首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the embryos of glossiphoniid leeches, as in many annelids, cytoplasmic reorganization prior to first cleavage generates domains of yolk-deficient cytoplasm (called teloplasm) that are sequestered during the first three cell divisions to the D' macromere. Subsequently, the D' macromere generates a set of embryonic stem cells (teloblasts) that are the progenitors of the definitive segmental tissues. The hypothesis that fate-determining substances are localized within the teloplasm and segregated to the D macromere during cleavage is supported by experiments in which a redistribution of yolk-defcient cytoplasm changes the fate of blastomeres that inherit it (Astrow et al. 1987; Devries 1973; Nelson and Weisblat 1992). As a step toward identifying fate-determining factors in teloplasm, we describe the distribution of polyadenylated RNAs (polyA+ RNA) in the early embryo of the leech, Helobdella triserialis, as inferred from in situ hybridization using tritiated polyuridylic acid (3H-polyU). Our results indicate that polyA+ RNA colocalizes with teloplasm during cytoplasmic rearrangements resulting in teloplasm formation, and that it remains concentrated in the teloplasm during the cell divisions and a second cytoplasmic rearrangement during early embryogenesis. Lesser amounts of polyA+ RNA appear to be localized in cortical cytoplasm at most stages.  相似文献   

2.
Fertilized eggs of the leech Helobdella triserialis undergo a cytoplasmic reorganization which generates domains of nonyolky cytoplasm, called teloplasm, at the animal and vegetal poles. The segregation of teloplasm to one cell of the eight-cell embryo is responsible for a unique developmental fate of that cell, i.e., to give rise to segmental ectoderm and mesoderm. We have studied the cytoplasmic movements that generate teloplasm using time-lapse video microscopy; the formation and migration of rings of nonyolky cytoplasm were visualized using transmitted light, while the movements of mitochondria into these rings were monitored with epifluorescence after labeling embryos with rhodamine 123, a fluorescent mitochondrial dye. To examine the likelihood that cytoskeletal elements play a role in the mechanism of teloplasm formation in Helobdella, we examined the distribution of microtubules and microfilaments during the first cell cycle by indirect immunofluorescence and rhodamine-phalloidin labeling, respectively. The cortex of the early embryo contained a network of microtubules many of which were oriented parallel to the cell surface. As teloplasm formation ensued, microtubule networks became concentrated in the animal and the vegetal cortex relative to the equatorial cortex. More extensive microtubule arrays were found within the rings of teloplasm. Actin filaments appeared in the form of narrow rings in the cortex, but these varied apparently randomly from embryo to embryo in terms of number, size, and position. The role of microtubules and microfilaments in teloplasm formation was tested using depolymerizing agents. Teloplasm formation was blocked by microtubule inhibitors, but not by microfilament inhibitors. These results differ significantly from those obtained in embryos of the oligochaete Tubifex hattai, suggesting that the presumably homologous cytoplasmic reorganizations seen in these two annelids have different cytoskeletal dependencies.  相似文献   

3.
4.
In leech embryos, segmental ectoderm and mesoderm are produced by a pair of sister cells located near the animal and vegetal poles, respectively. We have investigated the mechanism that localizes ectodermal and mesodermal fates along the animal-vegetal axis. The results of cleavage arrest and cell ablation experiments suggest that the full range of normal cell interactions are not required for this process. However, when the animal and vegetal hemispheres are separated by re-orientation of the first cleavage plane from meridional to equatorial, the ectodermal fate co-segregates with the animal hemisphere and the mesodermal fate with the vegetal hemisphere. Two pools of yolk-deficient cytoplasm, called teloplasm, are located at the animal and vegetal poles of the zygote, but separation of the animal and vegetal teloplasms is not sufficient for the segregation of ectodermal and mesodermal fates. Rather, complete segregation of fates requires an equatorial cleavage orientation that separates not only the two teloplasms, but also the animal and vegetal cortical regions. This, in conjunction with previous findings, indicates that ectodermal determinants are localized to the cell cortex in the animal hemisphere of the zygote. We propose that these determinants segregate to the ectodermal precursor and interact with factors in teloplasm to transform the fate of this cell from a mesodermal ground state to ectoderm.  相似文献   

5.
The teloblasts of the embryo of the leech Theromyzon rude contain two distinct cytoplasmic domains. One, the vitelloplasm, consists mainly of yolk platelets; it makes up more than half of the total teloblast volume. The other, the teloplasm, resides at the teloplasmic pole, surrounds the cell nucleus, and consists mainly of mitochondria, endoplasmic reticulum, and other membrane-enclosed subcellular structures. The teloblasts pass on their teloplasm, but not their vitelloplasm, to the stem cells that each teloblast produces by a series of unequal divisions at its teloplasmic pole. The stem cells produced by each teloblast form a bandelet, and these bandelets associate to form the germinal bands. The nuclei of the stem cells, and of their daughter blast cells in the germinal bands that eventually generate the tissues and organs of the postembryonic leech, are smaller than the teloblast nuclei, but they contain much larger nucleoli. Different teloblasts begin and end production of their stem cells at different developmental stages. At the end of its stem cell production each teloblast still retains about half of its original teloplasm, which thereupon becomes fragmented and dispersed throughout the teloblast. During the course of stem cell production the teloblasts undergo rotational and translational movements on the surface of the embryo.  相似文献   

6.
In the normal development of glossiphoniid leech embryos, cytoplasmic reorganization prior to the first cleavage generates visibly distinct domains of yolk-deficient cytoplasm, called teloplasm. During an ensuing series of stereotyped and unequal cell divisions, teloplasm is segregated primarily into cell CD of the two-cell stage and then into cell D of the four-cell and eight-cell stages. The subsequent fate of cell D is also unique in that it alone undergoes further cleavages which generate five bilateral pairs of embryonic stem cells, the mesodermal (M) and ectodermal (N, O/P, O/P, and Q) teloblasts. Here we report studies on the effects of centrifugation on cleavage pattern and protein composition of individual blastomeres of the leech Helobdella triserialis. Centrifugation partially stratifies the cytoplasm of each cell, generating a layer of clear cytoplasm in cell CD derived largely from teloplasm. After centrifuging embryos at the two-cell stage, clear cytoplasm present in cell CD and normally inherited by cell D is redistributed and can be inherited by both cells C and D at the second cleavage. The developmental fates of cells C and D in centrifuged embryos correlate with the amount of clear cytoplasm they receive. In particular, when clear cytoplasm has been distributed roughly equally between the two cells, both cell C and cell D undergo further cleavages resembling the pattern of divisions normally associated with cell D. Likewise, non-yolk-associated proteins, normally found in higher quantities in cell D than in cell C, appear evenly disbursed between the two cells under conditions which induce this fate change. These results are consistent with the idea that the fates of cells C and D are influenced by the distribution or cellular localization of cytoplasmic components.  相似文献   

7.
In mollusks with an equal four-cell stage, dorsoventral polarity becomes noticeable in the interval between the formation of the third and fourth quartet of micromeres, i.e., between the fifth and sixth cleavage. One of the two macromeres at the vegetal cross-furrow then partly withdraws from the surface and becomes located more toward the center of the embryonic cell mass than the other three macromeres. Only this specific macromere (3D) contacts the micromeres of the animal pole, divides with a delay, and develops into the stem cell of the mesentoblast (4d). After suppression of the normal contacts between micromeres and macromeres either by dissociation of the embryos or by deletion of first quartet cells, the normal differentiation of the macromeres fails to appear. By deleting a decreasing number of first quartet cells, an increasing percentage of embryos shows the normal differentiation pattern. Deletion of one of the cross-furrow macromeres does not preclude formation of the mesentoblast, which then originates by differentiation of an other macromere. It is concluded that initially the embryo is radially symmetrical and that the four quadrants have identical developmental capacities; mesentoblast differentiation from one macromere is induced through the contacts of the first quartet cells and that single macromere.  相似文献   

8.
Many members of the spiralian phyla (i.e., annelids, echiurans, vestimentiferans, molluscs, sipunculids, nemerteans, polyclad turbellarians, gnathostomulids, mesozoans) exhibit early, equal cleavage divisions. In the case of the equal-cleaving molluscs, animal-vegetal inductive interactions between the derivatives of the first quartet micromeres and the vegetal macromeres specify which macromere becomes the 3D cell during the interval between fifth and sixth cleavage. The 3D macromere serves as a dorsal organizer and gives rise to the 4d mesentoblast. Even though it has been argued that this situation represents the ancestral condition among the Spiralia, these inductive events have only been documented in equal-cleaving molluscs. Embryos of the nemertean Cerebratulus lacteus also undergo equal, spiral cleavage, and the fate map of these embryos is similar to that of other spiralians. The role of animal first quartet micromeres in the establishment of the dorsal (D) cell quadrant was examined in C. lacteus by removing specific combinations of micromeres at the eight-cell stage. To follow the development of various cell quadrants, one quadrant was labeled with DiI at the four-cell stage, and specific first quartet micromeres were removed from discrete positions relative to the location of the labeled quadrant. The results indicate that the first quartet is required for normal development, as removal of all four micromeres prevented dorsoventral axis formation. In most cases, when either one or two adjacent first quartet micromeres were removed from one side of the embryo, the cell quadrant on the opposite side, with its macromere centered under the greatest number of the remaining animal micromeres, ultimately became the D quadrant. Twins containing duplicated dorsoventral axes were generated by removal of two opposing first quartet micromeres. Thus, any cell quadrant can become the D quadrant, and the dorsoventral axis is established after the eight-cell stage. While it is not yet clear exactly when key inductive interactions take place that establish the D quadrant in C. lacteus, contacts between the progeny of animal micromeres and vegetal macromeres are established during the interval between the fifth and sixth round of cleavage divisions (i.e., 32- to 64-cell stages). These findings argue that this mechanism of cell and axis determination has been conserved among equal-cleaving spiralians.  相似文献   

9.
In annelids, molluscs, echiurans and sipunculids the establishment of the dorsal-ventral axis of the embryo is associated with D quadrant specification during embryogenesis. This specification occurs in two ways in these phyla. One mechanism specifies the D quadrant via the shunting of a set of cytoplasmic determinants located at the vegetal pole of the egg to one blastomere of the four cell stage embryo. In this case, at the first two cleavages of embryogenesis there is an unequal distribution of cytoplasm, generating one macromere which is larger than the others at the four cell stage. The D quadrant can also be specified by a contact mediated inductive interaction between one of the macromeres at the vegetal pole with micromeres at the animal pole of the embryo. This mechanism operates at a later stage of development than the cytoplasmic localization mechanism and is associated with a pattern of cleavage in which the first two cleavages are equal. An analysis of the phylogenetic relationships within these phyla indicates that the taxa which determine the D quadrant at an early cleavage stage by cytoplasmic localization tend to be derived and lack a larval stage or have larvae with adult characters. Those taxa where the D quadrant is specified by induction include the ancestral groups although some derived groups also use this mechanism. The pulmonate mollusc Lymnaea uses an inductive mechanism for specifying the D quadrant. In these embryos each of the four vegetal macromeres has the potential of becoming the D macromere; however under normal circumstances one of the two vegetal crossfurrow macromeres almost invariably becomes the D quadrant. Experiments are described here in which the size of one of the blastomeres of the four cell stage Lymnaea embryo is increased; this macromere invariably becomes the D quadrant. These experiments suggest that developmental change in relative blastomere size during the first two cleavages in spiralian embryos that normally cleave equally may have provided a route that has led to the establishment of the cytoplasmic localization mechanism of D quadrant formation.  相似文献   

10.
Embryos of many spirally cleaving species possess a characteristic cell type, the trochoblasts. These cells differentiate early in development into ciliated cells and give rise to the prototroch, the locomotory organ of the trochophore larva. As a necessary prelude to the investigation of the mechanisms that are responsible for specification of trochoblasts in the equally cleaving gastropod molluscPatella vulgata, the cell-lineage of the prototroch was studied. This was done by microinjection of the cell-lineage tracer lucifer yellow-dextran in trochoblasts and by scanning electron microscopical analysis of formation of the prototroch. The results show that trochoblasts that form the prototroch are of different clonal origin and that the four quadrants of the embryo have an unequal contribution to the prototroch. Since the four quadrants of the equally cleaving embryo are initially equipotent, some trochoblasts must become conditionally specified. Other trochoblasts seem to become autonomously specified. After initial ciliation some trochoblasts become deciliated and for some cells the choice between a larval and an adult cell fate is conditionally specified. Cell-lineage analysis demonstrates that the various autonomously and conditionally specified trochoblasts are organised according to the dorsoventral axis of the embryo. Possible mechanisms that can account for the conditional specification of trochoblasts — including a role for the 3D macromere, which forms the primary mesoderm and is responsible for the formation of the dorsoventral axis of the embryo — are discussed. Correspondence to: P. Damen  相似文献   

11.
Summary Spirally cleaving embryos in which the first two cleavages generate four equal-sized blastomeres remain radially symmetrical along their animal-vegetal axis until the interval between third and fourth quartet formation. At this time animal micromeres and vegetal macromeres contact each other as they elongate and occlude the central, fluid-filled cleavage cavity. The overlying micromeres focus their contacts onto one of the four macromeres, the presumptive 3D macromere, as it elongates to a central position within the embryo. We tested the hypothesis that this animal-vegetal interaction was causally involved in the determination of the symmetry properties in both the animal and vegetal hemispheres by reversibly inhibiting animal-vegetal contact at the 24 cell stage with cytochalasin-B. Embryos remained hollow throughout the treatment period and animal-vegetal interaction did not occur. After treatment, blastomere elongation occurred but no D quadrant macromere appeared and the vegetal hemisphere remained radialized. On the basis of cleavage and ciliation patterns of first quartet derivatives, treated embryos remained fully or partially radialized, showing a strong tendancy to develop as ventral quadrants. These results show that the quadrants of this equal-cleaving spiralian are not definitively determined until after the 24 cell stage and that animal-vegetal interaction is required for D quadrant determination. The mechanisms of symmetrization in the animal and vegetal hemispheres of equal-cleaving spiralians is also discussed.  相似文献   

12.
Classical experiments performed on the embryo of the mollusc Ilyanassa obsoleta demonstrate that the 3D macromere acts as an embryonic organizer, by signaling to other cells and inducing them to assume the correct pattern of cell fates. We have discovered that MAP kinase signaling is activated in the cells that require the signal from 3D for normal differentiation. Preventing specification of the D quadrant lineage by removing the polar lobe disrupts the pattern of MAPK activation, as does ablation of the 3D macromere itself. Blocking MAPK activation with the MAP Kinase inhibitor U0126 produces larvae that differentiate the same limited complement of tissues as D quadrant deletions. Our results suggest that the MAP Kinase signaling cascade transduces the inductive signal from 3D and specifies cell fate among the cells that receive the signal.  相似文献   

13.
14.
Determination of cleavage pattern in embryonic blast cells of the leech   总被引:1,自引:0,他引:1  
The o blast cells of the leech embryo become committed to one of two alternative cleavage geometries shortly before they divide. Cleavage geometry depends upon the presence or absence of the adjoining p bandlet, and if that bandlet is ablated, the pattern of o blast cell cleavages will undergo an abrupt transition several hours later. Previous work has shown that the oblast cell becomes committed to the formation of a particular complement of postmitotic descendants early in its differentiation, but the present findings suggest that cleavage pattern and descendant fate are determined at separate commitment events.  相似文献   

15.
The development of bioluminescence in the ctenophore Mnemiopsis leidyi   总被引:1,自引:0,他引:1  
The photocytes of the ctenophore Mnemiopsis have a discontinuous distribution along the radial canal between the sites where the comb plate cilia cells are located on the side of the canal which contains the testes. They are separated from the lumen of the canal by a population of gastric cells. Cytologically these cells are characterized by a condensed nucleus and cytoplasm which stains lightly with basophilic dyes.The ability of the ctenophore embryo to produce light appears at the developmental stage when the comb plate cilia first begin to grow out. At this stage four light-producing areas are present; each area corresponds to one quadrant of the adult animal. At the sites of light production, a population of cells can be identified that have some of the cytological properties of the photocytes of the adult animal. Within 8–10 hr after light production begins there is a 10-fold increase in the amount of light produced by an embryo and a cytological maturation of its photocytes; during this time period there is no increase in photocyte number. At about the time the embryo begins to feed, each light-producing region splits into two regions, each of which corresponds to a radial canal.During the process of embryogenesis the photocyte cell lineage is first segregated from non-photocytes at the differential division which gives the 8-cell stage embryo. The M macromere lineage goes on to form photocytes, but the E macromere lineage does not. The M macromeres form a micromere at the aboral pole of the embryo at each of the next two cleavages; during these cleavages the potential for photocyte differentiation continues to segregate with the M macromeres. During the division which gives the 64-cell stage the M macromeres divide equally; the potential for photocyte differentiation segregates with the M macromeres nearest the oral-aboral axis. M macromeres which are isolated from the embryo at the 8-, 16-, or 32-cell stage of development will continue to cleave as though they were part of a normal embryo and differentiate to form photocytes.The events that are responsible for the differential division during the formation of the 8-cell stage embryo have been studied by centrifuging eggs to produce fragments of different cytoplasmic composition. Egg fragments which contain only cortical cytoplasm differentiate comb plate cilia cells, but do not produce photocytes. Cortical fragments with a small amount of yolk differentiate comb plate cilia cells and photocytes. Both the M and E macromeres from cortical fragments with no yolk produce comb plate cilia. Only M macromeres containing yolk form photocytes; if an M macromere forms photocytes it does not form comb plate cilia.  相似文献   

16.
Summary The dorsal-ventral axis inPatella vulgata embryos is established at the 32-cell stage by an inductive interaction between the animal micromeres and one vegetal macromere. This vegetal macromere, once induced, is called the 3D macromere, and marks the future dorsal side of the embryo. We examined the pattern of filamentous (F) actin in such embryos using fluorescent phalloidin and found that this dorsal 3D macromere contains more F-actin than the remainder of the cells. In addition, only one of its two daughter cells, i.e. the 4D macromere, retains this higher density. In embryos in which the establishment of the dorsal-ventral axis has been experimentally inhibited via treatment with monensin, such differences in F-actin were not found. These results suggest that the appearance of an increased density of F-actin in the dorsal 3D and 4D macromeres of normal embryos requires the inductive interactions that establish the dorsal-ventral axis. We therefore conclude that F-actin is an early marker for dorsal induction in thePatella embryo.  相似文献   

17.
Dorsoventral polarity in molluscan embryos can arise by two distinct mechanisms, where the mechanism employed is strongly correlated with the cleavage pattern of the early embryo. In species with unequal cleavage, the dorsal lineage, or "D quadrant", is determined in a cell-autonomous manner by the inheritance of cytoplasmic determinants. However, in gastropod molluscs with equal cleavage, cell-cell interactions are required to specify the fate of the dorsal blastomere. During the fifth cleavage interval in equally cleaving embryos, one of the vegetal macromeres makes exclusive contacts with the animal micromeres, and this macromere will give rise to the mesodermal precursor cell at the next division, thereby identifying the dorsal quadrant. This study examines D-quadrant determination in an equally cleaving species from a group of previously uninvestigated gastropods, the subclass Opisthobranchia. Blastomere ablation experiments were performed on embryos of Haminoea callidegenita to (i) determine the developmental potential of macromeres before and after fifth cleavage, and (ii) examine the role of micromere-macromere interactions in the establishment of bilateral symmetry. The results suggest that the macromeres are developmentally equivalent prior to fifth cleavage, but become nonequivalent soon afterward. The dorsoventral axis corresponds to the displacement of the micromeres over one macromere early in the fifth cleavage interval. This unusual cellular topology is hypothesized to result from constraints imposed on micromere-macromere interactions in an embryo that develops from a large egg and forms a stereoblastula (no cleavage cavity). Ablation of the entire first quarter of micromeres results in embryos which remain radially symmetrical in the vegetal hemisphere, indicating that micromere-macromere interactions are required for the elaboration of bilateral symmetry properties. Therefore, inductive interactions between cells may represent a general strategy for dorsoventral axis determination in equally cleaving gastropods.  相似文献   

18.
Summary

In the spiralian embryos studied which display unequal-cleavage at the first two cleavages (either by a polar lobe or an asymmetric cleavage mechanism) the D quadrant is determined at the four cell stage by an unequal segregation of cytoplasmic stuffs. The normal formation of eyes, foot, and shell by overlying micromeres in these forms requires the inductive interaction with the D quadrant before the formation of the third quartet of micromeres. In equal-cleaving spiralians the D quadrant (3D macromere) becomes determined as a result of inductive interactions with first quartet derivatives (animal-vegetal interaction) sometime after the production of the third quartet of micromeres. This paper investigates the exact timing of D quadrant determination and the inductive role of third-order macromeres on the development of micromere derived structures in an equal-cleaving spiralian. Deletions of third-order macromeres, and their derivatives, were performed without rupturing the egg capsule membrane of the Lymnaea embryo with a UV laser microbeam. Virtually normal snails were produced when the 3A, 3B, 3C, or 4D macromere was irradiated. Juvenile snails lacking all mesodermal structures but possessing eyes, foot, and shell were obtained when the mesentoblast (4d) or its progenitor (3D) were deleted. Furthermore, ‘mesoderm-less’ snails were produced by deleting one of the two possible 3D candidates (cross furrow macromeres) as early as 20 min after third quartet formation. These results indicate that the 3D macromere begins to become determined at, or soon after, animal-vegetal interaction; before the 3D macromere becomes visibly distinguishable from the 3B macromere. The results also demonstrate that normal pattern formation in the overlying micromeres does not require the ‘prolonged’ interaction with an asymmetrically positioned 3D macromere. Possible adhesive differences between the 3D macromere and the remaining three macromeres are also revealed.  相似文献   

19.
Gap junctions are direct intercellular channels that permit the passage of ions and small signaling molecules. The temporal and spatial regulation of gap junctional communication is, thus, one mechanism by which cell interactions, and hence cell properties and cell fate, may be regulated during development. The nervous system of the leech, Hirudo medicinalis, is a particularly advantageous system in which to study developmental mechanisms involving gap junctions because interactions between identified cells may be studied in vivo in both the embryo and the adult. As in most invertebrates, gap junctions in the leech are composed of innexin proteins, which are distantly related to the vertebrate pannexins and are encoded by a multi-gene family. We have cloned ten novel leech innexins and describe the expression of these, plus two other previously reported members of this gene family, in the leech embryo between embryonic days 6 and 12, a period during which the main features of the central nervous system are established. Four innexins are expressed in neurons and two in glia, while several innexins are expressed in the excretory, circulatory, and reproductive organs. Of particular interest is Hm-inx6, whose expression appears to be restricted to the characterized S cell and two other neurons putatively identified as presynaptic to this cell. Two other innexins also show highly restricted expressions in neurons and may be developmentally regulated. Electronic Supplementary Material Supplementary material is available for this article at .  相似文献   

20.
The embryonic development of the leech Theromyzon rude was studied under the dissecting microscope. Embryos were examined both live and after acid treatment that solubilizes the yolk, or vitelloplasm, and renders the embryos transparent. Most of the remaining cytoplasm, or teloplasm, of the uncleaved egg is passed on to five pairs of germinal cells, or teloblasts. Teloblasts arise sequentially from a set of precursor cells, or proteloblasts, that divide according to a modified spiral cleavage pattern. Each teloblast buds off a succession of smaller stem cells, which form a single row, or germinal bandlet, and to which the teloblast passes on its teloplasm. The five bilateral pairs of germinal bandlets thus produced give rise to most of the embryonic structures. A new notational system for the designation of proteloblasts, teloblasts, and their stem cells has been introduced. Development of the embryo, from the uncleaved egg to the completion of the gut, has been divided into 10 stages. At 14°C, completion of these 10 stages takes approximately 850 hr from the time the egg is laid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号