首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent data indicate that 'classical' neurotransmitters can also act as co-transmitters. This notion has been strengthened by the demonstration that three vesicular glutamate transporters (vesicular glutamate transporter 1 (VGLUT1), VGLUT2 and VGLUT3) are present in central monoamine, acetylcholine and GABA neurons, as well as in primarily glutamatergic neurons. Thus, intriguing questions are raised about the morphological and functional organization of neuronal systems endowed with such a dual signalling capacity. In addition to glutamate co-release, vesicular synergy - a process leading to enhanced packaging of the 'primary' transmitter - is increasingly recognized as a major property of the glutamatergic co-phenotype. The behavioural relevance of this co-phenotype is presently the focus of considerable interest.  相似文献   

2.
The functional balance of glutamatergic and GABAergic signaling in neuronal cortical circuits is under homeostatic control. That is, prolonged alterations of global network activity leads to opposite changes in quantal amplitude at glutamatergic and GABAergic synapses. Such scaling of excitatory and inhibitory transmission within cortical circuits serves to restore and maintain a constant spontaneous firing rate of pyramidal neurons. Our recent work shows that this includes alterations in the levels of expression of vesicular glutamate (VGLUT1 and VGLUT2) and GABA (VIAAT) transporters. Other vesicle markers, such as synaptophysin or synapsin, are not regulated in this way. Endogenous regulation at the level of mRNA and synaptic protein controls the number of transporters per vesicle and hence, the level of vesicle filling with transmitter. Bidirectional and opposite activity-dependent regulation of VGLUT1 and VIAAT expression would serve to adjust the balance of glutamate and GABA release and therefore the level of postsynaptic receptor saturation. In some excitatory neurons and synapses, co-expression of VGLUT1 and VGLUT2 occurs. Bidirectional and opposite changes in the levels of two excitatory vesicular transporters would enable individual neocortical neurons to scale up or scale down the level of vesicular glutamate storage, and thus, the amount available for release at individual synapses. Regulated vesicular transmitter storage and release via selective changes in the level of expression of vesicular glutamate and GABA transporters indicates that homeostatic plasticity of synaptic strength at cortical synapses includes presynaptic elements.  相似文献   

3.
The adipocyte does not only serve as fuel storage but produces and secretes compounds with modulating effects on food intake and energy homeostasis. Although there is firm evidence for a centrally mediated regulation of adipocyte function via the autonomous nervous system, little is known about signaling between adipocytes. Amino acid neurotransmitters are candidates for such paracrine signaling. Here, we applied immunohistochemistry to detect components required for amino acid transmitter signaling in rat fat depots. In interscapular brown adipose tissue as well as in interscapular, mesenteric, perirenal, and epididymal white adipose tissues, we demonstrate robust immunosignals for the excitatory neurotransmitter glutamate, the inhibitory neurotransmitter gamma-aminobutyric acid (GABA), and the GABA-synthesizing enzyme glutamate decarboxylase (GAD) isoforms GAD65 and GAD67. Moreover, all adipose tissues stained for the vesicular glutamate transporter VGLUT1 and the vesicular GABA transporter VGAT in addition to the vesicle marker synaptophysin. Electron microscopic immunocytochemistry showed that VGLUT1 and VGAT, but not VGLUT2 or VGLUT3, are localized in vesicular organelles in adipocytes. The receptors for glutamate (subunits GluR2/3 and NR1 but not mGluR2) and for GABA (GABA(A)Ralpha2) were present in the adipocytes. The presence of glutamate, GABA, their vesicular transporters, and their receptors indicates a paracrine signaling role for amino acids in adipose tissues.  相似文献   

4.
Studies of synapsin-deficient mice have shown decreases in the number of synaptic vesicles but knowledge about the consequences of this decrease, and which classes of vesicles are being affected, has been lacking. In this study, glutamatergic, GABAergic and dopaminergic transport has been analysed in animals where the genes encoding synapsin I and II were inactivated. The levels of the vesicular glutamate transporter (VGLUT) 1, VGLUT2 and the vesicular GABA transporter (VGAT) were decreased by approximately 40% in adult forebrain from mice devoid of synapsin I and II, while vesicular monoamine transporter (VMAT) 2 and VGLUT3 were present in unchanged amounts compared with wild-type mice. Functional studies on synaptic vesicles showed that the vesicular uptake of glutamate and GABA was decreased by 41 and 23%, respectively, while uptake of dopamine was unaffected by the lack of synapsin I and II. Double-labelling studies showed that VGLUT1 and VGLUT2 colocalized fully with synapsin I and/or II in the hippocampus and neostriatum, respectively. VGAT showed partial colocalization, while VGLUT3 and VMAT2 did not colocalize with either synapsin I or II in the brain areas studied. In conclusion, distinct vesicular transporters show a variable degree of colocalization with synapsin proteins and, hence, distinct sensitivities to inactivation of the genes encoding synapsin I and II.  相似文献   

5.
A very small population of choline acetyltransferase (ChAT) immunoreactive cells is observed in all layers of the adult hippocampus. This is the intrinsic source of the hippocampal cholinergic innervation, in addition to the well-established septo-hippocampal cholinergic projection. This study aimed at quantifying and identifying the origin of this small population of ChAT-immunoreactive cells in the hippocampus at early developmental stages, by culturing the fetal hippocampal neurons in serum-free culture and on a patternable, synthetic silane substrate N-1 [3-(trimethoxysilyl) propyl] diethylenetriamine. Using this method, a large proportion of glutamatergic (glutamate vesicular transporter, VGLUT1-immunoreactive) neurons, a small fraction of GABAergic (GABA-immunoreactive) neurons, and a large proportion of cholinergic (ChAT-immunoreactive) neurons were observed in the culture. Interestingly, most of the glutamatergic neurons that expressed glutamate vesicular transporter (VGLUT1) also co-expressed ChAT proteins. On the contrary, when the cultures were double-stained with GABA and ChAT, colocalization was not observed. Neonatal and adult rat hippocampal neurons were also cultured to verify whether these more mature neurons also co-express VGLUT1 and ChAT proteins in culture. Colocalization of VGLUT1 and ChAT in these relatively more mature neurons was not observed. One possible explanation for this observation is that the neurons have the ability to synthesize multiple neurotransmitters at a very early stage of development and then with time follows a complex, combinatorial strategy of electrochemical coding to determine their final fate.  相似文献   

6.

Background

Previous work has suggested, but not demonstrated directly, a critical role for both glutamatergic and GABAergic neurons of the pontine tegmentum in the regulation of rapid eye movement (REM) sleep.

Methodology/Principal Findings

To determine the in vivo roles of these fast-acting neurotransmitters in putative REM pontine circuits, we injected an adeno-associated viral vector expressing Cre recombinase (AAV-Cre) into mice harboring lox-P modified alleles of either the vesicular glutamate transporter 2 (VGLUT2) or vesicular GABA-glycine transporter (VGAT) genes. Our results show that glutamatergic neurons of the sublaterodorsal nucleus (SLD) and glycinergic/GABAergic interneurons of the spinal ventral horn contribute to REM atonia, whereas a separate population of glutamatergic neurons in the caudal laterodorsal tegmental nucleus (cLDT) and SLD are important for REM sleep generation. Our results further suggest that presynaptic GABA release in the cLDT-SLD, ventrolateral periaqueductal gray matter (vlPAG) and lateral pontine tegmentum (LPT) are not critically involved in REM sleep control.

Conclusions/Significance

These findings reveal the critical and divergent in vivo role of pontine glutamate and spinal cord GABA/glycine in the regulation of REM sleep and atonia and suggest a possible etiological basis for REM sleep behavior disorder (RBD).  相似文献   

7.
Dopamine neurons have been suggested to use glutamate as a cotransmitter. To identify the basis of such a phenotype, we have examined the expression of the three recently identified vesicular glutamate transporters (VGLUT1-3) in postnatal rat dopamine neurons in culture. We found that the majority of isolated dopamine neurons express VGLUT2, but not VGLUT1 or 3. In comparison, serotonin neurons express only VGLUT3. Single-cell RT-PCR experiments confirmed the presence of VGLUT2 mRNA in dopamine neurons. Arguing for phenotypic heterogeneity among axon terminals, we find that only a proportion of terminals established by dopamine neurons are VGLUT2-positive. Taken together, our results provide a basis for the ability of dopamine neurons to release glutamate as a cotransmitter. A detailed analysis of the conditions under which DA neurons gain or loose a glutamatergic phenotype may provide novel insight into pathophysiological processes that underlie diseases such as schizophrenia, Parkinson's disease and drug dependence.  相似文献   

8.
The quantal release of glutamate depends on its transport into synaptic vesicles. Recent work has shown that a protein previously implicated in the uptake of inorganic phosphate across the plasma membrane catalyzes glutamate uptake by synaptic vesicles. However, only a subset of glutamate neurons expresses this vesicular glutamate transporter (VGLUT1). We now report that excitatory neurons lacking VGLUT1 express a closely related protein that has also been implicated in phosphate transport. Like VGLUT1, this protein localizes to synaptic vesicles and functions as a vesicular glutamate transporter (VGLUT2). The complementary expression of VGLUT1 and 2 defines two distinct classes of excitatory synapse.  相似文献   

9.
在中枢神经系统,谷氨酸转运体在谷氨酸一谷氨酰胺循环中发挥着重要作用。谷氨酸转运体有高亲和力转运体,即兴奋性氨基酸转运体(excitatory amino acid transporters,EAATs)和低亲和力转运体,即囊泡谷氨酸转运体(vesicular glutamate transporters,VGLUTs)两种类型。其中,VGLUTs的功能是特异地将突触囊泡外的谷氨酸转运进入突触囊泡内,它包括三个成员,分别是VGLUT1、VGLUT2和VGLUT3。一方面,VGLUT1和VGLUT2标记了所有的谷氨酸能神经元,是谷氦酸能神经元和它们轴突末端高度特异的标志;另一方面,VGLUT1标志着皮质一皮质投射,而VGLUT2则标志着丘脑一皮层投射,VGLUT3则位于抑制性突触末端。  相似文献   

10.
Nerve injury induces a state of prolonged thermal and mechanical hypersensitivity in the innervated area, causing distress in affected individuals. Nerve injury-induced hypersensitivity is partially due to increased activity and thereby sustained release of neurotransmitters from the injured fibers. Glutamate, a prominent neurotransmitter in primary afferents, plays a major role in development of hypersensitivity. Glutamate is packed in vesicles by vesicular glutamate transporters (VGLUTs) to enable controlled release upon depolarization. While a role for peripheral VGLUTs in nerve injury-induced pain is established, their contribution in specific peripheral neuronal populations is unresolved. We investigated the role of VGLUT2, expressed by transient receptor potential vanilloid (TRPV1) fibers, in nerve injury-induced hypersensitivity. Our data shows that removal of Vglut2 from Trpv1-Cre neurons using transgenic mice abolished both heat and punctuate hyperalgesia associated with nerve injury. In contrast, the development of cold hypersensitivity after nerve injury was unaltered. Here, we show that, VGLUT2-mediated glutamatergic transmission from Trpv1-Cre neurons selectively mediates heat and mechanical hypersensitivity associated with nerve injury. Our data clarifies the role of the Trpv1-Cre population and the dependence of VGLUT2-mediated glutamatergic transmission in nerve injury-induced hyperalgesia.  相似文献   

11.
12.

Background

Previous work by our lab and others has implicated glutamate as a major excitatory signal to gonadotropin hormone releasing hormone (GnRH) neurons, with gamma amino butyric acid (GABA) serving as a potential major inhibitory signal. However, it is unknown whether GABAergic and/or glutamatergic synaptic appositions to GnRH neurons changes on the day of the proestrous LH surge or is affected by aging.

Methodology/Principal Findings

To examine this question, synaptic terminal appositions on GnRH neurons for VGAT (vesicular GABA transporter) and VGLUT2 (vesicular glutamate transporter-2), markers of GABAergic and glutamatergic synaptic terminals, respectively, was examined by immunohistochemistry and confocal microscopic analysis in young and middle-aged diestrous and proestrous rats. The results show that in young proestrous rats at the time of LH surge, we observed reciprocal changes in the VGAT and VGLUT2 positive terminals apposing GnRH neurons, where VGAT terminal appositions were decreased and VGLUT2 terminal appositions were significantly increased, as compared to young diestrus control animals. Interestingly, in middle-aged cycling animals this divergent modulation of VGAT and VGLUT2 terminal apposition was greatly impaired, as no significant differences were observed between VGAT and VGLUT2 terminals apposing GnRH neurons at proestrous. However, the density of VGAT and VGLUT2 terminals apposing GnRH neurons were both significantly increased in the middle-aged animals.

Conclusions/Significance

In conclusion, there is an increase in glutamatergic and decrease in GABAergic synaptic terminal appositions on GnRH neurons on proestrus in young animals, which may serve to facilitate activation of GnRH neurons. In contrast, middle-aged diestrous and proestrous animals show a significant increase in both VGAT and VGLUT synaptic terminal appositions on GnRH neurons as compared to young animals, and the cycle-related change in these appositions between diestrus and proestrus that is observed in young animals is lost.  相似文献   

13.
Weston MC  Nehring RB  Wojcik SM  Rosenmund C 《Neuron》2011,69(6):1147-1159
Vesicular glutamate transporters (VGLUTs) are essential for filling synaptic vesicles with glutamate and mammals express three VGLUT isoforms (VGLUT1-3) with distinct spatiotemporal expression patterns. Here, we find that neurons expressing VGLUT1 have lower release probability and less short-term depression than neurons expressing VGLUT2 or VGLUT3. Investigation of the underlying mechanism identified endophilin A1 as a positive regulator of exocytosis whose expression levels are positively correlated with release efficiency and showed that the differences in release efficiency between VGLUT1- and VGLUT2-expressing neurons are due to VGLUT1's ability to bind endophilin A1 and inhibit endophilin-induced enhancement of release probability.  相似文献   

14.
The expression of unconventional vesicular glutamate transporter VGLUT3 by neurons known to release a different classical transmitter has suggested novel roles for signaling by glutamate, but this distribution has raised questions about whether the protein actually contributes to glutamate release. We now report that mice lacking VGLUT3 are profoundly deaf due to the absence of glutamate release from hair cells at the first synapse in the auditory pathway. The early degeneration of some cochlear ganglion neurons in knockout mice also indicates an important developmental role for the glutamate released by hair cells before the onset of hearing. In addition, the mice exhibit primary, generalized epilepsy that is accompanied by remarkably little change in ongoing motor behavior. The glutamate release conferred by expression of VGLUT3 thus has an essential role in both function and development of the auditory pathway, as well as in the control of cortical excitability.  相似文献   

15.
Glutamate is the major excitatory neurotransmitter in the mammalian CNS. It is loaded into synaptic vesicles by a proton gradient-dependent uptake system and is released by exocytosis upon stimulation. Recently, two mammalian isoforms of a vesicular glutamate transporter, VGLUT1 and VGLUT2, have been identified, the expression of which enables quantal release of glutamate from glutamatergic neurons. Here, we report a novel isoform of a human vesicular glutamate transporter (hVGLUT3). The predicted amino acid sequence of hVGLUT3 shows 72% identity to both hVGLUT1 and hVGLUT2. hVGLUT3 functions as a vesicular glutamate transporter with similar properties to the other isoforms when it is heterologously expressed in a neuroendocrine cell line. Although mammalian VGLUT1 and VGLUT2 exhibit a complementary expression pattern covering all glutamatergic pathways in the CNS, expression of hVGLUT3 overlaps with them in some brain areas, suggesting molecular diversity that may account for physiological heterogeneity in glutamatergic synapses.  相似文献   

16.
With the recent identification of the two isoforms of vesicular glutamate transporters VGLUT1 and VGLUT2 and of the presumed neuronal glutamine transporter SAT1 novel tools have been made available to unequivocally define the anatomy of glutamatergic pathways on the cellular and synaptic level. Using highly specific antisera and cRNA probes two distinct glutamatergic pathways expressing either VGLUT1 or VGLUT2 could be detected throughout the central nervous system. Areas where VGLUT1 predominated included the cerebral and cerebellar cortex and the hippocampus. VGLUT2 was mainly expressed in the thalamus, hypothalamus and brain stem. VGLUT1 and VGLUT2 synapses exhibited distinct region- and pathway-specific relationships with each other and with other classical transmitter and peptidergic systems. The glutamine transporter SAT1 was expressed in CNS neurons and in ependymal cells. Neuronal SAT1 expression comprised virtually all glutamatergic neurons but also specific subsets of cholinergic, GABAergic and aminergic neurons in the CNS. In addition to widespread expression of VGLUT1 and VGLUT2 in the CNS, peripheral tissues such as sensory neurons and pancreatic islet cells differentially expressed VGLUT isoforms and SAT1.
Our results suggest pathway-specific functional duality in the regulation of vesicular glutamate release at excitatory synapses and provide evidence for glutamine transport and metabolism in excitatory glutamatergic and diverse nonglutamatergic neurons as well.  相似文献   

17.
Ahnert-Hilger G  Jahn R 《Neuron》2008,57(2):173-174
The vesicular glutamate transporters VGLUT1 and VGLUT2 fill synaptic vesicles with glutamate, an essential prerequisite for glutamatergic transmission in the CNS. In contrast, the third isoform, VGLUT3, is not confined to glutamatergic neurons, and its function has remained enigmatic. In this issue of Neuron, Seal et al. show that mice lacking VGLUT3 are profoundly deaf and exhibit nonconvulsive seizures.  相似文献   

18.
Gephyrin is a scaffold protein essential for stabilizing glycine and GABA(A) receptors at inhibitory synapses. Here, recombinant intrabodies against gephyrin (scFv-gephyrin) were used to assess whether this protein exerts a transynaptic action on GABA and glutamate release. Pair recordings from interconnected hippocampal cells in culture revealed a reduced probability of GABA release in scFv-gephyrin-transfected neurons compared with controls. This effect was associated with a significant decrease in VGAT, the vesicular GABA transporter, and in neuroligin 2 (NLG2), a protein that, interacting with neurexins, ensures the cross-talk between the post- and presynaptic sites. Interestingly, hampering gephyrin function also produced a significant reduction in VGLUT, the vesicular glutamate transporter, an effect accompanied by a significant decrease in frequency of miniature excitatory postsynaptic currents. Overexpressing NLG2 in gephyrin-deprived neurons rescued GABAergic but not glutamatergic innervation, suggesting that the observed changes in the latter were not due to a homeostatic compensatory mechanism. Pulldown experiments demonstrated that gephyrin interacts not only with NLG2 but also with NLG1, the isoform enriched at excitatory synapses. These results suggest a key role of gephyrin in regulating transynaptic signaling at both inhibitory and excitatory synapses.  相似文献   

19.
Using immunocytochemical techniques and confocal microscopy we have studied the localization of the vesicular glutamate transporters (VGLUTs) 1 and 2 in the mammalian cerebral cortex. The cardinal observations gathered to date can be summarized as follows: 1) Many VGLUT1-positive puncta coexpressing synaptophysin-1 outline pyramidal cell somata and proximal dendrites; of these, a sizeable fraction coexpress VGAT, the vesicular transporter for GABA; 2) VGLUT2-positive puncta are also present in layers II-III and some of them coexpress VGLUTI. These findings suggest that in the cerebral cortex of adult rats axon terminals expressing VGLUT1 are heterogeneous.  相似文献   

20.
Vesicular neurotransmitter transporters are required for the storage of all classical and amino acid neurotransmitters in secretory vesicles. Transporter expression can influence neurotransmitter storage and release, and trafficking targets the transporters to different types of secretory vesicles. Vesicular transporters traffic to synaptic vesicles (SVs) as well as large dense core vesicles and are recycled to SVs at the nerve terminal. Some of the intrinsic signals for these trafficking events have been defined and include a dileucine motif present in multiple transporter subtypes, an acidic cluster in the neural isoform of the vesicular monoamine transporter (VMAT) 2 and a polyproline motif in the vesicular glutamate transporter (VGLUT) 1. The sorting of VMAT2 and the vesicular acetylcholine transporter to secretory vesicles is regulated by phosphorylation. In addition, VGLUT1 uses alternative endocytic pathways for recycling back to SVs following exocytosis. Regulation of these sorting events has the potential to influence synaptic transmission and behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号