarH2 homeobox genes are coexpressed in cells of the fly retina and in the central and peripheral nervous systems. The fly Bar genes are required for normal development of the eye and external sensory organs. In Xenopus we have identified two distinct vertebrate Bar-related homeobox genes, XBH1 and XBH2. XBH1 is highly related in sequence and expression pattern to a mammalian gene, MBH1, suggesting that they are orthologues. XBH2 has not previously been identified but is clearly related to the Drosophila Bar genes. During early Xenopus embryogenesis XBH1 and XBH2 are expressed in overlapping regions of the central nervous system. XBH1, but not XBH2, is expressed in the developing retina. By comparing the expression of XBH1 with that of hermes, a marker of differentiated retinal ganglion cells, we show that XBH1 is expressed in retinal ganglion cells during the differentiation process, but is down-regulated as cells become terminally differentiated. Received: 12 August 1999 / Accepted: 5 October 1999  相似文献   

16.
Animals show a large variability of lifespan, ranging from short‐lived as Caenorhabditis elegans to immortal as Hydra. A fascinating case is flatworms, in which reversal of aging by regeneration is proposed, yet conclusive evidence for this rejuvenation‐by‐regeneration hypothesis is lacking. We tested this hypothesis by inducing regeneration in the sexual free‐living flatworm Macrostomum lignano. We studied survival, fertility, morphology, and gene expression as a function of age. Here, we report that after regeneration, genes expressed in the germline are upregulated at all ages, but no signs of rejuvenation are observed. Instead, the animal appears to be substantially longer lived than previously appreciated, and genes expressed in stem cells are upregulated with age, while germline genes are downregulated. Remarkably, several genes with known beneficial effects on lifespan when overexpressed in mice and C. elegans are naturally upregulated with age in M. lignano, suggesting that molecular mechanism for offsetting negative consequences of aging has evolved in this animal. We therefore propose that M. lignano represents a novel powerful model for molecular studies of aging attenuation, and the identified aging gene expression patterns provide a valuable resource for further exploration of anti‐aging strategies.  相似文献   

17.
Argonaute (Ago) proteins are typically recruited to target messenger RNAs via an associated small RNA such as a microRNA (miRNA). Here, we describe a new mechanism of Ago recruitment through the Drosophila Smaug RNA‐binding protein. We show that Smaug interacts with the Ago1 protein, and that Ago1 interacts with and is required for the translational repression of the Smaug target, nanos mRNA. The Ago1/nanos mRNA interaction does not require a miRNA, but it does require Smaug. Taken together, our data suggest a model whereby Smaug directly recruits Ago1 to nanos mRNA in a miRNA‐independent manner, thereby repressing translation.  相似文献   

18.
19.
Nanos (Nos) is an evolutionary conserved protein expressed in the germline of various animal species. In Drosophila, maternal Nos protein is essential for germline development. In the germline progenitors, or the primordial germ cells (PGCs), Nos binds to the 3′ UTR of target mRNAs to repress their translation. In contrast to this prevailing role of Nos, here we report that the 3′ UTR of CG32425 mRNA mediates Nos‐dependent RNA stabilization in PGCs. We found that the level of mRNA expressed from a reporter gene fused to the CG32425 3′ UTR was significantly reduced in PGCs lacking maternal Nos (nos PGCs) as compared with normal PGCs. By deleting the CG32425 3′ UTR, we identified the region required for mRNA stabilization, which includes Nos‐binding sites. In normal embryos, CG32425 mRNA was maternally supplied into PGCs and remained in this cell type during embryogenesis. However, as expected from our reporter assay, the levels of CG32425 mRNA and its protein product expressed in nos PGCs were lower than in normal PGCs. Thus, we propose that Nos protein has dual functions in translational repression and stabilization of specific RNAs to ensure proper germline development.  相似文献   

20.

Background  

Paucity of male-biased genes on the Drosophila X chromosome is a well-established phenomenon, thought to be specifically linked to the role of these genes in reproduction and/or their expression in the meiotic male germline. In particular, meiotic sex chromosome inactivation (MSCI) has been widely considered a driving force behind depletion of spermatocyte-biased X-linked genes in Drosophila by analogy with mammals, even though the existence of global MCSI in Drosophila has not been proven.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号