首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phospholipid concentrations have been examined throughout successive cell cycles in synchronously growing cultures of the yeast, Saccharomyces cerevisiae. Total phospholipid phosphorus, as well as lecithin and phosphatidylethanolamine levels, exhibited stepwise increases during the cell cycle with step increments beginning just prior to new rounds of bud formation. Phosphatidylinositol and phosphatidylserine levels, on the other hand, showed what have been interpreted to be peak concentrations near the time of bud formation. Cardiolipin content varied considerably and was dependent upon the carbon source of the growth medium. Glucose-grown cells exhibited peak concentrations of cardiolipin near the time of bud formation, with marked decreases after this time. In contrast, galactose-grown synchronous cells exhibited stepwise increments in cardiolipin content, with step increases occurring near the time of new rounds of bud formation. Step or peak increases in cardiolipin, as well as all other phospholipids, were found to coincide with the time of stepwise increases in cytochrome c oxidase activity in these cells. No correlations were observed between the elaboration of mitochondrial membranes during the synchronous cell cycle and the observed patterns of phospholipid increase.  相似文献   

2.
Buoyant density constancy of Schizosaccharomyces pombe cells.   总被引:2,自引:2,他引:0       下载免费PDF全文
Buoyant densities of cells from exponentially growing cultures of the fission yeast Schizosaccharomyces pombe 972h- with division rates from 0.14 to 0.5 per h were determined by equilibrium centrifugation in Percoll gradients. Buoyant densities were independent of growth rate, with an average value (+/- standard error) of 1.0945 (+/- 0.00037) g/ml. When cells from these cultures were separated by size, mean cell volumes were independent of buoyant density, indicating that buoyant densities also were independent of cell age during the division cycle. These results support the suggestion that most or all kinds of cells that divide by equatorial fission may have similar, evolutionarily conserved mechanisms for regulation of buoyant density.  相似文献   

3.
Increase in cell mass during the division cycle of Escherichia coli B/rA.   总被引:7,自引:7,他引:0  
Increase in the mean cell mass of undivided cells was determined during the division cycle of Escherichia coli B/rA. Cell buoyant densities during the division cycle were determined after cells from an exponentially growing culture were separated by size. The buoyant densities of these cells were essentially independent of cell age, with a mean value of 1.094 g ml-1. Mean cell volume and buoyant density were also determined during synchronous growth in two different media, which provided doubling times of 40 and 25 min. Cell volume and mass increased linearly at both growth rates, as buoyant density did not vary significantly. The results are consistent with only one of the three major models of cell growth, linear growth, which specifies that the rate of increase in cell mass is constant throughout the division cycle.  相似文献   

4.
The pattern of volume growth of Saccharomyces cerevisiae a/alpha was determined by image cytometry for daughter cells and consecutive cycles of parent cells. An image analysis program was specially developed to measure separately the volume of bud and mother cell parts and to quantify the number of bud scars on each parent cell. All volumetric data and cell attributes (budding state, number of scars) were stored in such a way that separate volume distributions of cells or cell parts with any combination of properties--for instance, buds present on mothers with two scars or cells without scars (i.e., daughter cells) and without buds--could be obtained. By a new method called intersection analysis, the average volumes of daughter and parent cells at birth and at division could be determined for a steady-state population. These volumes compared well with those directly measured from cells synchronized by centrifugal elutriation. During synchronous growth of daughter cells, the pattern of volume increase appeared to be largely exponential. However, after bud emergence, larger volumes than those predicted by a continuous exponential increase were obtained, which confirms the reported decrease in buoyant density. The cycle times calculated from the steady-state population by applying the age distribution equation deviated from those directly obtained from the synchronized culture, probably because of inadequate scoring of bud scars. Therefore, for the construction of a volume-time diagram, we used volume measurements obtained from the steady-state population and cycle times obtained from the synchronized population. The diagram shows that after bud emergence, mother cell parts continue to grow at a smaller rate, increasing about 10% in volume during the budding period. Second-generation daughter cells, ie., cells born from parents left with two scars, were significantly smaller than first-generation daughter cells. Second- and third-generation parent cells showed a decreased volume growth rate and a shorter budding period than that of daughter cells.  相似文献   

5.
Buoyant density constancy during the cell cycle of Escherichia coli   总被引:19,自引:14,他引:5       下载免费PDF全文
Cell buoyant densities were determined in exponentially growing cultures of Escherichia coli B/r NC32 and E. coli K-12 PAT84 by equilibrium centrifugation in Percoll gradients. Distributions within density bands were measured as viable cells or total numbers of cells. At all growth rates, buoyant densities had narrow normal distributions with essentially the same value for the coefficient of variation, 0.15%. When the density distributions were determined in Ficoll gradients, they were more than twice as broad, but this increased variability was associated with the binding of Ficoll to the bacteria. Mean cell volumes and cell lengths were independent of cell densities in Percoll bands, within experimental errors, both in slowly and in rapidly growing cultures. Buoyant densities of cells separated by size, and therefore by age, in sucrose gradients also were observed to be independent of age. The results make unlikely any stepwise change in mean buoyant density of 0.1% or more during the cycle. These results also make it unlikely that signaling functions for cell division or for other cell cycle events are provided by density variations.  相似文献   

6.
The vacuole of the yeast Saccharomyces cerevisiae was visualized with three unrelated fluorescent dyes: FITC-dextran, quinacrine, and an endogenous fluorophore produced in ade2 yeast. FITC-dextran, which enters cells by endocytosis, had been previously developed as a vital stain for yeast vacuoles. Quinacrine, which diffuses across membranes and accumulates in acidic compartments in mammalian cells, can also be used as a marker for yeast vacuoles. ade2 yeast accumulate an endogenous fluorophore in their vacuoles. Using these stains, yeast were examined for vacuole morphology throughout the cell division cycle. In both the parent cell and the bud, a single vacuole was the most common morphology at every stage. Two or more vacuoles could also be found in the mother cell or in the bud; however, this morphology was not correlated with any stage of the cell division cycle. Even small buds (in early S phase) often contained a small vacuole. By the time the bud was half the diameter of the mother cell, it almost always bore a vacuole. This picture of vacuole division and segregation differs from what is seen with synchronized cultures. In ade2 yeast, the bud usually inherits a substantial portion of its vacuole contents from the mother cell. We propose that vacuolar segregation is accomplished by vesicular traffic between the parent cell and the bud.  相似文献   

7.
The DNA of several strains of Saccharomyces cerevisiae was labeled by growing the culture in medium supplemented with thymidylate and bromodeoxyuridylate. It was thus possible to follow the course of mitochondrial DNA replication in density shift experiments by determining the buoyant density distribution of unreplicated and replicated DNAs in analytical CsCl gradients. DNA replication was followed for three generations after transfer of cultures from light medium to heavy medium and heavy medium to light medium. Under both conditions, the density shifts observed for mitochondrial DNA were those expected for semiconservative, nondispersive replication. This was further confirmed by analysis of the buoyant density of alkali-denatured hybrid mitochondrial DNA. With this method, no significant recombination between replicated and unreplicated DNA was detected after three generations of growth.  相似文献   

8.
The buoyant densities of Escherichia coli K12 were investigated by isopycnic centrifugation in gradients of colloidal silica (Ludox) and polyvinylpyrrolidone. Bacteria from an exponential culture in a defined medium supplemented with hydrolysed casein banded at densities between 1-060 and 1-115 g ml-1; the mean density was 1-081 g ml-1. At the higher densities, two populations of cells were present: smaller cells were approximately twice as numerous as, and half the modal volume of, the population of larger cells. A homogeneous population of cells of intermediate volume equilibrated in the least dense region of the density band. Synchronous cultures were established by inoculating cells selected from the most or least dense regions of the band into spent growth medium. The results are consistent with a fluctuation between maximal density at cell birth and division, and minimal density near the middle of the cell cycle. In synchronous cultures prepared by continuous-flow age selection, the first division occurred after a period that was significantly shorter than the length of subsequent cell cycles. Cells selected by this procedure were of similar mean density to those in the exponential culture but were more homogeneous with respect to size. The possibility that the smallest (and densest) cells in an exponential culture are retained in the rotor, and are thus excluded from the synchronous culture, is discussed.  相似文献   

9.
When the glutamate concentration of cultures of Enterococcus hirae was raised from 20 to 300 micrograms/ml, the mass doubling time decreased from ca. 85 to 45 min in 9 min, but balanced growth was not reestablished for 30 to 40 min. During the unbalanced period of growth, RNA and protein synthesis proceeded more rapidly than did peptidoglycan synthesis, buoyant density increased from ca. 1.1024 to 1.1075 g/ml, and the rate of formation of new cell wall growth sites transitorily accelerated above the new growth rate. When studied as a function of cell size, all cultures showed buoyant density to decrease around cell separation, increase as cells increased in size, and then plateau when cells reached large volumes. Greater increases in buoyant density as a function of cell size were seen after shift-up, with the greatest increases observed at 15 to 20 min after shift-up, when the rate of formation of new sites was also maximal. In a population of cells examined by electron microscopy 15 min after shift-up, buoyant density and the frequency of cells with new sites increased as old sites approached the size of two poles. These data were consistent with a model whereby buoyant density increases in the terminal stages of the cell cycle when the surface grows slower than the cytoplasm. The greater the difference in the rates of inside to outside growth, the greater the increase in buoyant density and the more frequently new sites will be initiated.  相似文献   

10.
In synchronized continuous cultures of Saccharomyces cerevisiae CBS 8066, the production of the extracellular invertase (EC 3.2.1.26) showed a cyclic behavior that coincided with the budding cycle. The invertase activity increased during bud development and ceased at bud maturation and cell scission. The cyclic changes in invertase production resulted in cyclic changes in amounts of invertase localized in the cell wall. However, the amount of enzyme invertase present in the culture liquid remained constant throughout the budding cycle. Also, in asynchronous continuous cultures of S. cerevisiae, the production and localization of invertase showed significant fluctuation. The overall invertase production in an asynchronous culture was two to three times higher than in synchronous cultures. This could be due to more-severe invertase-repressive conditions in a synchronous chemostat culture. Both the intracellular glucose-6-phosphate concentration and residual glucose concentration were significantly higher in synchronous chemostat cultures than in asynchronous chemostat cultures. In the asynchronous and synchronous continuous cultures of S. cerevisiae, about 40% of the invertase was released into the culture liquid; it has generally been believed that S. cerevisiae releases only about 5% of its invertase. In contrast to invertase production and localization in the chemostat cultures of S. cerevisiae, no significant changes in inulinase (EC 3.2.1.7) production and localization were observed in chemostat cultures of Kluyveromyces maxianus CBS 6556. In cultures of K. marxianus about 50% of the inulinase was present in the culture liquid.  相似文献   

11.
Slit scanning flow cytometry has been applied to the analysis of the cell cycle and cell-cycle-dependent events in Saccharomyces cerevisiae, yielding information on the low-resolution spatial distribution of cellular components in single cells of unperturbed cell populations. Because this process is rapid, large numbers of cells can be analyzed to give distributions of parameters in a given population. To study asymmetric cell division and cell cycle progression, forward-angle light scattering (FALS) signals together with fluorescence signals from acriflavine-stained nuclei have been measured in cells from exponentially growing yeast populations. An algorithm has been developed that assigns the position of the bud neck in the FALS signals so that both FALS and DNA signals can be analyzed in terms of the contributions from the mother cell and the cell bud. The data indicate that mother cell FALS, on average, remains constant while FALS due to the cell bud increases as a cell progresses through the cell cycle. By identifying mitotic cells and measuring their properties, we have found that the coefficient of variation for the distribution of FALS is smallest within the dividing cell population and largest within the newborn cell population, in accordance with the critical size control mechanism of yeast cell growth. The use of this experimental approach to provide data for statistical population models is discussed.  相似文献   

12.
In previous studies, we had shown that the buoyant density ofEscherichia coli is determined by the osmolarity of the growth medium by varying the osmolarity of the medium with NaCl or sucrose. However, the buoyant density of the cells always exceeded that of the growth medium. Here we determined the effect of medium with a buoyant density greater than the expected buoyant density of cells by adding Nycodenz to Luria broth. Percoll gradients of cells were analyzed by laser light scattering. The buoyant density for 125- and 375-mOsM-grown cells was 0.002 g/ml and 0.003 g/ml more, respectively, for cells grown in the presence of Nycodenz than those grown without Nycodenz, while the buoyant density of 250-mOsM-grown cells was 0.005 g/ml less for cells grown in the presence of Nycodenz than those grown without Nycodenz. Cells grown in 500-mOsM medium with or without Nycodenz had the same buoyant density. the buoyant density of cultures grown in defined medium was the same as those grown in rich medium, with only the medium osmolarity correlating to buoyant density. We conclude from these experiments that neither buoyant density nor chemical make-up of the medium determines the buoyant density of cells grown in that medium. Only the medium osmolarity determines cell buoyant density, suggesting thatE. coli has no mechanisms to sense buoyant density.  相似文献   

13.
In synchronized continuous cultures of Saccharomyces cerevisiae CBS 8066, the production of the extracellular invertase (EC 3.2.1.26) showed a cyclic behavior that coincided with the budding cycle. The invertase activity increased during bud development and ceased at bud maturation and cell scission. The cyclic changes in invertase production resulted in cyclic changes in amounts of invertase localized in the cell wall. However, the amount of enzyme invertase present in the culture liquid remained constant throughout the budding cycle. Also, in asynchronous continuous cultures of S. cerevisiae, the production and localization of invertase showed significant fluctuation. The overall invertase production in an asynchronous culture was two to three times higher than in synchronous cultures. This could be due to more-severe invertase-repressive conditions in a synchronous chemostat culture. Both the intracellular glucose-6-phosphate concentration and residual glucose concentration were significantly higher in synchronous chemostat cultures than in asynchronous chemostat cultures. In the asynchronous and synchronous continuous cultures of S. cerevisiae, about 40% of the invertase was released into the culture liquid; it has generally been believed that S. cerevisiae releases only about 5% of its invertase. In contrast to invertase production and localization in the chemostat cultures of S. cerevisiae, no significant changes in inulinase (EC 3.2.1.7) production and localization were observed in chemostat cultures of Kluyveromyces maxianus CBS 6556. In cultures of K. marxianus about 50% of the inulinase was present in the culture liquid.  相似文献   

14.
Cell Cycle Dependency of Sporulation in Saccharomyces cerevisiae   总被引:13,自引:7,他引:6       下载免费PDF全文
The study of sporulation in Saccharomyces cerevisiae is complicated by the fact that not all cells in the population complete sporulation and that the kinetics of development of those which do are not synchronous. By separating vegetative cells by zonal rotor centrifugation into fractions of increasing cell volume and hence progressive stages of the vegetative cell cycle, it was possible to observe sporulation of more homogeneous, synchronous populations. The capacity of S. cerevisiae to complete sporulation is low for small single cells at the beginning of the cell cycle and is greatest for large budded cells about to divide. The capacity of a cell to complete sporulation thus appears to be directly related to the stage in the vegetative cell cycle from which it was taken. The use of synchronously sporulating cultures made it possible to examine very early decision events leading to the commitment of a cell to sporulation. In addition, differences in the capacity of a mother and daughter cell produced by cell scission were examined.  相似文献   

15.
Summary A simple and rapid method for obtaining synchronously budding cultures of Saccharomyces cerevisiae is described. Synchronous cultures were started with homogeneous cell fractions isolated from exponentially growing cultures by isopycnic centrifugation in osmotically inactive media. The technique of fractionation is based on changes of cell density throughout the budding cycle. These changes are correlated with vacuolar changes observed in the light and electron microscope. During bud initiation the large vacuoles in late budding cells shrink and fragment into small vacuoles. Simultaneously the density of the cells increases. Later stages of the budding cycle are characterized by the distribution of the small vacuoles between mother and daughter cell, followed by their fusion and expansion, and by a decreasing density of the cells. The relative changes in cell density and dry weight and in the content of different macromolecules during the budding cycle suggest a cyclic change between utilization of endogenous and exogenous substrates. This is discussed in terms of a cyclic consumption and accumulation of vacuolar pools.  相似文献   

16.
17.
Constancy of cell buoyant density for cultured murine cells   总被引:2,自引:0,他引:2  
The relationship between cell cycle and cell density was determined for three different lines of mouse cells by equilibrium centrifugation of suspension cultures. The mean cell densities of the three lines differed significantly, with values of 1.0622, 1.0678, 1.0540 gm/ml for 70Z/3, S 107, and ABE 8, respectively. However, the density distributions within each of the three lines were indistinguishable, with an average coefficient of variation about 5% of the mean reduced density (i.e., density minus one). Quantitative DNA analysis of the cells separated by density showed that the proportion of cells in G1, S, and G2 + M phase of the cell cycle changed very little or not at all with cell density. In addition, cells separated by size (and therefore by phase of the cell cycle) using velocity sedimentation had the same means and distributions of densities. These results indicate that there is little or no change in cell density as the cells traverse the life cycle and that buoyant density appears to be a constant property of a cell type.  相似文献   

18.
Patterns of bud-site selection in the yeast Saccharomyces cerevisiae   总被引:15,自引:7,他引:8       下载免费PDF全文
  相似文献   

19.
乙肝病毒s基因在家蚕细胞及蚕体内高效表达   总被引:9,自引:0,他引:9  
把人乙型肝炎病毒(adr)的表面抗原S基因插入到家蚕核型多角体病毒基因组中,构建了重组病毒BmNPVS。用重组病毒感染家蚕细胞,测得每毫升培养物(1×106细胞)HBsAg表达量达35.5μg;感染家蚕幼虫和蛹,经检测表明HBSAg产量平均为每头蚕约750μg,每只蛹约为690μg。初步纯化的表达产物经Westefn blotting和电镜观察证实,表达产物是直径为22nm的颗粒,并主要以糖基化形式存在。表达产物的浮力密度为1.2g/ml,与病人血清的HBsAg一致。  相似文献   

20.
Buoyant density fluctuations during the cell cycle of Bacillus subtilis   总被引:3,自引:0,他引:3  
A simple rapid method for preparing synchronous cultures of Bacillus subtilis has been used to investigate changes in density during the cell cycle. Asynchronous cells separated on a stepped Percoll density gradient had a mean cell density of 1.117 g ml-1±0.004. Samples from a synchronous culture exhibited variation (ca. 1.5%) in mean cell density which was greatest at the onset of cell division. An asynchronous control culture showed little variation in density. These results are discussed in relation to previous work on Escherichia coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号