首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
BackgroundAbnormal cardiac uptake of 123I-metaiodobenzylguanidine (123I-MIBG) is a diagnostic marker of Lewy body diseases (LBDs), e.g., Parkinson’s disease (PD) and dementia with Lewy bodies (DLB). Planar imaging is generally used to assess cardiac sympathetic dysfunction in 123I-MIBG scintigraphy; however, its clinical utility requires further improvement. We hypothesized that the co-registration of single-photon emission tomography (SPECT) and computed tomography (CT) images would improve the diagnostic accuracy of 123I-MIBG cardiac scintigraphy for LBDs. This study sought to evaluate the effects of SPECT/CT imaging on 123I-MIBG cardiac scintigraphy for diagnosing LBDs.MethodsWe retrospectively investigated data of 54 patients (consecutive 18 patients in each PD, DLB, and idiopathic normal pressure hydrocephalus [iNPH] groups) who underwent 123I-MIBG cardiac scintigraphy (planar and SPECT/CT) because of suspected LBDs at the Tohoku University hospital from June 2012 to June 2015. We compared the diagnostic accuracies of the conventional planar 123I-MIBG method and SPECT/CT methods (manual and semi-automatic).ResultsIn the conventional planar analysis, 123I-MIBG uptake decreased only in the DLB group compared with the iNPH group. In contrast, the SPECT/CT analysis revealed significantly lower 123I-MIBG uptake in both the PD and DLB groups compared with the iNPH group. Furthermore, a receiver operating characteristic analysis revealed that both the manual and semi-automatic SPECT/CT methods were superior to the conventional planar method in differentiating the 3 disorders.ConclusionsSPECT/CT 123I-MIBG cardiac scintigraphy can detect mild cardiac sympathetic dysfunction in LDBs. Our results suggest that the SPECT/CT technique improves diagnostic accuracy for LBDs.  相似文献   

2.
《PloS one》2015,10(3)

Background and Purpose

Dementia with Lewy bodies (DLB) needs to be distinguished from Alzheimer’s disease (AD) because of important differences in patient management and outcome. Severe cardiac sympathetic degeneration occurs in DLB, but not in AD, offering a potential system for a biological diagnostic marker. The primary aim of this study was to investigate the diagnostic accuracy, in the ante-mortem differentiation of probable DLB from probable AD, of cardiac imaging with the ligand 123I-meta-iodobenzylguanidine (MIBG) which binds to the noradrenaline reuptake site, in the first multicenter study.

Methods

We performed a multicenter study in which we used 123I-MIBG scans to assess 133 patients with clinical diagnoses of probable (n = 61) or possible (n = 26) DLB or probable AD (n = 46) established by a consensus panel. Three readers, unaware of the clinical diagnosis, classified the images as either normal or abnormal by visual inspection. The heart-to-mediastinum ratios of 123I-MIBG uptake were also calculated using an automated region-of-interest based system.

Results

Using the heart-to-mediastinum ratio calculated with the automated system, the sensitivity was 68.9% and the specificity was 89.1% to differentiate probable DLB from probable AD in both early and delayed images. By visual assessment, the sensitivity and specificity were 68.9% and 87.0%, respectively. In a subpopulation of patients with mild dementia (MMSE ≥ 22, n = 47), the sensitivity and specificity were 77.4% and 93.8%, respectively, with the delayed heart-to-mediastinum ratio.

Conclusions

Our first multicenter study confirmed the high correlation between abnormal cardiac sympathetic activity evaluated with 123I-MIBG myocardial scintigraphy and a clinical diagnosis of probable DLB. The diagnostic accuracy is sufficiently high for this technique to be clinically useful in distinguishing DLB from AD, especially in patients with mild dementia.  相似文献   

3.
During the last years, knowledge and concepts concerning Parkinson's disease and other parkinsonian syndromes have progressed: a concept of network pathology with different clinical presentations and evolutions, involving several neurotransmission pathways succeeeded the single dopaminergic lesion concept. Imaging also changed with the development of MRI. In this context, the aim of this work is to bring up-to-date methodology and clinical contribution of dopaminergic neuron imaging. Nigrostriatal neuron imaging (dopamine transporter imaging) contributes to diagnosis of Parkinson's disease and Lewy body dementia. Dopamine receptor imaging mainly helps in differential diagnosis of parkinsonian syndromes (Parkinson's disease and Parkinson plus syndromes). The ongoing development of dopaminergic, cholinergic, serotoninergic tracers and the recent emergence of amyloid plaques and neurofibrillary tangles imaging open perspectives for molecular imaging and care of neurodegenerative diseases.  相似文献   

4.
Imaging of dopamine transporter (DatScan®) confirms the existence of a presynaptic dopaminergic denervation in parkinsonian degenerative syndromes: Parkinson's disease, multiple system atrophy and progressive supranuclear palsy. It helps to differentiate these diseases from parkinsonian syndromes without involvement of the presynaptic nigrostriatal pathway (drug-induced, psychogenic and sometimes vascular) or atypical tremor. This imagery also contributes to the diagnosis of dementia with Lewy bodies where there is a decrease in binding of this tracer. On the contrary it is not useful for differentiating Parkinson's disease from other degenerative parkinsonian syndromes. The study of post-synaptic dopaminergic system, which is not yet available in routine, could facilitate the distinction between these degenerative parkinsonian syndromes, as well as MIBG-I123 myocardial scintigraphy; MRI morphology revealed in these pathologies signal abnormalities within the basal ganglia and brainstem structures.  相似文献   

5.
Metaiodobenzylguanidine-iode 123 (123I-MIBG) myocardial scintigraphy is one of the few methods available for the objective evaluation of cardiac sympathetic function at the clinical level. Disorders of cardiac sympathetic function play an important role in a variety of heart diseases and particularly in heart failure. MIBG myocardial scintigraphy provides abundance of useful information for evaluation of severity therapeutic effects and prognosis.  相似文献   

6.
A dramatic paradigm shift in understanding Parkinson's disease (PD) has emerged with implications for Alzheimer's disease (AD) because: (1) Mutations in the alpha‐synuclein (AS) gene cause familial PD, (2) Antibodies to AS detect Lewy bodies (LBs) and dystrophic Lewy neurites in PD, dementia with LBs (DLB), sporadic AD and the LB variant of AD (LBVAD), (3) Insoluble AS filaments are recovered from DLB brains and purified LBs, (4) Recombinant AS assembles into LB‐like filaments and residues 71–82 are essential for filament assembly, (5) AS transgenic mice and flies develop a PD‐like phenotype, (6) Cortical LBs detected with antibodies to AS correlate with dementia in PD, DLB and LBVAD, (7) Antibodies to AS detect LBs in 50% of familial AD, sporadic AD and Down's syndrome brains, (8) AS forms glial cytoplasmic inclusions (GCIs) in multiple system atrophy, (9) Epitopes throughout AS in LBs and GCIs, (10) Filamentous AS aggregates in LBs, GCIs and related lesions contain nitrated tyrosines, (11) Cells transfected with AS and treated with nitric oxide generators develop LB‐like AS inclusions, (12) Bigenic mice overexpressing mutant human APP and AS show an augmentation in AS inclusions. Thus, neurodegenerative diseases characterized by AS pathologies are synucleinopathies, and the filamentous AS lesions in these disorders may result in part from oxidative/nitrative damage to AS. Abnormal interactions of brain proteins may underlie synucleinopathies and other neurodegenerative disorders. Acknowledgements: Supported by NIA/NIH and Alzheimer's Association.  相似文献   

7.
BackgroundWe aimed to evaluate the utility of the combined use of cardiac 123I-metaiodobenzylguanidine (MIBG) scintigraphy, olfactory testing, and substantia nigra (SN) hyperechogenicity on transcranial sonography (TCS) in differentiating Parkinson’s disease (PD) from atypical parkinsonian syndromes (APSs), such as multiple system atrophy (MSA) and progressive supranuclear palsy (PSP).MethodsCardiac MIBG scintigraphy, card-type odor identification testing (Open Essence (OE), Wako, Japan), and TCS were performed with 101 patients with PD and 38 patients with APSs (MSA and PSP). Receiver operating characteristic (ROC) curve analysis was used to assess the sensitivity and specificity of these batteries for diagnosing PD from APSs. The diagnostic accuracy of the three tests was also assessed among patients at the early disease stage (drug-naïve patients with a disease duration of 3 years or less).ResultsIn differentiating PD from APSs, the area under the ROC curve was 0.74 (95% CI, 0.65–0.83), 0.8 (95% CI, 0.73–0.87), and 0.75 (95% CI, 0.67–0.82) for TCS, cardiac MIBG scintigraphy, and olfactory testing, respectively. The diagnostic sensitivity and specificity were 53.1% and 91.7%, respectively, for TCS, 70.3% and 86.8%, respectively, for cardiac MIBG scintigraphy, 58.4% and 76.3%, respectively, for OE. Among early-stage patients, sensitivity and specificity were 50.0% and 93.8%, respectively, for TCS, 57.1% and 87.5%, respectively, for cardiac MIBG scintigraphy, and 54.8% and 79.2%, respectively, for OE. At least one positive result from 3 tests improved sensitivity (86.1%) but decreased specificity (63.2%). In contrast, at least 2 positive results from 3 tests had good discrimination for both early-stage patients (50.0% sensitivity and 93.8% specificity) and patients overall (57.8% sensitivity and 95.8% specificity). Positive results for all 3 tests yielded 100% specificity but low sensitivity (25%).ConclusionsAt least 2 positive results from among TCS, cardiac MIBG scintigraphy, and olfactory testing can support clinical diagnosis in distinguishing PD from APSs.  相似文献   

8.
Deposition of fibrillar α-synuclein as Lewy bodies is the neuropathological hallmark of Parkinson’s disease (PD) and dementia with Lewy bodies (DLB). Apart from α-synuclein, these intraneuronal inclusions contain over 250 different proteins. The actin binding protein gelsolin, has previously been suggested to be part of the Lewy body, but its potential role in α-synuclein aggregation remains unknown. Here, we studied the association between gelsolin and α-synuclein in brain tissue from PD and DLB patients as well as in a cell model for α-synuclein aggregation. Moreover, the potential effect of gelsolin on α-synuclein fibrillization was also investigated. Our data demonstrate that gelsolin co-occured with α-synuclein in Lewy bodies from affected human brain as well as with Lewy body-like inclusions in α-synuclein over expressing cells. Furthermore, in the presence of calcium chloride, gelsolin was found to enhance the aggregation rate of α-synuclein in vitro. Moreover, no apparent structural differences could be observed between fibrils formed in the presence or absence of gelsolin. Further studies on gelsolin and other Lewy body associated proteins are warranted to learn more about their potential role in the α-synuclein aggregation process.  相似文献   

9.

Background

Mutations in LRRK2 encoding leucine-rich repeat kinase 2 are thus far the most frequent genetic cause associated with autosomal dominant and idiopathic Parkinson's disease (PD). To examine whether LRRK2 is directly associated with neuropathology of PD and other related disorders, we analyzed LRRK2 in brains of patients affected by PD and dementia with Lewy bodies (DLB) using highly specific antibodies to LRRK2.

Results

We demonstrated that anti-LRRK2 antibodies strongly labelled brainstem and cortical Lewy bodies, the pathological hallmarks of PD and DLB, respectively. In addition, anti-LRRK2 also labelled brain vasculature, axons, and neuronal cell bodies. Interestingly, the immunocytochemical profile of LRRK2 varied with different antibodies depending upon specific antigenic sites along the LRRK2 protein. All anti-LRRK2 antibodies tested that were raised against various regions of LRRK2, were found to be immunoreactive to recombinant LRRK2 on Western blots. However, only the antibodies raised against the N-terminal and C-terminal regions of LRRK2, but not the regions containing folded protein domains, were positive in immunolabeling of Lewy bodies, suggesting a differential exposure of specific antigenic sites of LRRK2 on tissue sections.

Conclusion

We conclude that LRRK2 is a component of Lewy bodies in both PD and DLB, and therefore plays an important role in the Lewy body formation and disease pathogenesis. Information on the cellular localization of LRRK2 under normal and pathological conditions will deepen our understanding of its functions and molecular pathways relevant to the progression of PD and related disorders.  相似文献   

10.
Neurochemical Research - Potentially druggable mechanisms underlying synaptic deficits seen in Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are under intense interrogations. In...  相似文献   

11.
Protein misfolding and inclusion formation are common events in neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD) or Huntington's disease (HD). Alpha-synuclein (aSyn) is the main protein component of inclusions called Lewy bodies (LB) which are pathognomic of PD, Dementia with Lewy bodies (DLB), and other diseases collectively known as LB diseases. Heat shock proteins (HSPs) are one class of the cellular quality control system that mediate protein folding, remodeling, and even disaggregation. Here, we investigated the role of the small heat shock proteins Hsp27 and alphaB-crystallin, in LB diseases. We demonstrate, via quantitative PCR, that Hsp27 messenger RNA levels are approximately 2-3-fold higher in DLB cases compared to control. We also show a corresponding increase in Hsp27 protein levels. Furthermore, we found that Hsp27 reduces aSyn-induced toxicity by approximately 80% in a culture model while alphaB-crystallin reduces toxicity by approximately 20%. In addition, intracellular inclusions were immunopositive for endogenous Hsp27, and overexpression of this protein reduced aSyn aggregation in a cell culture model.  相似文献   

12.
Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy are caused by alpha-synuclein aggregates. At present, there is no good biochemical method defining alpha-synuclein aggregates formed in vivo versus oligomers as a means to investigate alpha-synuclein aggregation and its mechanisms of neurodegeneration. A simple method, therefore, for the selective and sensitive detection of alpha-synuclein aggregates suited for screening purposes would be useful. Since in contrast to prions a proper detection of alpha-synuclein aggregates by Western blot analysis is difficult, we developed a protein aggregate filtration (PAF) assay. It takes advantage of the inherent insolubility of aggregated alpha-synuclein using microfiltration to separate it from soluble isoforms. For the first time, this assay even makes quantitative comparisons possible. We describe how the PAF assay can be applied to human brain tissue and animal and cell culture models, as well as used as a screening method for the subcellular location of alpha-synuclein aggregates. Since it detects the pathological isoform instead of surrogate markers, the PAF assay may have also potential in diagnosis of PD and DLB.  相似文献   

13.
Parkinson's disease (PD) is classically thought of as a movement disorder characterized by tremor, rigidity and postural instability. Nevertheless, there is growing recognition of prominent cognitive impairment in PD and related disorders, which is responsible for substantial disability in these patients. This review will focus on cognitive impairment associated with Lewy body pathology, including PD with dementia (PDD) and dementia with Lewy bodies (DLB). We will review the epidemiology, clinical evaluation, underlying mechanisms and treatment of cognitive impairment in these patients. Despite differences between PDD and DLB, there is clinical, neuropathological and radiological overlap between these disorders, supporting the view that they represent a spectrum of disease. These observations suggest that common targets for diagnosis and treatment of these disorders can be identified.  相似文献   

14.
Mutations of the leucine-rich repeat kinase 2 (LRRK2) gene are the leading cause of genetically inherited Parkinson’s disease (PD) and its more severe variant diffuse Lewy body disease (DLB). Pathological mutations in Lrrk2 are autosomal dominant, suggesting a gain of function. Mutations in α-synuclein also produce autosomal dominant disease. Here we report an interaction between Lrrk2 and α-synuclein in a series of diffuse Lewy body (DLB) cases and in an oxidative stress cell based assay. All five cases of DLB, but none of five controls, showed co-immunoprecipitation of Lrrk2 and α-synuclein in soluble brain extracts. Colocalization was also found in pathological deposits in DLB postmortem brains by double immunostaining. In HEK cells transfected simultaneously with plasmids expressing Lrrk2 and α-synuclein, co-immunoprecipitation of Lrrk2 and α-synuclein was detected when they were exposed to oxidative stress by H2O2. Taken together, these results suggest the possibility that in PD and related synucleinopathies, oxidative stress upregulates α-syn and Lrrk2 expression, paving the way for pathological interactions. New therapeutic approaches to PD and the synucleinopathies may result from limiting the interaction between Lrrk2 and α-synuclein.  相似文献   

15.
《Endocrine practice》2010,16(3):398-407
ObjectiveTo examine the indications for metaiodo- benzylguanidine (MIBG) scintigraphy and to assess its performance in localizing pheochromocytoma in the post- computed tomography and magnetic resonance imaging era.MethodsIn this retrospective study, electronic and paper medical records of patients who underwent MIBG scintigraphy at a large academic hospital in Los Angeles, California, between January 1995 and July 2009 were reviewed for indications for MIBG scintigraphy, clinical history, biochemical test results, findings from imaging studies, and pathologic diagnoses. MIBG score was defined as follows: 3 (or intensive uptake) meant MIBG uptake of adrenal gland or other locus was higher than that of the liver; 2 (or moderate uptake) meant uptake was similar to that of the liver; 1 (or borderline uptake) meant uptake was lower than that of liver; and 0 (or negative uptake) meant background signal.ResultsNinety-eight patients underwent MIBG scintigraphy during the study period; the indica- tion was suspected pheochromocytoma in 75 cases. Pheochromocytoma diagnosis was excluded in 48 and con- firmed in 15. The remaining 12 patients had insufficient information in the medical records to render a diagnosis. Among the 63 patients, 47 received 131I-MIBG and 16 received 123I-MIBG. Sensitivity was 73% and specificity was 69% if any adrenal uptake was considered positive, but increased to 90% if borderline uptake was considered negative. False results were more common in younger patients, but not correlated with biochemical test results. In patients with pheochromocytoma either excluded or con- firmed, the MIBG scintigraphy results were confirmatory in 63%, but misleading in 37%. MIBG scintigraphy results did not provide additional diagnostic value to any case and contributed to pheochromocytoma overdiagnosis and even unnecessary adrenalectomy.ConclusionsMIBG scintigraphy results are either confirmatory or misleading, and this imaging modal- ity is not necessary formost patients in modern practice.(Endocr Pract. 2010;16:398-407)  相似文献   

16.
Frontal cortex samples from frozen human brains were used to assess tissue respiration; content of mitochondria; mitochondrial oxygen uptake; activity of respiratory complexes and of mitochondrial nitric oxide synthase (mtNOS); content of cytochromes a, b, and c; oxidative damage (protein carbonyls and TBARS); and expression of Mn-SOD in patients with Parkinson disease (PD) and with dementia with Lewy bodies (DLB) in comparison with those of normal healthy controls. Brain cortex and mitochondrial O2 uptake and complex I activity were significantly lower in PD and DLB, whereas mtNOS activity, cytochrome content, expression of Mn-SOD, mitochondrial mass, and oxidative damage were significantly higher in the frontal cortex in PD and DLB. The decreases in tissue and mitochondrial O2 uptake and in complex I activity are considered the consequences of mitochondrial oxidative damage. The increases in mtNOS activity and in mitochondrial mass are interpreted as an adaptive response of the frontal cortex that involves increased NO signaling for mitochondrial biogenesis. The adaptive response would partially compensate for mitochondrial dysfunction in these neurodegenerative diseases and would afford a human evolutionary response to shortage of ATP in the frontal cortex.  相似文献   

17.

Background

It is often hard to differentiate Parkinson’s disease (PD) and parkinsonian variant of multiple system atrophy (MSA-P), especially in the early stages. Cardiac sympathetic denervation and putaminal rarefaction are specific findings for PD and MSA-P, respectively.

Purpose

We investigated diagnostic accuracy of putaminal apparent diffusion coefficient (ADC) test for MSA-P and 123I-metaiodobenzylguanidine (MIBG) scintigram for PD, especially in early-stage patients.

Methods

The referral standard diagnosis of PD and MSA-P were the diagnostic criteria of the United Kingdom Parkinson’s Disease Society Brain Bank Criteria and the second consensus criteria, respectively. Based on the referral standard criteria, diagnostic accuracy [area under the receiver-operator characteristic curve (AUC), sensitivity and specificity] of the ADC and MIBG tests was estimated retrospectively. Diagnostic accuracy of these tests performed within 3 years of symptom onset was also investigated.

Results

ADC and MIBG tests were performed on 138 patients (20 MSA and 118 PD). AUC was 0.95 and 0.83 for the ADC and MIBG tests, respectively. Sensitivity and specificity were 85.0% and 89.0% for MSA-P diagnosis by ADC test and 67.0% and 80.0% for PD diagnosis by MIBG test. When these tests were restricted to patients with disease duration ≤3 years, the sensitivity and specificity were 75.0% and 91.4% for the ADC test (MSA-P diagnosis) and 47.7% and 92.3% for the MIBG test (PD diagnosis).

Conclusions

Both tests were useful in differentiating between PD and MSA-P, even in the early stages. In early-stage patients, elevated putaminal ADC was a diagnostic marker for MSA-P. Despite high specificity of the MIBG test, careful neurological history and examinations were required for PD diagnosis because of possible false-negative results.  相似文献   

18.
F2-isoprostanes (F2-IsoPs) are well-established sensitive and specific markers of oxidative stress in vivo. Isofurans (IsoFs) are also products of lipid peroxidation, but in contrast to F2-IsoPs, their formation is favored when oxygen tension is increased in vitro or in vivo. Mitochondrial dysfunction in Parkinson's disease (PD) may not only lead to oxidative damage to brain tissue but also potentially result in increased intracellular oxygen tension, thereby influencing relative concentrations of F2-IsoPs and IsoFs. In this study, we attempted to compare the levels of F2-IsoPs and IsoFs esterified in phospholipids in the substantia nigra (SN) from patients with PD to those of age-matched controls as well as patients with other neurodegenerative diseases, including dementia with Lewy body disease (DLB), multiple system atrophy (MSA), and Alzheimer's disease (AD). The results demonstrated that IsoFs but not F2-IsoPs in the SN of patients with PD and DLB were significantly higher than those of controls. Levels of IsoFs and F2-IsoPs in the SN of patients with MSA and AD were indistinguishable from those of age-matched controls. This preferential increase in IsoFs in the SN of patients with PD or DLB not only indicates a unique mode of oxidant injury in these two diseases but also suggests different underlying mechanisms of dopaminergic neurodegeneration in PD and DLB from those of MSA.  相似文献   

19.
A dramatic paradigm shift in understanding Parkinson's disease (PD) has emerged with implications for Alzheimer's disease (AD) because: (1) Mutations in the alpha-synuclein (AS) gene cause familial PD, (2) Antibodies to AS detect Lewy bodies (LBs) and dystrophic Lewy neurites in PD, dementia with LBs (DLB), sporadic AD and the LB variant of AD (LBVAD), (3) Insoluble AS filaments are recovered from DLB brains and purified LBs, (4) Recombinant AS assembles into LB-like filaments and residues 71–82 are essential for filament assembly, (5) AS transgenic mice and flies develop a PD-like phenotype, (6) Cortical LBs detected with antibodies to AS correlate with dementia in PD, DLB and LBVAD, (7) Antibodies to AS detect LBs in 50% of familial AD, sporadic AD and Down's syndrome brains, (8) AS forms glial cytoplasmic inclusions (GCIs) in multiple system atrophy, (9) Epitopes throughout AS in LBs and GCIs, (10) Filamentous AS aggregates in LBs, GCIs and related lesions contain nitrated tyrosines, (11) Cells transfected with AS and treated with nitric oxide generators develop LB-like AS inclusions, (12) Bigenic mice overexpressing mutant human APP and AS show an augmentation in AS inclusions. Thus, neurodegenerative diseases characterized by AS pathologies are synucleinopathies, and the filamentous AS lesions in these disorders may result in part from oxidative/nitrative damage to AS. Abnormal interactions of brain proteins may underlie synucleinopathies and other neurodegenerative disorders. Acknowledgements:
Supported by NIA/NIH and Alzheimer's Association.  相似文献   

20.
The abnormal aggregation of proteins into fibrillar lesions is a neuropathological hallmark of several sporadic and hereditary neurodegenerative diseases. For example, Lewy bodies (LBs) are intracytoplasmic filamentous inclusions that accumulate primarily in subcortical neurons of patients with Parkinson's disease (PD), or predominantly in neocortical neurons in a subtype of Alzheimer's disease (AD) known as the LB variant of AD (LBVAD) and in dementia with LBs (DLB). Aggregated neurofilament subunits and alpha-synuclein are major protein components of LBs, and these inclusions may contribute mechanistically to the degeneration of neurons in PD, DLB and LBVAD. Here we review recent studies of the protein building blocks of LBs, as well as the role LBs play in the onset and progression of PD, DLB and LBVAD. Increased understanding of the protein composition and pathological significance of LBs may provide insight into mechanisms of neuron dysfunction and death in other neurodegenerative disorders characterized by brain lesions containing massive deposits of proteinacious fibrils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号