首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Dye-based protein determination assays are widely used to estimate protein concentration, however various reports suggest that the response is dependent on the composition and sequence of the protein, limiting confidence in the resulting concentration estimates. In this study a diverse set of model proteins representing various sizes of protein and covalent modifications, some typical of biopharmaceuticals have been used to assess the utility of dye-based protein concentration assays. The protein concentration assays (Bicinchoninic acid (BCA), Bradford, 3-(4-carboxybenzoyl)quinoline-2-carboxaldehyde (CBQCA), DC, Fluorescamine and Quant-i) were compared to the 'gold standard' assay, quantitative amino acid analysis (AAA). The assays that displayed the lowest variability between proteins, BCA and DC, also generated improved estimates when BSA was used as a standard, when compared to AAA derived concentrations. Assays read out by absorbance tended to display enhanced robustness and repeatability, whereas the fluorescence based assays had wider quantitation ranges and lower limits of detection. Protein modification, in the form of glycosylation and PEGylation, and the addition of excipients, were found to affect the estimation of protein concentration for some of the assays when compared to the unmodified protein. We discuss the suitability and limitations of the selected assays for the estimation of protein concentration in biopharmaceutical applications.  相似文献   

2.
Precise determination of the peptide content in drug substance samples depends highly upon the particular peptide compound and methodology used. Four independent methods were evaluated and compared to determine which would produce the best experimental precision for analysis of thymalfasin (thymosin alpha-1). Four different methods were evaluated including elemental analysis (CHN), quantitative amino acid analysis (AAA), high-performance liquid chromatography (HPLC), and Kjeldahl. This study demonstrates that the AAA method is highly variable in one laboratory while quite precise in another laboratory. Similarly, HPLC results depended on the laboratory conducting the study with more precise values obtained under cGMP. On the contrary, the CHN method yielded highly precise [i.e. <2% coefficient of variation (CV)] values. As precise knowledge of protein content is fundamental for the compounding of final pharmaceutical product of a specific potency, the CHN analysis is recommended for peptide content determination of the drug substance thymalfasin.  相似文献   

3.
Two methods are described for estimation of plasma progesterone, both employing a heterologous-bridge radioimmunoassay system with antisera raised against a progesterone 11α-hemisuccinate conjugate and a radioiodinated progesterone 11α-glucuronide—tyramine conjugate as tracer. Separation techniques based on double antibody methods have been employed to improve assay precision, and the assays described are sensitive, precise, accurate and robust and well suited to the measurement of progesterone levels for routine monitoring of luteal function. Present evidence suggests that the majority of laboratories which already use such antisera could readily adopt this assay system with its advantages of improved performance and γ-labelled tracer.  相似文献   

4.
The Lowry method was used in this study to measure protein inHaemophilus influenzae type b (Hib) conjugate vaccines (polyribosylibitol phosphate-tetanus toxoid; PRP-TT) using deoxycholic acid (DOC) to induce protein precipitation. Trichloroacetic acid (TCA) did not induce precipitation adequately from the Hib conjugate bulk and the freeze-dried Hib conjugate product. Its yield was approximately 50%. The matrix structure of Hib conjugate inhibits precipitation by TCA. Although the Lowry method can be carried out without precipitation in Hib conjugate bulk when no residual impurities (adipic acid dihydrazide [ADH], 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide-HCI [EDAC], phenol and cyanogens bromide [CNBr],etc.) are present, it cannot be used for Hib conjugate products that contain sucrose 8.5%, because 8.5% concentration of sucrose enhanced the protein concentration. DOC- and HCI-induced precipitation is an alternative method for evaluating the protein content of the Hib conjugate bulk and the Hib conjugate product. The precipitation was optimal with a final concentrate of 0.1% for DOC at 4°C and pH 2. This Lowry method, using DOC/HCI precipitation to induce protein precipitation, was confirmed a consistent, reproducible, and valid test for proteins in Hib conjugate bulk and its freeze-dried product.  相似文献   

5.
Accurate quantification of pure peptides and proteins is essential for biotechnology, clinical chemistry, proteomics, and systems biology. The reference method to quantify peptides and proteins is amino acid analysis (AAA). This consists of an acidic hydrolysis followed by chromatographic separation and spectrophotometric detection of amino acids. Although widely used, this method displays some limitations, in particular the need for large amounts of starting material. Driven by the need to quantify isotope-dilution standards used for absolute quantitative proteomics, particularly stable isotope-labeled (SIL) peptides and PSAQ proteins, we developed a new AAA assay (AAA-MS). This method requires neither derivatization nor chromatographic separation of amino acids. It is based on rapid microwave-assisted acidic hydrolysis followed by high-resolution mass spectrometry analysis of amino acids. Quantification is performed by comparing MS signals from labeled amino acids (SIL peptide- and PSAQ-derived) with those of unlabeled amino acids originating from co-hydrolyzed NIST standard reference materials. For both SIL peptides and PSAQ standards, AAA-MS quantification results were consistent with classical AAA measurements. Compared to AAA assay, AAA-MS was much faster and was 100-fold more sensitive for peptide and protein quantification. Finally, thanks to the development of a labeled protein standard, we also extended AAA-MS analysis to the quantification of unlabeled proteins.  相似文献   

6.
Plasma is an important biofluid for clinical research and diagnostics. In the clinic, unpredictable delays—from minutes to hours—between blood collection and plasma generation are often unavoidable. These delays can potentially lead to protein degradation and modification and might considerably affect intact protein measurement methods such as sandwich enzyme-linked immunosorbent assays that bind proteins on two epitopes to increase specificity, thus requiring largely intact protein structures. Here, we investigated, using multiple reaction monitoring mass spectrometry (MRM-MS), how delays in plasma processing affect peptide-centric “bottom-up” proteomics. We used validated assays for proteotypic peptide surrogates of 270 human proteins to analyze plasma generated after whole blood had been kept at room temperature from 0 to 40 h to mimic delays that occur in the clinic. Moreover, we evaluated the impact of different plasma-thawing conditions on MRM-based plasma protein quantitation. We demonstrate that >90% of protein concentration measurements were unaffected by the thawing procedure and by up to 40-h delayed plasma generation, reflected by relative standard deviations (RSDs) of <30%. Of the 159 MRM assays that yielded quantitative results in 60% of the measured time points, 139 enabled a stable protein quantitation (RSD <20%), 14 showed a slight variation (RSD 20–30%), and 6 appeared unstable/irreproducible (RSD > 30%). These results demonstrate the high robustness and thus the potential for MRM-based plasma-protein quantitation to be used in a clinical setting. In contrast to enzyme-linked immunosorbent assay, peptide-based MRM assays do not require intact three-dimensional protein structures for an accurate and precise quantitation of protein concentrations in the original sample.  相似文献   

7.
Speed and processivity of replicative DNA polymerases can be enhanced via coupling to a sliding clamp. Due to the closed ring shape of the clamp, a clamp loader protein, belonging to the AAA+ class of ATPases, needs to open the ring-shaped clamp before loading it to DNA. Here, we developed real-time fluorescence assays to study the clamp (PCNA) and the clamp loader (RFC) from the mesophilic archaeon Methanosarcina acetivorans. Unexpectedly, we discovered that RFC can assemble a PCNA ring from monomers in solution. A motion-based DNA polymerization assay showed that the PCNA assembled by RFC is functional. This PCNA assembly activity required the ATP-bound conformation of RFC. Our work demonstrates a reverse-chaperoning activity for an AAA+ protein that can act as a template for the assembly of another protein complex.  相似文献   

8.
The high-level expression of human interleukin-1 beta in Escherichia coli is described. The protein contributes about 12% of the total cell protein and is associated with the soluble cytoplasmic fraction of the cell. A method for the purification of the protein is given which is based on anion- and cation-exchange chromatographies. The isolated protein, shown to be homogeneous by several analytical methods, has been characterized by amino acid analysis, N- and C-terminal sequence analysis and analytical centrifugation. The protein is biologically active as demonstrated by two different in vitro assays, namely, the mononuclear cell factor (IL-1/MCF) assay and lymphocyte activating factor (IL-1/LAF) assay. The specific activities determined with the IL-1/MCF and IL-1/LAF assays, are 2 X 10(7) and 4 X 10(7) units mg-1, respectively.  相似文献   

9.
10.
Kallmann syndrome (KS) is a developmental disease that expresses in patients as hypogonadotropic hypogonadism and anosmia. KS is commonly associated with mutations in the extracellular D2 domain of the fibroblast growth factor receptor (FGFR). In this study, for the first time, the molecular basis for the FGFR associated KS mutation (A168S) is elucidated using a variety of biophysical experiments, including multidimensional NMR spectroscopy. Secondary and tertiary structural analysis using far UV circular dichroism, fluorescence and limited trypsin digestion assays suggest that the KS mutation induces subtle tertiary structure change in the D2 domain of FGFR. Results of isothermal titration calorimetry experiments show the KS mutation causes a 10-fold decrease in heparin binding affinity and also a complete loss in ligand (FGF-1) binding. (1)H-(15)N chemical perturbation data suggest that complete loss in the ligand (FGF) binding affinity is triggered by a subtle conformational change that disrupts crucial structural interactions in both the heparin and the FGF binding sites in the D2 domain of FGFR. The novel findings reported in this study are expected to provide valuable clues toward a complete understanding of the other genetic diseases linked to mutations in the FGFR.  相似文献   

11.
Roles of recA mutant allele (recA495) in frameshift mutagenesis   总被引:1,自引:0,他引:1  
The chemical carcinogen N-acetoxy-N-2-acetylaminofluorene (N-AcO-AAF) induces frameshift mutations located within two types of specific sequences (mutation hot spots): i) contiguous guanine sequences and ii) alternating GC sequences. The genetic requirements of these frameshift events were investigated using specific reversion assays. AAF-induced -2 frameshift mutagenesis at alternating GC sequences is peculiar in that it requires a LexA- controlled function which is not UmuDC and occurs in the absence of RecA protein, provided the SOS regulon is derepressed. Moreover, the non-activated form of the RecA protein was shown to act as an inhibitor in this mutation pathway. As we were interested in elucidating this mutation pathway, we have developed a convenient spot reversion assay specific for the detection of this class of mutations. This assay allowed us to isolate E coli mutants affected either in repair or mutagenesis functions. One particular mutant, recA495, is very sensitive to UV and N-AcO-AAF, and is defective in recombination and UV mutagenesis. The RecA495 protein exhibits very low binding to both single- and double-stranded DNA. We show that when the SOS regulon is derepressed, the recA495 allele has two contrasting roles in frameshift mutagenesis: i) it prevents the induction of -1 frameshift mutations at repetitive sequences and ii) it is permissive for the induction of -2 frameshift mutations within alternating GC sequences.  相似文献   

12.
A high-performance liquid chromatography (HPLC) method for enzyme activity assays using a hydrophilic interaction liquid chromatography (HILIC) column in combination with an evaporative light scattering detector was developed. The method was used to measure the activity of the non-heme mono-iron enzyme cysteine dioxygenase. The substrate cysteine and the product cysteine sulfinic acid are very weak chromophores, making direct ultraviolet (UV) detection without derivatization rather insensitive; moreover, derivatization of cysteine is often not efficient. Using the system described, underivatized substrate and product in samples from cysteine dioxygenase activity assays could be separated and analyzed. Furthermore, it was possible to quantify cysteic acid, the noncatalytic oxidation product of cysteine sulfinic acid. Acetone was used both to stop the enzymatic reaction by protein precipitation and as an organic mobile phase, making sample preparation very easy and the assay highly reproducible.  相似文献   

13.
Rajpal DK  Wu X  Wang Z 《Mutation research》2000,461(2):133-143
DNA damage can lead to mutations during replication. The damage-induced mutagenesis pathway is an important mechanism that fixes DNA lesions into mutations. DNA polymerase zeta (Pol zeta), formed by Rev3 and Rev7 protein complex, and Rev1 are components of the damage-induced mutagenesis pathway. Since mutagenesis is an important factor during the initiation and progression of human cancer, we postulate that this mutagenesis pathway may provide an inhibiting target for cancer prevention and therapy. In this study, we tested if UV-induced mutagenesis can be altered by molecular modulation of Rev3 enzyme levels using the yeast Saccharomyces cerevisiae as a eukaryotic model system. Reducing the REV3 expression in yeast cells through molecular techniques was employed to mimic Pol zeta inhibition. Lower levels of Pol zeta significantly decreased UV-induced mutation frequency, thus achieving inhibition of mutagenesis. In contrast, elevating the Pol zeta level by enhanced expression of both REV3 and REV7 genes led to a approximately 3-fold increase in UV-induced mutagenesis as determined by the arg4-17 mutation reversion assays. In vivo, UV lesion bypass by Pol zeta requires the Rev1 protein. Even overexpression of Pol zeta could not alleviate the defective UV mutagenesis in the rev1 mutant cells. These observations provide evidence that the mutagenesis pathway could be used as a target for inhibiting damage-induced mutations.  相似文献   

14.
Nucleic acids are quantitated by UV absorbance measurement, fluorimetry, or hybridization. While the latter method is time-consuming and requires exact knowledge of the sequence, spectroscopic methods require that the sample does not contain UV-absorbing or fluorescent material. An enzymatic method is the measurement of the hyperchromic change upon cleavage of the nucleic acids by nucleases (Kunitz assay). A variation of this assay makes use of the acidification of the solution upon cleavage. We demonstrate here that microgram nucleic acid quantities can be determined when one employs highly active nonspecific nucleases in conjunction with an instrumental setup consisting of a temperature-controlled mixing chamber and miniaturized pH electrodes. Because this method determines the total amount of phosphodiester bonds cleaved, it is independent of the composition or the secondary structure of the nucleic acid and, under certain precautions, represents a simple and robust alternative to optical assays for the determination of either the total nucleic acid concentration or the activity of nucleases in biochemical samples.  相似文献   

15.
Indirect competitive enzyme-linked immunosorbent assays (ELISAs) that can be used to quantify several types of small, bioactive molecules, including peptides, steroids, and cyclic nucleotides, are described. The assays require no special expertise to perform, and the sensitivities are very high, equally or exceeding what is commonly achieved in radioimmunoassay (RIA). The molecule to be assayed or a synthetic derivative is coupled to a protein carrier (= conjugate). The conjugate is adsorbed to the wells of a microtiter plate where it is bound by antibody in inverse proportion to free hapten in a sample or standard. Bound antibody is then quantified with enzyme-labeled anti-immunoglobulin and appropriate substrate. The assay of peptides is illustrated for the sulfated cholecystokinin octapeptide, in which an ED50 of 20 fmol (2 x 10(-10) M in 100 microliters assay volume) is attained. The ED50's and slopes of the dose-response curves in the steroid and cyclic nucleotide ELISAs are compared with those parameters obtained earlier by RIA using the same antisera. This comparison indicates that a steroid, ecdysone, can be quantified with no apparent participation of the bridging group of the conjugate in the competitive assay. Furthermore, the ED50's in the ecdysone assays (ecdysone 2 beta, 3 beta, 14 alpha, 22R, 25-pentahydroxy-5 beta-cholest-7-en-6-one, 7.7 fmol; 20-hydroxyecdysone, 16 fmol) are 19- to 38-fold lower for ELISA than for RIA. In the cyclic nucleotide assay, the bridge of a cAMP conjugate (homologous with the bridge of the immunogen) decreases the slope of the dose-response curve. This effect is minimized by the use of short incubations with anti-cAMP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Nuclear factor I (NFI) is a group of related site-specific DNA-binding proteins that function in adenovirus DNA replication and cellular RNA metabolism. We have measured both the levels and forms of NFI that interact with a well-characterized 26-base-pair NFI-binding site. Five different NFI-DNA complexes were seen in HeLa nuclear extracts by using a gel mobility shift (GMS) assay. In addition, at least six forms of NFI were shown to cross-link directly to DNA by using a UV cross-linking assay. The distinct GMS complexes detected were composed of different subspecies of NFI polypeptides as assayed by UV cross-linking. Different murine cell lines possessed varying levels and forms of NFI binding activity, as judged by nitrocellulose filter binding and GMS assays. The growth state of NIH 3T3 cells affected both the types of NFI-DNA complexes seen in a GMS assay and the forms of the protein detected by UV cross-linking.  相似文献   

17.
Many therapeutic proteins require appropriate glycosylation for their biological activities and plasma half life. Coagulation factor VIII (FVIII) is a glycoprotein which has extensive post-translational modification by N-linked glycosylation. The terminal sialic acid in the N-linked glycans of FVIII is required for maximal circulatory half life. The extent of FVIII sialylation can be determined by high pH anion-exchange chromatography coupled with a pulse electrochemical detector (HPAEC-PED), but this requires a large amount of purified protein. Using FVIII as a model, the objective of the present study was to develop assays that enable detection and prediction of sialylation deficiency at an early stage in the process and thus prevent downstream product quality excursions. Lectin ECA (Erythrina Cristagalli) binds to unsialylated Galβ1-4 GlcNAc and the ECA-binding level (i.e., terminal Gal(β1-4) exposure) is inversely proportional to the level of sialylation. By using ECA, a cell-based assay was developed to measure the global sialylation profile in FVIII producing cells. To examine the Galβ1-4 exposure on the FVIII molecule in bioreactor tissue culture fluid (TCF), an ELISA-based ECA-FVIII binding assay was developed. The ECA-binding specificity in both assays was assessed by ECA-specific sugar inhibitors and neuraminidase digestion. The ECA-binding specificity was also independently confirmed by a ST3GAL4 siRNA knockdown experiment. To establish the correlation between Galβ1-4 exposure and the HPAEC-PED determined FVIII sialylation value, the FVIII containing bioreactor TCF and the purified FVIII samples were tested with ECA ELISA binding assay. The results indicated an inverse correlation between ECA binding and the corresponding HPAEC-PED sialylation value. The ECA-binding assays are cost effective and can be rapidly performed, thereby making them effective for in-process monitoring of protein sialylation.  相似文献   

18.
The hepatitis A virus (HAV) internal ribosome entry segment (IRES) is unique among the picornavirus IRESs in that it is inactive in the presence of either the entero- and rhinovirus 2A or aphthovirus Lb proteinases. Since these proteinases both cleave eukaryotic initiation factor 4G (eIF4G) and HAV IRES activity could be rescued in vitro by addition of eIF4F to proteinase-treated extracts, it was concluded that the HAV IRES requires eIF4F containing intact eIF4G. Here, we show that the inability of the HAV IRES to function with cleaved eIF4G cannot be attributed to inefficient binding of the cleaved form of eIF4G by the HAV IRES. Indeed, the binding of both intact eIF4F and the C-terminal cleavage product of eIF4G to the HAV IRES was virtually indistinguishable from their binding to the encephalomyocarditis virus IRES, as assessed by UV cross-linking and filter retention assays. Rather, we show that HAV IRES activity requires, either directly or indirectly, components of the eIF4F complex which interact with the N-terminal fragment of eIF4G. Effectively, HAV IRES activity, but not that of the human rhinovirus IRES, was sensitive to the rotavirus nonstructural protein NSP3 [which displaces poly(A)-binding protein from the eIF4F complex], to recombinant eIF4E-binding protein (which prevents the association of the cap binding protein eIF4E with eIF4G), and to cap analogue.  相似文献   

19.
20.
Characterizing the solution structure of protein-polymer conjugates and protein-ligand interactions is important in fields such as biotechnology and biochemistry. Size-exclusion high-performance liquid chromatography with online classical light scattering (LS), refractive index (RI), and UV detection offers a powerful tool in such characterization. Novel methods are presented utilizing LS, RI, and UV signals to rapidly determine the degree of conjugation and the molecular mass of the protein conjugate. Baseline resolution of the chromatographic peaks is not required; peaks need only be sufficiently separated to represent relatively pure fractions. An improved technique for determining the polypeptide-only mass of protein conjugates is also described. These techniques are applied to determining the degree of erythropoietin glycosylation, the degree of polyethylene glycol conjugation to RNase A and brain-derived neurotrophic factor, and the solution association states of these molecules. Calibration methods for the RI, UV, and LS detectors will also be addressed, as well as online methods to determine protein extinction coefficients and dn/dc values both unconjugated and conjugated protein molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号