首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The feasibility of producing plant cell wall polysaccharide-hydrolysing feed enzymes in the endosperm of barley grain was investigated. The coding region of a modified xylanase gene (xynA) from the rumen fungus, Neocallimastix patriciarum, linked with an endosperm-specific promoter from cereal storage protein genes was introduced into barley by Agrobacterium-mediated transformation. Twenty-four independently transformed barley lines with the xylanase gene were produced and analysed. The fungal xylanase was produced in the developing endosperm under the control of either the rice glutelin B-1 (GluB-1) or barley B1 hordein (Hor2-4) promoter. The rice GluB-1 promoter provided an apparently higher expression level of recombinant proteins in barley grain than the barley Hor2-4 promoter in both transient and stable expression experiments. In particular, the mean value for the fungal xylanase activity driven by the GluB-1 promoter in the mature grains of transgenic barley was more than twice that with the Hor2-4 promoter. Expression of the xylanase transgene under these endosperm-specific promoters was not observed in the leaf, stem and root tissues. Accumulation of the fungal xylanase in the developing grains of transgenic barley followed the pattern of storage protein deposition. The xylanase was stably maintained in the grain during grain maturation and desiccation and post-harvest storage. These results indicate that the cereal grain expression system may provide an economic means for large scale production of feed enzymes in the future.  相似文献   

2.
A DNA fragment containing the exons 16, 17 and intron 16 of the limit dextrinase gene was cloned using a 654 bp cDNA as probe. Intron 16 contained a simple sequence repeat (microsatellite). PCR primers were designed to amplify that microsatellite. Using these primers, the limit dextrinase gene was mapped to the short arm of chromosome 1 (7H) using 150 DH lines from the Steptoe × Morex mapping population. This gene co-segregated with the RFLP marker ABC154A. QTLs for malt extract, -amylase activity, diastatic power and fine-coarse difference previously mapped in the North American Barley Genome Mapping Project have been located in this chromosome region. Five limit dextrinase alleles were detected in 31 barley cultivars with a PIC of 0.75. Ten different alleles/genes were identified in 23 uncultivated Hordeum species or subspecies using these microsatellite primers. The primers also amplified one fragment from wheat and two from oat. This microsatellite should be useful for marker-assisted selection for malting quality.  相似文献   

3.
The proteinaceous inhibitor of limit dextrinase in barley and malt   总被引:2,自引:0,他引:2  
Barley limit dextrinase catalyses hydrolysis of alpha-1,6-D-glucosidic bonds in branched poly- or oligosaccharides from starch. A specific inhibitor of this enzyme is found in mature barley kernels, but disappears after several days of germination. Two forms of this proteinaceous inhibitor, identical in amino acid sequence, have been isolated and characterized. They differ in attachment of cysteine or glutathione to a sulfhydryl group, possibly that of cysteine residue 59 of the inhibitor. They can form a 1:1 complex with limit dextrinase and are believed to interact specifically with the enzyme active site. The inhibitor present in mature barley can effectively reduce enzyme activity in barley germinated for a short time and in commercial malt.  相似文献   

4.
Limit dextrinase (LD) is a key enzyme in determining the malting quality. A survey of 60 barley varieties showed a wide range of variation for the enzyme activity and thermostability. Galleon showed low enzyme activity and high thermostability while Maud showed high activity and low thermostability. Alignment of the LD amino acid sequences of Galleon and Maud identified seven amino acid substitutions Lys/Arg-102, Thr/Ala-233, Ser/Gly-235, Gly/Ala-298, Cys/Arg-415, Ala/Ser-885 and Gly/Cys-888. Genetic diversity of LD was investigated using single strand conformation polymorphism based on the amino acid substitutions. Only limited genetic variation was detected in the current malting barley varieties, although wide variation was observed in the wider barley germplasm. The Thr/Ala-233 and Ala/Ser-885 substitutions were associated with enzyme thermostability (P < 0.0001), but no polymorphism was associated with the enzyme activity. This result was confirmed from further sequence analysis. The results will provide a tool for understanding and selection of high LD thermostability.  相似文献   

5.
6.
7.
8.
Limit dextrinase (LD) is a unique de-branching enzyme involved in starch mobilization of barley grains during malting, and closely related to malt quality. Genotypic variation of LD activity is controlled by genetic factors and also affected by environmental conditions. Correlation analysis between LD activity and four malt quality parameters showed that LD activity was positively correlated with diastatic power, Kolbach index and the quality of malt extract, while negatively correlated with viscosity. The structure-based association analysis demonstrated that HvLDI, a gene encoding limit dextrinase inhibitor, was a major determinant of LD activity and malt quality. The single nucleotide polymorphisms associated with LD activity could be used in early generation selection for barley breeding.  相似文献   

9.
Endo-beta-mannanase (EC 3.2.1.78) is involved in hydrolysis of the mannan-rich cell walls of the tomato (Lycopersicon esculentum Mill.) endosperm during germination and post-germinative seedling growth. Different electrophoretic isoforms of endo-beta-mannanase are expressed sequentially in different parts of the endosperm, initially in the micropylar endosperm cap covering the radicle tip and subsequently in the remaining lateral endosperm surrounding the rest of the embryo. We have isolated a cDNA from imbibed tomato seeds (LeMAN2) that shares 77% deduced amino acid sequence similarity with a post-germinative tomato mannanase (LeMAN1). When expressed in Escherichia coli, the protein encoded by LeMAN2 cDNA was recognized by anti-mannanase antibody and exhibited endo-beta-mannanase activity, confirming the identity of the gene. LeMAN2 was expressed exclusively in the endosperm cap tissue of tomato seeds prior to radicle emergence, whereas LeMAN1 was expressed only in the lateral endosperm after radicle emergence. LeMAN2 mRNA accumulation and mannanase activity were induced by gibberellin in gibberellin-deficient gib-1 mutant seeds but were not inhibited by abscisic acid in wild-type seeds. Distinct mannanases are involved in germination and post-germinative growth, with LeMAN2 being associated with endosperm cap weakening prior to radicle emergence, whereas LeMAN1 mobilizes galactomannan reserves in the lateral endosperm.  相似文献   

10.
Cadmium translocation and accumulation in developing barley grains   总被引:3,自引:0,他引:3  
Chen F  Wu F  Dong J  Vincze E  Zhang G  Wang F  Huang Y  Wei K 《Planta》2007,227(1):223-232
Soil cadmium (Cd) contamination has posed a serious problem for safe food production and become a potential agricultural and environmental hazard worldwide. In order to study the transport of Cd into the developing grains, detached ears of two-rowed barley cv. ZAU 3 were cultured in Cd stressed nutrient solution containing the markers for phloem (rubidium) and xylem (strontium) transport. Cd concentration in each part of detached spikes increased with external Cd levels, and Cd concentration in various organs over the three Cd levels of 0.5, 2, 8 μM Cd on 15-day Cd exposure was in the order: awn > stem > grain > rachis > glume, while the majority of Cd was accumulated in grains with the proportion of 51.0% relative to the total Cd amount in the five parts of detached spikes. Cd accumulation in grains increased not only with external Cd levels but the time of exposure contrast to stem, awn, rachis and glume. Those four parts of detached spike showed increase Cd accumulation for 5 days, followed by sharp decrease till day 10 and increase again after 12.5 days. Awn-removal and stem-girdling markedly decreased Cd concentration in grains, and sucrose or zinc (Zn) addition to the medium and higher relative humidity (RH) also induced dramatic reduction in Cd transport to developing grains. The results indicated that awn, rachis and glume may involve in Cd transport into developing grains, and suggested that Cd redistribution in maturing cereals be considered as an important physiological process influencing the quality of harvested grains. Our results suggested that increasing RH to 90% and Zn addition in the medium at grain filling stage would be beneficial to decrease Cd accumulation in grains.  相似文献   

11.
12.
13.
14.

Background  

Micro- and macroarray technologies help acquire thousands of gene expression patterns covering important biological processes during plant ontogeny. Particularly, faithful visualization methods are beneficial for revealing interesting gene expression patterns and functional relationships of coexpressed genes. Such screening helps to gain deeper insights into regulatory behavior and cellular responses, as will be discussed for expression data of developing barley endosperm tissue. For that purpose, high-throughput multidimensional scaling (HiT-MDS), a recent method for similarity-preserving data embedding, is substantially refined and used for (a) assessing the quality and reliability of centroid gene expression patterns, and for (b) derivation of functional relationships of coexpressed genes of endosperm tissue during barley grain development (0–26 days after flowering).  相似文献   

15.
Barley limit dextrinase (HvLD) of glycoside hydrolase family 13 is the sole enzyme hydrolysing α-1,6-glucosidic linkages from starch in the germinating seed. Surprisingly, HvLD shows 150- and 7-fold higher activity towards pullulan and β-limit dextrin, respectively, than amylopectin. This is investigated by mutational analysis of residues in the N-terminal CBM-21-like domain (Ser14Arg, His108Arg, Ser14Arg/His108Arg) and at the outer subsites +2 (Phe553Gly) and +3 (Phe620Ala, Asp621Ala, Phe620Ala/Asp621Ala) of the active site. The Ser14 and His108 mutants mimic natural LD variants from sorghum and rice with elevated enzymatic activity. Although situated about 40 Å from the active site, the single mutants had 15–40% catalytic efficiency compared to wild type for the three polysaccharides and the double mutant retained 27% activity for β-limit dextrin and 64% for pullulan and amylopectin. These three mutants hydrolysed 4,6-O-benzylidene-4-nitrophenyl-63-α-d-maltotriosyl-maltotriose (BPNPG3G3) with 51–109% of wild-type activity. The results highlight that the N-terminal CBM21-like domain plays a role in activity. Phe553 and the highly conserved Trp512 sandwich a substrate main chain glucosyl residue at subsite +2 of the active site, while substrate contacts of Phe620 and Asp621 at subsite +3 are less prominent. Phe553Gly showed 47% and 25% activity on pullulan and BPNPG3G3, respectively having a main role at subsite +2. By contrast at subsite +3, Asp621Ala increased activity on pullulan by 2.4-fold, while Phe620Ala/Asp621Ala retained only 7% activity on pullulan albeit showed 25% activity towards BPNPG3G3. This outcome supports that the outer substrate binding area harbours preference determinants for the branched substrates amylopectin and β-limit dextrin.  相似文献   

16.
Xyloglucan endotransglycosylases (XETs) modify xyloglucans, major components of primary cell walls in dicots. A cDNA encoding an XET (LeXET4) was isolated from a germinating tomato (Lycopersicon esculentum Mill.) seed cDNA library. DNA gel blot analysis showed that LeXET4 is a single-copy gene in the tomato genome. LeXET4 mRNA was strongly expressed in germinating seeds, was much less abundant in stems, and was not detected in roots, leaves or flower tissues. During germination, LeXET4 mRNA was detected in seeds within 12 h of imbibition with maximum mRNA abundance at 24 h. Tissue prints showed that LeXET4 mRNA was localized exclusively to the endosperm cap region. Expression of LeXET4 was dependent on exogenous gibberellin (GA) in GA-deficient (gib-1 mutant) tomato seeds, while abscisic acid, a seed germination inhibitor, had no effect on LeXET4 mRNA expression in wild-type seeds. LeXET4 mRNA disappeared after radicle emergence, even though degradation of the lateral endosperm cell walls continued. The temporal, spatial and hormonal regulation pattern of LeXET4 gene expression suggests that XET has a role in endosperm cap weakening, a key process regulating tomato seed germination.  相似文献   

17.
18.
A cDNA encoding an O-methyltransferase (OMT) was isolated from salt-tolerant barley roots by subtraction hybridization with cDNAs of salt-tolerant barley roots as a tester cDNA and cDNAs of the salt-sensitive barley roots as a driver cDNA. The deduced amino acid sequence showed significant identity with plant caffeic acid/5-hydroxyferulic acid OMTs. Southern blot analysis showed that the OMT gene was a single copy in both salt-tolerant and -sensitive barley. The cloned gene was expressed in a wheat germ cell-free system to produce the OMT, which had methylating activity for caffeic acid. Northern blot analysis showed that the OMT gene was expressed constitutively in the salt-tolerant barley roots and the expression level was increased 1.5 times by salt stress, but the salt-sensitive barley showed no expression of the gene in roots and leaves.  相似文献   

19.
20.
Resting seeds of several plant species, including barley grains, have been reported to contain aspartic proteinase (EC 3.4.23) activity. Here, the expression of the Hordeum vulgare L. aspartic proteinase (HvAP) was studied in developing and germinating grains by activity measurements as well as by immunocytochemical and in-situ hybridization techniques. Southern blotting suggests the presence of one to two HvAP-encoding genes in the barley genome, while Northern analysis reveals a single 2.1-kb mRNA in grains and vegetative tissues. Western blotting with antibodies to HvAP shows the same subunit structure in different grain parts. In developing grains, HvAP is produced in the embryo, aleurone layer, testa and pericarp, but in the starchy endosperm HvAP is present only in the crushed and depleted area adjacent to the scutellum. During seed maturation, HvAP-encoding mRNA remains in the aleurone layer and in the embryo, but the enzyme disappears from the aleurone cells. The enzyme, however, remains in the degenerating tissues of the testa and pericarp as well as in resting embryo and scutellum. During the first three days of germination, the enzyme reappears in the aleurone layer cells but is not secreted into the starchy endosperm. The HvAP is also expressed in the flowers, stem, leaves, and roots of barley. The wide localization of HvAP in diverse tissues suggests that it may have several functions appropriate to the needs of different tissues.Abbreviations DAA days after anthesis - DTT dithiothreitol - HvAP Hordeum vulgare aspartic proteinase Both authors have contributed equally to this workWe thank Mart Saarma, Pia Runeberg-Roos, Alan Schulman and Yrjö Helariutta for helpful discussions during the study, Tiina Arna and Sari Makkonen for their help in proteinase activity experiments as well as Jaana Korhonen (Department of Pathology, University of Helsinki), Salla Marttila and Ilkka Porali (Department of Biology, University of Jyväskylä, Jyväskylä, Finland) for their advice on microscopical techniques. We also thank Liisa Pyhälä and Leena Liesirova for the production of the antibodies to HvAP at the National Public Health Institute, Helsinki. This study was supported by grants from the Ministry of Agriculture and Forestry and the Academy of Finland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号