首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
北京东灵山海拔梯度上辽东栎种群结构和空间分布   总被引:13,自引:0,他引:13  
张育新  马克明  祁建  冯云  张洁瑜 《生态学报》2009,29(6):2789-2796
种群年龄结构和空间分布格局是种群生态学的核心研究内容.为了阐明辽东栎种群海拔梯度分布特点,在北京东灵山地区辽东栎海拔分布范围(1000~1800m)内调查10条样带,研究种群大小级结构和空间分布的变异.种群的平均胸径在海拔梯度上表现出两段式的分布特征,海拔1480m为两段分布的分界点,在每一段内随海拔增加平均胸径也增加, 这反映了海拔梯度上种群的不同发育历史.种群密度、种群的聚集程度、种群的结构在海拔梯度上的分布特征都与平均胸径分布相似,种群密度和聚集程度与平均胸径为负相关系,其分布趋势与平均胸径相反.总体上,东灵山海拔梯度上辽东栎种群还是比较稳定的.辽东栎种群结构和空间分布在海拔梯度上的分布特征是种群发育历史、物种特性、环境、干扰等因素在海拔梯度上综合作用的结果.  相似文献   

2.
Altitudinal migration is the seasonal altitudinal movement of birds from breeding areas to non‐breeding or wintering areas at different elevations. Although this type of migration is widely reported, questions remain concerning the number of species that perform altitudinal migration, possible variation among different taxa and geographic locations in the extent of altitudinal migration, and the foraging guilds of altitudinal migrants. We conducted an extensive bibliographic survey and compiled a list of altitudinal migrant birds worldwide. We characterized species in terms of their foraging guilds because the spatial distribution of food resources along altitudinal gradients is often evoked as a driver of bird altitudinal migration. We identified 1238 species of altitudinal migrants, ~10% of the ~10,000 extant species of birds. We found a strong geographic bias in publications focusing on avian altitudinal migration toward the United States and Costa Rica, and a paucity of studies in megadiverse regions such as the Afrotropical and Indomalayan realms, and areas in the Neotropics other than Costa Rica. We also found that most species of altitudinal migrants were invertivores rather than frugivores or nectarivores. This general pattern held true for all zoogeographic realms except the Neotropics, where nectarivores and frugivores predominated among altitudinal migrants. The prevalence of invertivore birds among altitudinal migrants is not unexpected because this is the most common foraging guild among birds worldwide. Overall, we found no prevalence of any specific foraging guild among altitudinal migrants across zoogeographic regions. The results of studies to date suggest that altitudinal migration by birds may be driven by a number of factors, including access to increased food resources for breeding or molting, weather conditions, and mating and nesting opportunities. However, to better understand the mechanisms underlying altitudinal migration, broadening the geographic scope of studies is paramount, with additional study of altitudinal migration especially needed in the megadiverse tropical regions of sub‐Saharan Africa, Southeast Asia, and South America.  相似文献   

3.
Bird migration is typically associated with a latitudinal movement from north to south and vice versa. However, many bird species migrate seasonally with an upslope or downslope movement in a process termed altitudinal migration. Globally, 830 of the 6,579 Passeriformes species are considered altitudinal migrants and this pattern has emerged multiple times across 77 families of this order. Recent work has indicated an association between altitudinal migration and diet, but none have looked at diet as a potential evolutionary driver. Here, we investigated potential evolutionary drivers of altitudinal migration in passerines around the world by using phylogenetic comparative methods. We tested for evolutionary associations between altitudinal migration and foraging guild and primary habitat preference in passerines species worldwide. Our results indicate that foraging guild is evolutionarily associated with altitudinal migration, but this relationship varies across zoogeographical regions. In the Nearctic, herbivorous and omnivorous species are associated with altitudinal migration, while only omnivorous species are associated with altitudinal migration in the Palearctic. Habitat was not strongly linked to the evolution of altitudinal migration. While our results point to diet as a potentially important driver of altitudinal migration, the evolution of this behavior is complex and certainly driven by multiple factors. Altitudinal migration varies in its use (for breeding or molting), within a species, population, and even at the individual level. As such, the evolution of altitudinal migration is likely driven by an ensemble of factors, but this study provides a beginning framework for understanding the evolution of this complex behavior.  相似文献   

4.
Hu J  Xie F  Li C  Jiang J 《PloS one》2011,6(5):e19817
Quantifying spatial patterns of species richness is a core problem in biodiversity theory. Spiny frogs of the subfamily Painae (Anura: Dicroglossidae) are widespread, but endemic to Asia. Using spiny frog distribution and body size data, and a digital elevation model data set we explored altitudinal patterns of spiny frog richness and quantified the effect of area on the richness pattern over a large altitudinal gradient from 0-5000 m a.s.l. We also tested two hypotheses: (i) the Rapoport's altitudinal effect is valid for the Painae, and (ii) Bergmann's clines are present in spiny frogs. The species richness of Painae across four different altitudinal band widths (100 m, 200 m, 300 m and 400 m) all showed hump-shaped patterns along altitudinal gradient. The altitudinal changes in species richness of the Paini and Quasipaini tribes further confirmed this finding, while the peak of Quasipaini species richness occurred at lower elevations than the maxima of Paini. The area did not explain a significant amount of variation in total, nor Paini species richness, but it did explain variation in Quasipaini. Five distinct groups across altitudinal gradient were found. Species altitudinal ranges did not expand with an increase in the midpoints of altitudinal ranges. A significant negative correlation between body size and elevation was exhibited. Our findings demonstrate that Rapoport's altitudinal rule is not a compulsory attribute of spiny frogs and also suggest that Bergmann's rule is not generally applicable to amphibians. The study highlights a need to explore the underlying mechanisms of species richness patterns, particularly for amphibians in macroecology.  相似文献   

5.
Aim We addressed the following questions: (1) Does tephritid body size tend to increase in species found at higher elevations, as predicted by Bergmann's rule? (2) Do tephritids conform to Rapoport's rule, so that species found at higher elevations tend to have broader altitudinal ranges? (3) More generally, how do body size and host range jointly affect the patterns of altitudinal distribution among Neotropical tephritid flies? Location The Mantiqueira mountain range, south‐eastern Brazil, at sites ranging from c. 700 to 2500 m a.s.l. Methods At each site we collected flower heads of all Asteraceae species to rear out endophagous immatures (from January to June in 1998 and 1999). We used structural equation models (SEM) to evaluate jointly the relationships between body size, host range and altitudinal distribution (range and mid‐point). Results Neotropical tephritid body size showed a negative relationship with altitudinal distribution. SE modelling showed no significant direct effect of body size on altitudinal range; however, it had significant indirect negative effects through host range and altitudinal mid‐point. The SE model was a good predictor of observed correlations and accounted for 84% of the variation in tephritid altitudinal range. Main conclusions The altitudinal range of flower‐head‐feeding tephritids is related to host range and is indirectly affected by body size via host range and altitudinal mid‐point. As predicted by Rapoport's rule, tephritids that occur at higher elevations also present wider altitudinal ranges. Bergmann's rule does not apply to Neotropical tephritids along a tropical elevational gradient, but rather its converse was found. Body size may determine host range by imposing a restriction upon large individuals using small flower heads. Host species turnover along the altitudinal gradient may be the main factor explaining the strong relationship between host range and insect elevational distribution.  相似文献   

6.
In the southeast of the Qinghai-Tibetan Plateau of China, sea buckthorn ( Hippophae rhamnoides L.), which is a thorny nitrogen-fixing deciduously perennial shrub, has been widely used in forest restoration as the pioneer species. In our study, two contrasting populations from the low and high altitudinal regions were employed to investigate the effects of drought, ultraviolet-B (UV-B) and their combination on sea buckthorn. The experimental design included two watering regimes (well watered and drought stressed) and two levels of UV-B (with and without UV-B supplementation). Drought significantly decreased total biomass, total leaf area and specific leaf area (SLA), and increased root/shoot ratio, fine root/coarse root ratio and abscisic acid content (ABA) in both populations. However, the high altitudinal population was more responsive to drought than the low altitudinal population. On the other hand, elevated UV-B induced increase in anthocyanins in both populations, whereas the accumulation of UV-absorbing compounds occurred only in the low altitudinal population. The drought-induced enhancement of ABA in the high altitudinal population was significantly suppressed in the combination of drought and elevated UV-B. Moreover, significant drought × UV-B interaction was detected on total biomass in both populations, total leaf area and fine root/coarse root in the low altitudinal population, and SLA in the high altitudinal population. These results demonstrated that there were different adaptive responses between two contrasting populations, the high altitudinal population exhibited higher tolerance to drought and UV-B than the low altitudinal population.  相似文献   

7.
The altitudinal distribution of mountain birds has recently changed following different patterns in space and time, probably due to the variability of the ongoing environmental processes. Although several studies have highlighted the effect of climate warming in affecting birds altitudinal responses, in the Alps, land abandonment and the consequential forest regrowth may have played a fundamental role.We applied the response curve shape method to investigate changes in the altitudinal distribution of breeding birds over a ten-year period in two different alpine areas (Central and Western Italian Alps) and we performed a log-linear analysis to depict the differential responses of species grouped according to their breeding habitat preferences.The patterns of change remarkably differed according to species ecological traits and between mountain areas. We did not highlight clear altitudinal changes in the Central Alps for any ecological groups, while in the Western Alps, woodland birds showed an expansion pattern and grassland birds suffered a retraction pattern. Since the two alpine areas did not suffer a significant temperature increase, but experienced different woodland cover dynamics, we believe that forest regrowth played a key role in shaping the different bird altitudinal responses between the two sites.Our findings illustrate the effect of ecological traits in shaping altitudinal changes and the role of local environmental factors in affecting spatial variation. Particularly, we strongly suggest considering woodland cover expansion as a key driver of bird altitudinal changes in alpine areas.  相似文献   

8.
Many species have shown recent shifts in their distributions in response to climate change. Patterns in species occurrence or abundance along altitudinal gradients often serve as the basis for detecting such changes and assessing future sensitivity. Quantifying the distribution of species along altitudinal gradients acts as a fundamental basis for future studies on environmental change impacts, but in order for models of altitudinal distribution to have wide applicability, it is necessary to know the extent to which altitudinal trends in occurrence are consistent across geographically separated areas. This was assessed by fitting models of bird species occurrence across altitudinal gradients in relation to habitat and climate variables in two geographically separated alpine regions, Piedmont and Trentino. The ten species studied showed non-random altitudinal distributions which in most cases were consistent across regions in terms of pattern. Trends in relation to altitude and differences between regions could be explained mostly by habitat or a combination of habitat and climate variables. Variation partitioning showed that most variation explained by the models was attributable to habitat, or habitat and climate together, rather than climate alone or geographic region. The shape and position of the altitudinal distribution curve is important as it can be related to vulnerability where the available space is limited, i.e. where mountains are not of sufficient altitude for expansion. This study therefore suggests that incorporating habitat and climate variables should be sufficient to construct models with high transferability for many alpine species.  相似文献   

9.
《农业工程》2020,40(1):30-43
IntroductionDistribution pattern and diversity of flora was compared along an altitudinal gradient using the stratified random sampling design for identifying major plant communities of Kedarnath Wildlife Sanctuary of Garhwal Himalaya, India. The reconnaissance of flora is presented, along with the analysis of the distribution of species, genera, and families within five (5) altitudinal zones. Kedarnath Wildlife Sanctuary which is situated in the Indian Himalayas harbours a rich variety of flora and fauna. The Himalayas are recognized for diverse vegetation distributed over a wide range of topographical conditions.ResultsThe analysis of diversity within five (5) altitudinal zones was carried out and a total of 324 plant species, representing 219 genera belonging to 92 families, were found. The dominant family was Asteraceae; the co-dominant family was Rosaceae, followed by Lamiaceae and Ranunculaceae. Eight (8) families were observed in all the altitudinal zones, while forty (40) families were observed in a single altitudinal zone, and the remaining forty-four (44) families were found in more than one (1) altitudinal zone. Most of the tree species were contagiously distributed, but a few of them were randomly distributed in all the altitudinal zones. The shrubs and herbs were contagiously distributed in all the altitudinal zones. The correlation analysis (P < 0.05) between altitude and number of species showed that altitude is negatively correlated with tree (r = −0.96), shrub (r = −0.61), and herb species (r = −0.20). As per the cluster analysis of tree layer, altitudinal zone - III (2450–2650 m) and altitudinal zone - IV (2900–3100 m) were found most similar. Altitudinal zone–V (3350–3550 m) was found to be dissimilar from the other zones for herbs.ConclusionsAlthough species composition varies with altitude, but there is a complex relationship between species richness and altitudinal gradient. A decreasing pattern in both species richness and family richness for trees, shrubs and herbs, was recorded with increasing altitude. The predominant factors underlying this variability in plant species and biogeography appear to be climatic and specific to each taxonomic group.  相似文献   

10.
《Mammalian Biology》2014,79(2):90-95
Elevation gradients and corresponding changes in environment have the potential to affect seasonal reproduction and mortality and hence the seasonal age structure of animal populations. This has been frequently shown in mammals and birds on larger geographic scales, but evidence for small-scale gradient effects is scanty. We studied such small scale altitudinal effects on the proportions of juveniles in a population of bank voles (Myodes glareolus) in a forested habitat along an elevation gradient of 355 m. This was done by regular live trapping in different altitudes over a two-year period. We also measured altitudinal differences in ambient temperatures and vegetational parameters in order to shed light on the underlying mechanisms of such purported differences in age structure. As could be expected for a seasonal breeder, the proportion of juveniles showed an initial increase in spring, an optimum in summer and a subsequent regression in early autumn, reflecting the seasonal pattern of reproduction. In addition, there was evidence for altitudinal effects on the occurrence of juveniles, which was decreased in higher altitudes, assumingly driven by altitudinal differences in onset and/or intensity of annual breeding activity. This altitudinal gradient in juvenile occurrence was partly explained by corresponding differences in ambient temperatures. Furthermore, there was good support that the higher abundance of herbs in lower altitudes played an important role in explaining the altitudinal differences in the proportion of juveniles. In conclusion, our study strongly supports the existence of altitudinal small-scale gradient effects on reproductive parameters in a small rodent, most probably due to the action of altitude-related factors such as microclimate and vegetational parameters.  相似文献   

11.
The Atlantic Forest is one of the most threatened tropical forests in the world. Leguminosae, by its great richness and dominance among arboreal stratum elements, is of major importance in the floristic composition and structure of this forest. We investigated the distribution of legume species on an altitudinal gradient to find out the altitudinal zones with higher richness of species; the altitudinal zones with greater floristic similarity; the possible presence of species that may be exclusive to certain vegetation types and the altitudinal amplitudes of those species, as well as the occurrence of species substitution along the altitudinal gradient. Therefore, thirty one studies conducted in different altitudinal levels between 5° S and 29° S were analyzed. A matrix with 142 tree species distributed in altitudinal zones (every 100 m) from sea level to 2100 m was built. The greatest species richness was observed in the Submontane Forest (50–500 m) with 92 species. The cluster analysis revealed a strong dissimilarity of the 1400–2100 m (Upper Montane) and 0–10 m zones (Restinga Forest). The Submontane and the Montane Forest share the highest number of species (38 ssp.). Forty species are unique to Submontane. Substitution of species was verified. Some species have their preferred habitat located at a specific altitudinal amplitude, as is the case of Inga laurina and I. subnuda (0–10 m), I. lanceifolia and Machaerium scleroxylon (800–1200 m). The Leguminosae, although well adapted to the first colonization and establishment of diverse environment, was poorly represented above 1500 m altitude.  相似文献   

12.
We studied the altitudinal patterns of plant species richness and examined the effects of geometric constraints, area, and climatic factors on the observed richness patterns along the ridge of the Baekdudaegan Mountains, South Korea. Rapoport’s altitudinal rule was evaluated by examining the relationship between altitudinal range size and midpoint. We also examined the latitudinal effect on species richness. Plant data were collected from 1,100 plots along a 200–1,900 m altitudinal gradient along the ridge of the Baekdudaegan. A total of 802 plant species from 97 families and 342 genera were found. The altitudinal patterns of plant species richness along the ridge of the Baekdudaegan depicted distinctly hump-shaped patterns, although the absolute altitudes of the richness peaks vary somewhat among plant groups. While the mid-domain effect (MDE) was the most powerful explanatory variable in simple regression models, species richness was also associated with climatic factors, especially mean annual precipitation (MAP) and temperature (MAT) in multiple regression models. The relative importance of the MDE and climatic factors were different among plant groups. The MDE was more important for woody plants and for large-ranged species, whereas climatic factors were better predictors for total and herbaceous plants and for small-ranged species. Rapoport’s altitudinal rule and a latitudinal effect on species richness were not supported. Our study suggests that a combined interaction of the MDE and climatic factors influences species richness patterns along the altitudinal gradient of the Baekdudaegan Mountains, South Korea.  相似文献   

13.
喀斯特山区植物物种丰富度的空间变异分析   总被引:1,自引:1,他引:0  
应用地统计学对地处滇黔桂连片喀斯特腹地的贵州省毕节地区植物物种丰富度的海拔空间变异进行分析。结果表明,乔木物种丰富度的半变异函数最佳理论模型为球状模型,灌木、草本为线性有基台模型。乔木物种丰富度的空间异质比为0.0052,具有强烈的海拔空间相关性,主要受随海拔梯度变化的自然性控制因素的影响;灌木、草本物种丰富度的空间异质比分别为3.15、34.55,海拔梯度的空间相关性很弱,受随机因素作用较大。乔木物种丰富度的变程为177.37m受因素影响的海拔范围较宽;灌木和草本物种丰富度的变程分别为73.02m和49.97m,受因素影响的海拔范围较窄。灌木、草本物种丰富度的Moran’s I系数随海拔梯度变化的趋势相类似,但乔木的差别较大。  相似文献   

14.
Aim Species richness is an important feature of communities that varies along elevational gradients. Different patterns of distribution have been described in the literature for various taxonomic groups. This study aims to distinguish between species density and species richness and to describe, for land snails in south‐eastern France, the altitudinal patterns of both at different spatial scales. Location The study was conducted on five calcareous mountains in south‐eastern France (Etoile, Sainte Baume, Sainte Victoire, Ventoux and Queyras). Methods Stratified sampling according to vegetation and altitude was undertaken on five mountains, forming a composite altitudinal gradient ranging from 100 to 3100 m. Visual searching and analysis of turf samples were undertaken to collect land snail species. Species density is defined as the number of species found within quadrats of 25 m2. Species richness is defined as the number of species found within an elevation zone. Different methods involving accumulation curves are used to describe the patterns in species richness. Elevation zones of different sizes are studied. Results Eighty‐seven species of land snails were recovered from 209 samples analysed during this study. Land snail species density, which can vary between 29 and 1 species per 25 m2, decreases logarithmically with increasing altitude along the full gradient. However, on each mountain separately, only a linear decrease is observable. The climatic altitudinal gradient can explain a large part of this pattern, but the great variability suggests that other factors, such as heterogeneity of ground cover, also exert an influence on species density. The altitudinal pattern of species richness varies depending on the spatial resolution of the study. At fine resolution (altitudinal zones of 100 m) land snail species richness forms a plateau at altitudes below 1000 m, before decreasing with increasing altitude. At coarse resolution (altitudinal zones of 500 and 1000 m) the relationship becomes linear. Main conclusions This study reveals that land snail species density and land snail species richness form two different altitudinal patterns. Species density exhibits strong variability between sites of comparable altitude. A large number of samples seem necessary to study altitudinal patterns of species density. Species density decreases logarithmically with increasing altitude. Above a critical altitudinal threshold, this decrease lessens below the rate seen in the first 1500 m. Different methods exist to scale‐up species density to species richness but these often produce different patterns. In this study, the use of accumulation curves has yielded a pattern of species richness showing a plateau at low altitude, whereas simple plotting of known altitudinal ranges from single mountains would have produced stronger mid‐altitudinal peaks. This study shows that not only factors such as temperatures and habitat heterogeneity, but also an ecotone effect, are responsible for the observed patterns.  相似文献   

15.
Aims The importance of quantifying carbon stocks in terrestrial ecosystems is crucial for determining climate change dynamics. However, the present regional assessments of carbon stocks in tropical grasslands are extrapolated to unsampled areas with a high degree of uncertainty and without considering the carbon and nitrogen composition of vegetation and soil along altitudinal ranges. This study aims to assess carbon and nitrogen concentrations in soil and vegetation, aboveground carbon stocks distribution and soil organic carbon stocks along an altitudinal range in the páramo region in the Ecuadorian Andes.Methods The vegetation inventory was conducted using 15×15 m sampling plots distributed in three altitudinal ranges. Based on the patterns exhibited by the dominant vegetation growth forms, biomass and soil were sampled to quantify the corresponding carbon and nitrogen concentrations. Subsequently, the aboveground live biomass along the páramo altitudinal range was estimated using allometric equations. Finally, soil and vegetation carbon stocks were estimated for the entire basin.Important findings Altitudinal analysis supported a potential distribution of carbon and nitrogen concentrations in soil, litter and live tissues, where higher concentrations were found in the low altitudinal range mainly for tussocks and acaulescent rosettes. Cellulose in litter showed higher concentrations at low altitudinal ranges for acaulescent rosettes and cushions only. For the same growth forms, lignin patterns in litter were higher in high altitudinal ranges. Soil texture provided complementary information: high percentage of silt was highly correlated to high soil nitrogen and carbon concentration. Tussocks were found to be responsive to altitude with their, highest aboveground carbon stocks occurring at the low altitudinal range, but cushions and acaulescent rosettes responded differently. The established relationships among soil, vegetation and altitude shown in this study must be taken into account to estimate both aboveground and soil organic carbon stocks in páramo regions—such estimates will be considerably inaccurate if these relationships are ignored.  相似文献   

16.
The distribution of Calliphoridae along an altitudinal gradient was investigated in Central Spain using carrion-baited traps. Significant differences were found between elevation and mean abundances of almost all species of blow-flies. Several species of flies could be grouped according to their altitudinal preferences so that samples at high elevations are defined by Calliphora vomitoria and Calliphora vicina while samples at low elevations are defined by two thermophilous species: Lucilia sericata and Chrysomya albiceps. The remaining species show preferences for mid-elevations where wooded areas are more characteristic along the altitudinal gradient. Calliphora vomitoria and Chrysomya albiceps are the most abundant species representing the 87.74 % of all captures. Both species are spatially segregated along the altitudinal gradient. The changing patterns of abundance are discussed in relation to differences in climate conditions along the altitudinal gradient concluding that the environmental variables that influence the seasonality of many species also play an important role to explain the spatial distribution.  相似文献   

17.
Local adaptation in alpine plants has been demonstrated across wide altitudinal gradients, but has rarely been examined across the alpine‐to‐montane transition that often encompasses only a few hundred metres. Here we characterize morphological variation in leaf and floral characteristics of the trigger plant Stylidium armeria along a narrow altitudinal gradient in the Bogong High Plains in Victoria. Across this gradient, which encompasses the high‐elevation limit of this species, linear changes were found for floral scape height, leaf length and flower number. All these traits decreased with increasing altitude, whereas the frequency of abnormal flowers increased. When plants were grown in a common garden environment, an altitudinal pattern for flower abnormalities was no longer detected. However, altitudinal patterns for leaf length and scape height were maintained, albeit weaker than in the field. This indicates heritable variation for these morphological traits; the altitudinal patterns are likely to reflect the effects of selection by environmental factors that vary with altitude. Selection pressures remain to be identified but have generated both cogradient and countergradient patterns of variation.  相似文献   

18.
The effect of alutudinal range, distance to the latitudinal boundary of geographical range, body size and larval food plant on both the distribution and abundance of butterflies have been studied in a mountain area along a marked altitudinal gradient Multiple regression analysis revealed that distribution was positively related to altitudinal range and abundance Altitudinal range accounted for a great part of vanance in species distribution Altitudinal range increased as both distance to latitudinal boundary of geographical range and body size increased Abundance was not affected by altitudinal range, body size or distance to latitudinal boundary Larval food plants family was related to the abundance of butterflies, but not to distribution or altitudinal range These results suggest that regional distributions of butterflies are likely to be limited by climatic tolerances of species, while local abundance might be influenced by local resource levels  相似文献   

19.
In populations that are distributed across steep environmental gradients, the potential for local adaptation is largely determined by the spatial scale of fitness variation relative to dispersal distance. Since altitudinal gradients are generally characterized by dramatic ecological transitions over relatively short linear distances, adaptive divergence across such gradients will typically require especially strong selection to counterbalance the homogenizing effect of gene flow. Here we report the results of a study that was designed to test for evidence of adaptive divergence across an altitudinal gradient in a natural population of deer mice, Peromyscus maniculatus. We conducted a multilocus survey of allozyme variation across a steep altitudinal gradient in the southern Rocky Mountains that spanned several distinct biomes, from prairie grassland to alpine tundra. As a control for the effects of altitude, we also surveyed the same loci in mice sampled along a latitudinal transect through the prairie grassland that ran perpendicular to the east-west altitudinal transect. We used a coalescent-based simulation model to identify loci that deviated from neutral expectations, and we then assessed whether locus-specific patterns of variation were nonrandom with respect to altitude. Results indicated that the albumin locus (Alb) reflects a history of diversifying selection across the altitudinal gradient. This conclusion is supported by two main lines of evidence: (1) Alb was characterized by levels of divergence across the altitudinal transect that exceeded neutral expectations in two consecutive years of sampling (in contrast to the spatial pattern of variation across the latitudinal transect), and (2) levels of divergence at the Alb locus exhibited a positive association with altitudinal distance in both years (in contrast to the pattern observed at unlinked loci). We conclude that clinal variation at the Alb locus reflects a balance between gene flow and diversifying selection that results from elevational changes in fitness rankings among alternative genotypes.  相似文献   

20.
Wasserman, D. and Nash, D. J. 1979. Variation in body size, hair length, and hair density in the deer mouse Peromyscus maniculatus along an altitudinal gradient. – Holarct. Ecol. 2: 115-118.
Deer mice Peromyscus maniculatus were captured along an altitudinal gradient that extended from 1524 m up to 3353 m in central Colorado during August and early September 1976. No differences were found in mean body weight along the altitudinal, gradient. Mean hair length was found to increase along the gradient up to an altitude of 2438 m where it leveled off. Hair density was higher in mice captured at 3353 m than at 1524 m. This suggests that Bergmann's Rule was not found along the altitudinal gradient and that insulation was modified in response to the cooler conditions that exist at, high altitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号