首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-oil maize as a product of long-term selection provides a unique resource for functional genomics. In this study, the abundant soluble proteins of early developing germs from high-oil and normal lines of maize were compared using two-dimensional gel electrophoresis (2-DGE) in combination with mass spectrometry (MS). More than 1100 protein spots were detected on electrophoresis maps of both high-oil and normal lines by using silver staining method. A total of 83 protein spots showed significant differential expression (>two-fold change; t-test: P < 0.05) between high-oil and normal inbred lines. Twenty-seven protein spots including 25 non-redundant proteins were identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS). Functional categorization of these proteins was carbohydrate metabolism, cytoskeleton, protein metabolism, stress response, and lipid metabolism. Three such proteins involved in lipid metabolism, namely putative enoyl-ACP reductase (ENR), putative stearoyl-ACP desaturase (SAD) and putative acetyl-CoA C-acyltransferase (ACA), had more abundant expressions in high-oil lines than in normal. At the mRNA expression level, SAD, ENR and ACA were expressed at significantly higher levels in high-oil lines than in normal. The results demonstrated that high expressions of SAD, ENR and ACA might be associated to increasing oil concentration in high-oil maize. This study represents the first proteomic analysis of high-oil maize and contributes to a better understanding of the molecular basis of oil accumulation in high-oil maize.  相似文献   

2.

Key message

We identified 11 SAD genes, and mined their natural variations associated with the conservation of stearic to oleic acid, especially ZmSAD1 supported by both the QTL and an expression QTL.

Abstract

Maize oil is generally regarded as a healthy vegetable oil owing to its low abundance of saturated fatty acids. Stearoyl-ACP desaturase (SAD) is a key rate-limiting enzyme for the conservation of stearic (C18:0) to oleic (C18:1) acid. Here, 11 maize SAD genes were identified to have more divergent functions than Arabidopsis SAD genes. The genomic regional associations in a maize panel including 508 inbred lines identified 6 SAD genes significantly associated (P < 0.01) with the C18:0/C18:1 ratio or the level of C18:0 or C18:1, one gene of which co-localized with a quantitative trait locus (QTL) and 5 of which co-localized with an expression QTL. ZmSAD1, supported by both the QTL and an expression QTL, had the largest effect on C18:0/C18:1. One nonsynonymous single-nucleotide polymorphism in exon 3 and one 5-bp insertion/deletion in the 3′ untranslated region were further shown to contribute to the natural variation in C18:0/C18:1 according to ZmSAD1-based association mapping. Finally, selection tests of ZmSAD1 in teosinte, regular maize, and high-oil maize indicated that ZmSAD1 was not a selection target during the process of maize domestication and high-oil maize development. These results will guide the manipulation of the ratio between saturated and unsaturated fatty acids in maize.
  相似文献   

3.
High-oil maize is a useful genetic resource for genomic investigation in plants. To determine the genetic basis of oil concentration and composition in maize grain, a recombinant inbred population derived from a cross between normal line B73 and high-oil line By804 was phenotyped using gas chromatography, and genotyped with 228 molecular markers. A total of 42 individual QTL, associated with fatty acid compositions and oil concentration, were detected in 21 genomic regions. Five major QTL were identified for measured traits, one each of which explained 42.0% of phenotypic variance for palmitic acid, 15.0% for stearic acid, 27.7% for oleic acid, 48.3% for linoleic acid, and 15.7% for oil concentration in the RIL population. Thirty-six loci were involved in 24 molecular marker pairs of epistatic interactions across all traits, which explained phenotypic variances ranging from 0.4 to 6.1%. Seven of 18 mapping candidate genes related to lipid metabolism were localized within or were close to identified individual QTL, explaining 0.7–13.2% of the population variance. These results demonstrated that a few major QTL with large additive effects could play an important role in attending fatty acid compositions and increasing oil concentration in used germplasm. A larger number of minor QTL and a certain number of epistatic QTL, both with additive effects, also contributed to fatty acid compositions and oil concentration.  相似文献   

4.
Maize (Zea mays) oil has high value but is only about 4% of the grain by weight. To increase kernel oil content, fungal diacylglycerol acyltransferase2 (DGAT2) genes from Umbelopsis (formerly Mortierella) ramanniana and Neurospora crassa were introduced into maize using an embryo-enhanced promoter. The protein encoded by the N. crassa gene was longer than that of U. ramanniana. It included 353 amino acids that aligned to the U. ramanniana DGAT2A protein and a 243-amino acid sequence at the amino terminus that was unique to the N. crassa DGAT2 protein. Two forms of N. crassa DGAT2 were tested: the predicted full-length protein (L-NcDGAT2) and a shorter form (S-NcDGAT2) that encoded just the sequences that share homology with the U. ramanniana protein. Expression of all three transgenes in maize resulted in small but statistically significant increases in kernel oil. S-NcDGAT2 had the biggest impact on kernel oil, with a 26% (relative) increase in oil in kernels of the best events (inbred). Increases in kernel oil were also obtained in both conventional and high-oil hybrids, and grain yield was not affected by expression of these fungal DGAT2 transgenes.  相似文献   

5.
The gene encoding acyl-CoA:diacylglycerol acyltransferase (DGAT1-2) is a key quantitative trait locus that controls oil content and oleic acid composition in maize kernels. Here we re-sequenced the DGAT1-2 region responsible for oil variation in a maize landrace set and in 155 inbred lines (35 high-oil and 120 normal lines). The high-oil DGAT1-2 allele was present in most Northern Flint and Southern Dent populations but was absent in five of eight Corn Belt Dent open-pollinated populations and in most of the earlier inbred lines. Loss of the high-oil DGAT1-2 allele possibly resulted from genetic drift in the early twentieth century when a few Corn Belt Dent populations were selected for the development of high-grain-yield inbred lines. Association analysis detected significant effects of two PCR-based functional markers (HO06 and DGAT04; developed based on DGAT1-2 polymorphisms) on kernel oil content and oleic acid composition using the 155 inbred lines. Zheng58 and Chang7-2, the parent inbred lines of elite hybrid Zhengdan958, were used to transfer the favorable allele from the high-oil line By804 using marker-assisted backcrossing with the two functional markers. In BC5F2:3 populations, oil content of the three genotypes (−/−, +/−, and +/+) was, respectively, 3.37, 4.20, and 4.61% (Zheng58 recipient line) and 4.14, 4.67, and 5.25% (Chang7-2 recipient line). Oil content of homozygous kernels containing the high-oil DGAT1-2 allele increased by 27–37% compared with recurrent parents. Hence, these functional markers can be used to re-introduce the high-oil DGAT1-2 allele into modern inbred lines for increased oil content through marker-assisted backcrossing.  相似文献   

6.
Improvement in grain yield is an important objective in high-oil maize breeding. In this study, one high-oil maize inbred was crossed with two normal maize inbreds to produce two connected recombinant inbred line (RIL) populations with 282 and 263 F7:8 families, respectively. The field experiments were conducted under four environments, and eight grain yield components and grain oil content were evaluated. Two genetic linkage maps were constructed using 216 and 208 polymorphic SSR markers. Quantitative trait loci (QTL) were detected for all traits under each environment and in combined analysis. Meta-analysis was used to integrate genetic maps and detected QTL in both populations. A total of 199 QTL were detected, 122 in population 1 and 87 in population 2. Seven, 11 and 19 QTL showed consistency across five environments, across two RIL populations and with respective F2:3 generations, respectively. 183 QTL were integrated in 28 meta-QTL (mQTL). QTL with contributions over 15% were consistently detected in 3–4 cases and integrated in mQTL. Each mQTL included 3–19 QTL related to 1–4 traits, reflecting remarkable QTL co-location for grain yield components and oil content. Further research and marker-assisted selection (MAS) should be concentrated on 37 consistent QTL and four genetic regions of mQTL with more than 10 QTL at bins 3.04–3.05, 7.02, 8.04–8.05 and 9.04–9.05. Near-isogenic lines for 100-grain-weight QTL at bin 7.02–7.03, for ear-length QTL at bin 7.02–7.03 and for rows-per-ear QTL at bin 3.08 are now in construction using MAS. Co-located candidate genes could facilitate the identification of candidate genes for grain yield in maize.  相似文献   

7.
Characterization of QTL for oil content in maize kernel   总被引:2,自引:0,他引:2  
Kernel oil content in maize is a complex quantitative trait. Phenotypic variation in kernel oil content can be dissected into its component traits such as oil metabolism and physical characteristics of the kernel, including embryo size and embryo-to-endosperm weight ratio (EEWR). To characterize quantitative trait loci (QTL) for kernel oil content, a recombinant inbred population derived from a cross between normal line B73 and high-oil line By804 was genotyped using 228 molecular markers and phenotyped for kernel oil content and its component traits [embryo oil content, embryo oil concentration, EEWR, embryo volume, embryo width, embryo length, and embryo width-to-length ratio (EWLR)]. A total of 58 QTL were identified for kernel oil content and its component traits in 26 genomic regions across all chromosomes. Eight main-effect QTL were identified for kernel oil content, embryo oil content, embryo oil concentration, EEWR, embryo weight, and EWLR, each accounting for over 10?% of the phenotypic variation in six genomic regions. Over 90?% of QTL identified for kernel oil content co-localized with QTL for component traits, validating their molecular contribution to kernel oil content. On chromosome 1, the QTL that had the largest effect on kernel oil content (qKO1-1) was associated with embryo width; on chromosome 9, the QTL for kernel oil content (qKO9) was related to EEWR (qEEWR9). Embryo oil concentration and embryo width were identified as the most important component traits controlling the second largest QTL for kernel oil content on chromosome 6 (qKO6) and a minor QTL for kernel oil content on chromosome 5 (qKO5-2), respectively. The dissection of kernel oil QTL will facilitate future cloning and/or functional validation of kernel oil content, and help to elucidate the genetic basis of kernel oil content in maize.  相似文献   

8.
Soybean seed is a major source of oil for human consumption worldwide and the main renewable feedstock for biodiesel production in North America. Increasing seed oil concentration in soybean [Glycine max (L.) Merrill] with no or minimal impact on protein concentration could be accelerated by exploiting quantitative trait loci (QTL) or gene-specific markers. Oil concentration in soybean is a polygenic trait regulated by many genes with mostly small effects and which is negatively associated with protein concentration. The objectives of this study were to discover and validate oil QTL in two recombinant inbred line (RIL) populations derived from crosses between three moderately high-oil soybean cultivars, OAC Wallace, OAC Glencoe, and RCAT Angora. The RIL populations were grown across several environments over 2 years in Ontario, Canada. In a population of 203 F3:6 RILs from a cross of OAC Wallace and OAC Glencoe, a total of 11 genomic regions on nine different chromosomes were identified as associated with oil concentration using multiple QTL mapping and single-factor ANOVA. The percentage of the phenotypic variation accounted for by each QTL ranged from 4 to 11 %. Of the five QTL that were tested in a population of 211 F3:5 RILs from the cross RCAT Angora × OAC Wallace, a “trait-based” bidirectional selective genotyping analysis validated four QTL (80 %). In addition, a total of seven two-way epistatic interactions were identified for oil concentration in this study. The QTL and epistatic interactions identified in this study could be used in marker-assisted introgression aimed at pyramiding high-oil alleles in soybean cultivars to increase oil concentration for biodiesel as well as edible oil applications.  相似文献   

9.
Five morphological fractions (leaf blade, leaf sheath, stem, husk and cob) of stover of five maize genotypes, namely waxy, conventional, fodder, sweet and high-oil maize, respectively, were used to test the effects of genotype and morphological fractions on chemical composition and in vitro fermentation characteristics. The waxy maize had a higher (P < 0.05) stem but lower (P < 0.05) leaf blade proportion and fodder maize had a higher (P < 0.05) leaf blade but lower (P < 0.05) leaf sheath proportion than other genotypes, respectively. Maize genotype had a significant effect (P < 0.001) on the chemical composition of stover parts except for organic matter (OM) concentration. Chemical composition of stover parts was affected (P < 0.001) by morphological fractions. The interaction effects between genotype and morphological fraction on the fiber content of stover parts were significant. Over 0.40 and 0.50 of phosphorus (P) and crude protein (CP) of whole-plant maize stover were averagely contributed by leaf blade. Leaf blade, stem and cob contributed over 0.75 of OM, CP, P and fiber in the whole plant. There were significant effects of genotype and morphological fraction on both in vitro gas production parameters and in vitro organic matter disappearance of maize stovers. The genotype and morphological fraction of maize stover and their interaction had significant effects on NH3-N and total volatile fatty acid concentration and the molar proportion of volatile fatty acid in the supernatant after 72 h of incubation except for valeric acid. The present data indicated that the genotype and morphological fraction of maize resulted in variation in the nutritive value of maize stover.  相似文献   

10.
以普通玉米掖单22和高油玉米高油115为材料,研究了不同供氮条件下玉米籽粒中蛋白质及其组分的含量、清蛋白和球蛋白含量、醇溶蛋白和谷蛋白含量、籽粒氨基酸总鼍以及氨基酸组分含量的品种差异。结果表明。氮素供应水平对两种类型玉米灌浆期间籽粒蛋白质含量变化作用相同,前期逐渐下降,至成熟期略有升高;籽粒清蛋白和球蛋白、醇溶蛋白和符蛋白含量变化动态各处理基本一致,两种类型玉米籽粒清蛋白含量随时间的推移逐渐降低。球蛋门含量的变化动态旱单峰曲线,峰值出现在授粉后30d。醇溶蛋白含量均呈“V”型变化,以授粉30d后最低。谷蛋白的含量则均呈上升趋势。氮素供应水平对两种类型玉米籽粒中各蛋白质组分禽量的变化的影响作用有所不同。对高油115籽粒中球蛋白含量的影响较小;施氮水平并不改变两种类型玉米籽粒氨基酸总量的变化趋势。但两种类型玉米籽粒中氨基酸组分的含量变化较大。  相似文献   

11.
BACKGROUND AND AIMS: Sunflower cultivars exhibit a wide range of oil content in the mature achene, but the relationship between this and the dynamics of oil deposition in the achene during grain filling is not known. Information on the progress, during the whole achene growth period, of the formation of oil bodies in the components of the achene and its relationship with variations in final oil content is also lacking. METHODS: The biomass dynamics of achene components (pericarp, embryo, oil) in three cultivars of very different final oil concentration (30-56 % oil) were studied. In parallel, anatomical sections were used to follow the formation of oil and protein bodies in the embryo, and to observe pericarp anatomy. KEY RESULTS: In all cultivars, oil bodies were first observed in the embryo 6-7 daa after anthesis (daa). The per-cell number of oil bodies increased rapidly from 10-12 daa until 25-30 daa. Oil bodies were absent from the outer cell layers of young fruit and from mature pericarps. In mature embryos, the proportion of cell cross-sectional area occupied by protein bodies increased with decreasing embryo oil concentration. The sclerenchymatic layer of the mature pericarp decreased in thickness and number of cell layers from the low-oil cultivar to the high-oil cultivar. Different patterns of oil accumulation in the embryo across cultivars were also found, leading to variations in ripe embryo oil concentration. In the high-oil cultivar, the end of oil deposition coincided with cessation of embryo growth, while in the other two cultivars oil ceased to accumulate before the embryo achieved maximum weight. CONCLUSIONS: Cultivar differences in mature achene oil concentration reflect variations in pericarp proportion and thickness and mature embryo oil concentration. Cultivar differences in protein body proportion and embryo and oil mass dynamics during achene growth underlie variations in embryo oil concentration.  相似文献   

12.
Protein is one of the three main storage chemical components in maize grains, and is negatively correlated with starch concentration (SC). Our objective was to analyse the influence of genetic backgrounds on QTL detection for protein concentration (PC) and to reveal the molecular genetic associations between PC and both SC and grain weight (GWP). Two hundred and eighty-four (Pop1) and 265 (Pop2) F2:3 families were developed from two crosses between one high-oil maize inbred GY220 and two normal maize inbreds 8984 and 8622 respectively, and were genotyped with 185 and 173 pairs of SSR markers. PC, SC and GWP were evaluated under two environments. Composite interval mapping (CIM) and multiple interval mapping (MIM) methods were used to detect single-trait QTL for PC, and multiple-trait QTL for PC with both SC and GWP. No common QTL were shared between the two populations for their four and one PC QTL. Common QTL with opposite signs of effects for PC and SC/GWP were detected on three marker intervals at bins 6.07–6.08, 8.03 and 8.03–8.04. Multiple-traits QTL mapping showed that tightly-linked QTL, pleiotropic QTL and QTL having effects with opposite directions for PC and SC/GWP were all observed in Pop1, while all QTL reflected opposite effects in Pop2.  相似文献   

13.
Starch isolated from mature Ginkgo biloba seeds and commercial normal maize starches were subjected to α-amylolysis and acid hydrolysis. Ginkgo starch was more resistant to pancreatic α-amylase hydrolysis than the normal maize starch. The chain length distribution of debranched amylopectin of the starches was analyzed by using high performance anion-exchange chromatography equipped with an amyloglucosidase reactor and a pulsed amperometric detector. The chain length distribution of ginkgo amylopectin showed higher amounts of both short and long chains compared to maize starch. Naegeli dextrins of the starches prepared by extensive acid hydrolysis over 12 days demonstrated that ginkgo starch was more susceptible than normal maize to acid hydrolysis. Ginkgo dextrins also demonstrate a lower concentration of singly branched chains than maize dextrins, and unlike maize dextrin, debranched ginkgo shows no multiple branched chains. The ginkgo starch displayed a C-type X-ray diffraction pattern, compared to an A-type pattern for maize. Ginkgo starch and maize starch contained 24.0 and 17.6% absolute amylose contents, respectively.  相似文献   

14.
This study was designed to assess the effect of the dimethyl ester of succinic acid (SAD) upon the hormonal and metabolic response to a 60-min exercise in overnight-starved Goto-Kakizaki rats. Twenty Goto-Kakizaki rats were starved overnight and then either maintained at rest or obliged to swim for 60 min. Half of the rats were injected intraperitoneally with the dimethyl ester of succinic acid (SAD, 5.0 micromol g(-1) body wt) immediately before exercise (or 60 min of rest). In the hereditarily diabetic rats, overnight starvation lowered the plasma D- glucose, insulin and lactate concentrations, while increasing that of free fatty acids and beta-hydroxybutyrate. In resting rats, the injection of SAD increased the glycogen content of liver, heart and muscle and the plasma concentration of D-glucose, insulin, glycerol and free fatty acids. In control animals, not injected with SAD, exercise increased the plasma concentration of D- glucose, lactate and glycerol, whilst lowering both that of insulin and the glycogen content of liver, heart and muscle. The injection of SAD before exercise failed to prevent and, on occasion, even accentuated the changes in both the glycogen content of liver, heart and muscle and the plasma concentration of D-glucose, insulin, glycerol and free fatty acids, whilst minimizing the increase in lactate concentration otherwise caused by exercise. Nevertheless, the comparison between resting and exercising rats, both injected with SAD, suggested that the ester abolished the exercise-induced rise in D-glucose, glycerol and fatty acid concentrations. By comparison with comparable experiments conducted in overnight-starved normal rats, these findings emphasize both the difference between normal and diabetic rats in their metabolic response to exercise, especially in terms of changes in glycemia, and the usefulness of SAD to compensate for the increased consumption of endogenous nutrients during exercise.  相似文献   

15.
Rapeseed (Brassica napus L.) is one of most important oilseed crops in the world. There are now various rapeseed cultivars in nature that differ in their seed oil content because they vary in oil-content alleles and there are high-oil alleles among the high-oil rapeseed cultivars. For these experiments, we generated doubled haploid (DH) lines derived from the cross between the specially high-oil cultivar zy036 whose seed oil content is approximately 50% and the specially low-oil cultivar 51070 whose seed oil content is approximately 36%. First, to address the deficiency in polymorphic markers, we designed 5944 pairs of newly developed genome-sourced primers and 443 pairs of newly developed primers related to oil-content genes to complement the 2244 pairs of publicly available primers. Second, we constructed a new DH genetic linkage map using 527 molecular markers, consisting of 181 publicly available markers, 298 newly developed genome-sourced markers and 48 newly developed markers related to oil-content genes. The map contained 19 linkage groups, covering a total length of 2,265.54 cM with an average distance between markers of 4.30 cM. Third, we identified quantitative trait loci (QTL) for seed oil content using field data collected at three sites over 3 years, and found a total of 12 QTL. Of the 12 QTL associated with seed oil content identified, 9 were high-oil QTL which derived from the specially high-oil cultivar zy036. Two high-oil QTL on chromosomes A2 and C9 co-localized in two out of three trials. By QTL mapping for seed oil content, we found four candidate genes for seed oil content related to four gene markers: GSNP39, GSSR161, GIFLP106 and GIFLP046. This information will be useful for cloning functional genes correlated with seed oil content in the future.  相似文献   

16.
为有效解决餐厨废水中的高油脂对下游处理工艺的严重影响,本研究以筛选获得的一株高效的油脂降解菌株嗜糖气单胞菌Aeromonas allosaccarophila CY-01为研究对象,以壳聚糖为载体材料,对其进行固定化包埋制备壳聚糖-气单胞菌小球(CH-CY01);探究CH-CY01小球的油脂降解效率以及性能影响评估。研究结果表明,经壳聚糖固定后的菌株CY-01其细胞的生长活性几乎不受影响,对大豆油脂的最大降解率为89.7%;相比于未固定的细胞,CH-CY01在0.5%NaCl的盐度条件下对油脂的降解效率显著提高了20%;在浓度为1 mg/L的表面活性剂(十二烷基苯磺酸钠)存在条件下,CH-CY01对油脂的降解效率显著提高了40%。以餐饮高油脂污水为处理对象,结果显示经添加1%(V/V)的CH-CY01小球处理7 d后,超过80%以上的固态油脂被降解,明显高于未固定的CY-01。综上所述,经壳聚糖固定包埋的CH-CY01小球显著提高了菌株的生存能力和油脂降解效率,对于高油脂餐饮污水的高效处理具有较大的应用潜力。  相似文献   

17.
硬脂酰-ACPΔ~9脱氢酶(Stearoyl-acyl carrier proteinΔ~9 desaturase,SAD)在质体中催化单不饱和油酸或棕榈油酸的合成,是控制植物细胞饱和脂肪酸与不饱和脂肪酸比例的关键酶。为解析大豆油酸合成积累调控机制,文中对大豆Glycine max GmSAD家族成员进行全基因组鉴定和保守功能域及理化性质等分析。应用qRT-PCR检测GmSAD各成员的时空表达谱,构建表达载体并通过农杆菌介导烟草Nicotiana tabacum瞬时表达和油酸缺陷型酵母Saccharomyces cerevisiae突变株BY4389遗传转化测试GmSAD酶活性和生物学功能。结果表明,大豆基因组含有5个GmSADs家族成员,其编码酶蛋白均具有二铁中心和SAD酶特有的2个保守组氨酸富集基序(EENRHG和DEKRHE),预测其活性酶蛋白为同源二聚体。系统进化分析显示5个GmSAD分成2个亚组,分别与拟南芥AtSSI2和AtSAD6亲缘关系较近。GmSAD各成员在大豆根、茎、叶、花和不同发育时期种子等组织中表达谱差异明显,其中GmSAD5在发育种子中、晚期高量表达,与油脂富集时期相吻合。烟草叶片瞬时表达GmSAD5可使叶片组织中油酸和总油脂含量分别提高5.56%和2.73%,而硬脂酸含量相应降低2.46%。缺陷型酵母遗传转化测试显示,过表达GmSAD5能恢复缺陷酵母合成单不饱和油酸的能力和促进油脂积累。总之,大豆GmSAD5对硬脂酸底物选择性较强,能高效催化单不饱和油酸的生物合成,为大豆种子油酸和总油脂积累机制的研究奠定了基础,也可作为油脂品质遗传改良的优异靶标。  相似文献   

18.
Grain oil content is negatively correlated with starch content in maize in general. In this study, 282 and 263 recombinant inbred lines (RIL) developed from two crosses between one high-oil maize inbred and two normal dent maize inbreds were evaluated for grain starch content and its correlation with oil content under four environments. Single-trait QTL for starch content in single-population and joint-population analysis, and multiple-trait QTL for both starch and oil content were detected, and compared with the result obtained in the two related F2∶3 populations. Totally, 20 single-population QTL for grain starch content were detected. No QTL was simultaneously detected across all ten cases. QTL at bins 5.03 and 9.03 were all detected in both populations and in 4 and 5 cases, respectively. Only 2 of the 16 joint-population QTL had significant effects in both populations. Three single-population QTL and 8 joint-population QTL at bins 1.03, 1.04–1.05, 3.05, 8.04–8.05, 9.03, and 9.05 could be considered as fine-mapped. Common QTL across F2∶3 and RIL generations were observed at bins 5.04, 8.04 and 8.05 in population 1 (Pop.1), and at bin 5.03 in population 2 (Pop.2). QTL at bins 3.02–3.03, 3.05, 8.04–8.05 and 9.03 should be focused in high-starch maize breeding. In multiple-trait QTL analysis, 17 starch-oil QTL were detected, 10 in Pop.1 and 7 in Pop.2. And 22 single-trait QTL failed to show significance in multiple-trait analysis, 13 QTL for starch content and 9 QTL for oil content. However, QTL at bins 1.03, 6.03–6.04 and 8.03–8.04 might increase grain starch content and/or grain oil content without reduction in another trait. Further research should be conducted to validate the effect of these QTL in the simultaneous improvement of grain starch and oil content in maize.  相似文献   

19.
The Homeobox Gene GLABRA2 Affects Seed Oil Content in Arabidopsis   总被引:2,自引:0,他引:2  
Despite a good understanding of genes involved in oil biosynthesis in seed, the mechanism(s) that controls oil accumulation is still not known. To identify genes that control oil accumulation in seed, we have developed a simple screening method to isolate Arabidopsis seed oil mutants. The method includes an initial screen for seed density followed by a seed oil screen using an automated Nuclear Magnetic Resonance (NMR). Using this method, we isolated ten low oil mutants and one high oil mutant. The high oil mutant, p777, accumulated 8% more oil in seed than did wild type, but it showed no differences in seed size, plant growth or development. The high-oil phenotype is caused by the disruption of the GLABRA2 gene, a previously identified gene that encodes a homeobox protein required for normal trichome and root hair development. Knockout of GLABRA2 did not affect LEAFY COTYLEDON 1 and PICKLE expression in developing embryo. The result indicates that in addition to its known function in trichome and root hair development, GLABRA2 is involved in the control of seed oil accumulation.  相似文献   

20.
硬脂酰-ACP脱氢酶(SAD)催化硬脂酸脱氢生成油酸,是形成不饱和脂肪酸的关键酶。该研究从紫苏转录组数据库中筛选鉴定紫苏硬脂酰-ACP脱氢酶(PfSAD)家族基因,并进行生物信息学分析及保守功能域分析,用qRT-PCR技术检测PfSADs各成员在不同组织中的表达特性,以探讨PfSAD家族基因在调控种子脂肪酸组分中的作用,为紫苏脂肪酸组分的遗传改良提供基因元件。结果显示:(1)从该课题组前期自测的紫苏转录组数据库中共检测出6个PfSAD家族基因,其编码蛋白的氨基酸长度介于367~396 aa之间,均具有SAD的保守结构域和二铁中心,预测其基因编码蛋白均定位于叶绿体。(2)多序列比对结果显示,紫苏PfSADs蛋白序列与拟南芥、蓖麻及可可等植物的SAD蛋白序列相似性均在50%以上;系统进化分析显示,6个紫苏SAD蛋白被分为3个亚组,其中第一个亚组包含PfSAD1,第二亚组包含PfSAD2、PfSAD3,第三亚组包含PfSAD4、PfSAD5和PfSAD6。(3)实时荧光定量PCR分析发现,PfSADs各成员在‘晋紫苏1号’不同组织中的表达量差异显著,其中PfSAD1主要在叶中表达,PfSAD2、PfSAD3、PfSAD4和PfSAD5在种子中表达量较高,PfSAD6在花中具有显著表达优势。研究表明,PfSADs具有典型的保守基序及催化SAD的活性中心,其各成员在不同的组织中高表达,推测这6个基因均参与了硬脂酰ACP(C18∶0-ACP)脱氢生成油酰基ACP(Δ9C18∶1-ACP)的过程,在紫苏油脂合成代谢过程中发挥重要作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号