首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We have studied the consequences of alterations to hepatic apoB mRNA editing on the biosynthesis and intracellular distribution of newly synthesized apoB variants together with their mass distribution in nascent Golgi very low density lipoproteins (VLDL). Radiolabeled liver membrane fractions were prepared from control or hypothyroid animals and separated by discontinuous sucrose gradient centrifugation. Hepatic apoB-100 synthesis in these groups accounted for 93-100% of total newly synthesized apoB species of Golgi fractions recovered from the sucrose gradients (G1 and G2). The analogous fractions isolated from the livers of hyperthyroid (treated with 3,3',5-triiodo-L-thyronine, T3) animals revealed that newly synthesized apoB-100 accounted for only 46 +/- 10% (G1) and 24 +/- 11% (G2), respectively, of total newly synthesized apoB. ApoB-100 mass in nascent Golgi VLDL from control and hypothyroid G1 fractions represented 70-78% total apoB as determined by Western blot analysis. By contrast, Golgi VLDL from hyperthyroid animals contained predominantly (greater than 78%) apoB-48 as the apoB species. Electron microscopy revealed that the morphology and size distribution of hyperthyroid G1 VLDL were similar to particles isolated from control animals. Thus, despite a profound reduction in the proportion of apoB-100 mRNA species containing an unmodified codon (CAA, B-GLN) at position 2153 in hyperthyroid animals (6 +/- 1% vs 50-61% in control and hypothyroid animals) apoB-100 biosynthesis was detectable in a defined membrane fraction isolated by discontinuous sucrose gradient centrifugation. However, no apoB-100 synthesis was detectable in liver samples prepared by Polytron disruption in Triton-containing buffers. These data suggest that effective hepatic VLDL assembly and secretion in the T3-treated rat continues despite a profound reduction in apoB-100 biosynthesis and implies that apoB-48 contains the requisite domains to direct this process, a situation analogous to that in the intestine.  相似文献   

2.
The assembly of very low density lipoproteins (VLDL) by hepatocytes is believed to occur via a two-step process. The first step is the formation of a dense phospholipid and protein-rich particle that is believed to be converted to VLDL by the addition of bulk triglyceride in a second step. Previous studies in our laboratory led us to hypothesize a third assembly step that occurs in route to or in the Golgi apparatus. To investigate this hypothesis, nascent lipoproteins were recovered from Golgi apparatus-rich fractions isolated from mouse liver. The Golgi fractions were enriched 125-fold in galactosyltransferase and contained lipoprotein particles averaging approximately 35 nm in diameter. These lipoproteins were separated by ultracentrifugation into two fractions: d < 1.006 g/ml and d1.006;-1.210 g/ml. The d < 1.006 g/ml fraction contained apolipoprotein B-100 (apoB-100), apoB-48, and apoE, while the d1.006;-1.210 g/ml fraction contained these three apoproteins as well as apoA-I and apoA-IV. Both fractions contained a 21-kDa protein that was isolated and sequenced and identified as major urinary protein. Approximately 50% of the apoB was recovered with the denser fraction. To determine if these small, dense lipoproteins were secreted without further addition of lipid, mice were injected with Triton WR1339 and [(3)H]leucine, and the secretion of apoB-100 and apoB-48 into serum VLDL (d < 1.006 g/ml) and d1.006;-1.210 g/ml fractions was monitored over a 2-h period. More than 80% of the newly synthesized apoB-48 and nearly 100% of the apoB-100 were secreted with VLDL. These studies provide the first characterization of nascent lipoproteins recovered from the Golgi apparatus of mouse liver. We conclude that these nascent hepatic Golgi lipoproteins represent a heterogeneous population of particles including VLDL as well as a population of small, dense lipoproteins. The finding of the latter particles, coupled with the demonstration that the primary secretory product of mouse liver is VLDL, suggests that lipid may be added to nascent lipoproteins within the Golgi apparatus.  相似文献   

3.
We have studied apolipoprotein synthesis, intracellular modification and secretion by primary adult rat hepatocyte cultures using continuous pulse or pulse chase labeling with [35S]methionine, immunoprecipitation and two-dimensional isoelectric focusing/polyacrylamide gel electrophoresis. The flotation properties of the newly secreted apolipoproteins were studied by discontinuous density gradient ultracentrifugation and one- and two-dimensional polyacrylamide gel electrophoresis. These studies showed that rat hepatocyte apoE is modified intracellularly to produce minor isoproteins that differ in size and charge. One of these minor isoproteins represents a monosialated apoE form (apoE3s1). Similarly, apoCIII is modified intracellularly to produce a disialated apoCIII form (apoCIIIs2), whereas newly synthesized apoA-I and apoA-IV are not glycosylated and overlap on two-dimensional gels with the proapoA-I and the plasma apoA-IV form, respectively. Both unmodified and modified apolipoproteins are secreted into the medium. Separation of secreted apolipoproteins by density gradient ultracentrifugation has shown that 50% of apoE, 80% of apoA-I, and more than 90% of apoA-IV and apoCIII are secreted in a lipid-poor form, whereas apoB-100 and apoB-48 are 100% associated with lipids. ApoB-100 floats in the VLDL and IDL regions, whereas apoB-48 is found in all lipoprotein fractions. ApoE and small amounts of apoA-I, apoA-IV and apoCIII float in the HDL region. Small amounts of apoE and apoCIII are also found in the VLDL and IDL regions, and apoE in the LDL region. Ultracentrifugation of nascent lipoproteins in the presence of rat serum promoted flotation of apoA-I and apoA-IV in the HDL fraction and resulted in increased flotation and distribution of apoE and apoCs in VLDL, IDL and LDL regions. These observations are consistent with the hypothesis that intracellular assembly of lipoproteins involves apoB-48 and apoB-100 forms, whereas a large portion of apoA-I, apoCIII and apoA-IV can be secreted in a lipid-poor form, which associates extracellularly with preexisting lipoproteins.  相似文献   

4.
The distribution of apolipoprotein (apo) E in rat hepatocytes was investigated with an affinity-purified polyclonal antibody raised against apoE isolated from hepatogeneous very low density lipoproteins (VLDL). The distribution of this antibody was visualized with colloidal gold complexed to anti-rabbit IgG. By epipolarization microscopy, apoE was found uniformly along the basolateral surfaces of all hepatic parenchymal cells, showing a striking intensity along the sinusoidal front. Punctate deposits of colloidal gold appeared to be randomly distributed within all hepatocytes. Widely scattered Kupffer cells also stained for apoE. Electron microscopic examination of immunogold-labeled cryothin sections showed that hepatocytic microvilli projecting into the space of Disse consistently contained clusters of immunogold. The gold particles were variably associated with evident lipoprotein particles, raising the possibility that apoE alone may bind to receptors or other macromolecules at the surface of hepatocytes. Endosomes near the sinusoidal front and multivesicular bodies in the Golgi/biliary area labeled intensely for apoE, consistent with a high content of apoE associated with triglyceride-rich lipoprotein remnants contained within these organelles. Some but not all nascent VLDL particles within putative forming Golgi secretory vesicles were labeled, but many other Golgi vesicles and cisternae that lacked evident VLDL particles were also labeled. These results suggest that at least some apoE associates with nascent VLDL in forming Golgi secretory vesicles. Unexpectedly, the matrix of all hepatocytic peroxisomes was heavily labeled. Immunoblots with the affinity-purified anti-rat apoE IgG against proteins from highly purified peroxisomes isolated from rat hepatocytes revealed a protein with an apparent molecular mass of 34.5 kDa, similar to that of rat apoE in rat blood plasma. In addition, gold was sometimes found in the area either adjacent to peroxisomes or between multivesicular bodies and the bile canaliculus not evidently associated with a membranous compartment. These observations suggest that apoE may participate in interorganellar cholesterol transport within hepatocytes.  相似文献   

5.
Inhibition of esterified and non-esterified cholesterol synthesis by lovastatin in primary rat hepatocytes suppressed the net synthesis and very-low-density lipoprotein (VLDL) secretion of apolipoprotein B (apoB)-48 and apoB-100. Lovastatin did not alter the rates of apoB-48 and apoB-100 post-translational degradation. 25-Hydroxycholesterol, which inhibited non-esterified cholesterol synthesis but increased the synthesis of cholesteryl ester, showed differential effects on the metabolism of apoB-48 and apoB-100. Whereas the secretion of apoB-48 VLDL was suppressed there was no effect on the secretion of apoB-100 VLDL. The post-translational degradation of apoB-48, but not of apoB-100, was enhanced by 25-hydroxycholesterol. The net synthesis rates of apoB-48 and apoB-100 were unaffected by 25-hydroxycholesterol. The inhibitory effect of lovastatin alone on the net synthesis of apoB-48 and apoB-100 was reversed by the simultaneous presence of 25-hydroxycholesterol, suggesting a role for newly synthesised cholesteryl ester. Prevention of the reversal effect by the acyl-CoA: cholesterol acyltransferase (ACAT) inhibitor YM 17E supported this interpretation. In the presence of lovastatin, restoration of the net synthesis of apoB by 25-hydroxycholesterol was not accompanied by an increased VLDL output of apoB-48 and apoB-100. However, under these conditions there was an increased post-translational degradation of apoB-48 and apoB-100. These results suggest that interference with intracellular cholesterol and cholesteryl ester metabolism interrupts VLDL assembly at sites of both apoB net synthesis and post-translational degradation.  相似文献   

6.
7.
The present study was undertaken to elucidate the metabolic basis for the increased remnants and lipoprotein(a) [Lp(a)] and decreased LDL apolipoprotein B (apoB) levels in human apoE deficiency. A primed constant infusion of (13)C(6)-phenylalanine was administered to a homozygous apoE-deficient subject. apoB-100 and apoB-48 were isolated, and tracer enrichments were determined by gas chromatography-mass spectrometry, then kinetic parameters were calculated by multicompartmental modeling. In the apoE-deficient subject, fractional catabolic rates (FCRs) of apoB-100 in VLDL and intermediate density lipoprotein and apoB-48 in VLDL were 3x, 12x, and 12x slower than those of controls. On the other hand, the LDL apoB-100 FCR was increased by 2.6x. The production rate of VLDL apoB-100 was decreased by 45%. In the Lp(a) kinetic study, two types of Lp(a) were isolated from plasma with apoE deficiency: buoyant and normal Lp(a). (125)I-buoyant Lp(a) was catabolized at a slower rate in the patient. However, (125)I-buoyant Lp(a) was catabolized at twice as fast as (131)I-normal Lp(a) in the control subjects. In summary, apoE deficiency results in: 1) a markedly impaired catabolism of VLDL/chylomicron and their remnants due to lack of direct removal and impaired lipolysis; 2) an increased rate of catabolism of LDL apoB-100, likely due to upregulation of LDL receptor activity; 3) reduced VLDL apoB production; and 4) a delayed catabolism of a portion of Lp(a).  相似文献   

8.
Two procedures were used to isolate hepatocytic Golgi fractions from rat liver. One procedure yields a light Golgi fraction (GF1 + 2) and the other "intact" stacks of cisternae. Triglyceride fatty acids in nascent very low density lipoproteins (VLDL) were labeled by injection of [3H]palmitate intravenously, and radiolabeled lipoproteins were injected as markers of potentially contaminating endosomes. GF1 + 2 fractions were enriched manyfold in the endosomal markers, indicative of substantial endosomal contamination, whereas intact Golgi fractions from the same livers were about 7% as contaminated. By electron microscopy, GF1 + 2 fractions contained mainly multivesicular bodies (MVBs), together with some Golgi-derived secretory vesicles. The small endosomal contamination of intact Golgi fractions was further reduced by a simple modification of the procedure, which removed most entrained endosomes. The surface constituents of Golgi VLDL (d less than 1.010 g/ml) released from these highly purified intact Golgi fractions differed from those of plasma VLDL. Golgi VLDL contained fivefold less unesterified cholesterol than plasma VLDL, but twofold more phospholipids. Golgi VLDL and plasma VLDL contained similar amounts of cholesteryl esters and triglycerides. The protein content of Golgi VLDL was substantially lower than that of plasma VLDL. ApoB-100 and apoB-48 were similarly represented, but nascent VLDL contained less of the C apolipoproteins. ApoA-I was present mainly as the proprotein in Golgi VLDL, but was virtually lacking in plasma VLDL. ApoE comprised about 22% of the protein mass of Golgi VLDL as well as plasma VLDL; the distribution of apoE isoforms was also similar. Apolipoproteins E and pro A-I released from ruptured Golgi cisternae were largely bound to the Golgi VLDL or were associated with Golgi membranes. Particles resembling low density lipoproteins (LDL) and high density lipoproteins (HDL) were not seen by electron microscopy in contents of intact Golgi fractions. These observations indicate that nascent Golgi VLDL are the primary particulate precursors of rat plasma lipoproteins of hepatocytic origin, and suggest that particles with the density of plasma HDL and LDL do not exist within the secretory pathway of normal hepatocytes. Thus, the results of this research on the properties of nascent plasma lipoprotein precursors contained within uncontaminated hepatocytic Golgi fractions differ substantially from previous published work.  相似文献   

9.
We aimed to identify mechanisms by which apolipoprotein B-48 (apoB-48) could have an atherogenic role by simultaneously studying the metabolism of postprandial apoB-48 and apoB-100 lipoproteins. The kinetics of apoB-48 and apoB-100, each in four density subfractions of VLDL and intermediate density lipoprotein (IDL), were studied by stable isotope labeling in a constantly fed state with half-hourly administration of almond oil in five postmenopausal women. A non-steady-state, multicompartmental model was used. Despite a much lower production rate, VLDL and IDL apoB-48 shared a similar secretion pattern with apoB-100: both were directly secreted into all fractions with similar percentage mass distributions. Fractional catabolic rates (FCRs) of apoB-48 and apoB-100 were similar in VLDL and IDL. We identified a fast turnover compartment of light VLDL that had a residence time of <30 min for apoB-48 and apoB-100. Finally, a high secretion rate of apoB-48 was associated with a slow FCR of VLDL and IDL apoB-100. In conclusion, the intestine secretes a spectrum of apoB lipoproteins, similar to what the liver secretes, albeit with a much lower secretion rate. Once in plasma, intestinal and hepatic triglyceride-rich lipoproteins have similar rates of clearance and participate interactively in similar metabolic pathways, with high apoB-48 production inhibiting the clearance of apoB-100.  相似文献   

10.
Cellular apoB in primary rat hepatocyte cultures was pulse-labeled with [(35)S]methionine for 1 h. Cells were then chased with excess unlabeled methionine for periods of up to 16 h in the presence or absence of BMS-200150, an inhibitor of microsomal triglyceride transfer protein (MTP). The secretion of apoB-48-VLDL was more sensitive to MTP inhibition than was apoB-100-VLDL. Inhibition of MTP had no inhibitory effect on the secretion of denser particles (apoB-48 HDL and apoB-100 HDL). BMS-200150 delayed the net removal of newly synthesized apoB-48 and apoB-100 from the microsomal and Golgi membranes, but not from the corresponding lumenal compartments. Only minor proportions of the microsomal lumen apoB-48 and apoB-100 (12-16% and 17-19%, respectively) were present as VLDL irrespective of whether MTP was inactivated or not. The HDL fraction contained most of the lumenal apoB-48 (67-73%) and a somewhat smaller proportion of apoB-100 (44-47%). The remainder of the lumenal apoB was associated with the IDL/LDL fraction. These proportions were unaffected by MTP inactivation. Excess labeled apoB which accumulated in the membranes in the presence of BMS-200150 was degraded. Inhibition of MTP prevented the removal of pre-synthesized triacylglycerol (TAG) from the hepatocytes as apoB-VLDL. Under these conditions intracellular TAG accumulated mainly in the cell cytosol, but also, to a lesser extent, in the microsomal membranes. The results suggest that inactivation of MTP inhibits a pathway of VLDL assembly which does not involve the bulk lumenal compartments of the microsomes. Suppression of this pathway ultimately prevents the net transfer of cytosolic TAG into mature apoB-VLDL.  相似文献   

11.
Low density lipoprotein receptor (LDLR)-deficient mice fed a chow diet have a mild hypercholesterolemia caused by the abnormal accumulation in the plasma of apolipoprotein B (apoB)-100- and apoB-48-carrying intermediate density lipoproteins (IDL) and low density lipoproteins (LDL). Treatment of LDLR-deficient mice with ciprofibrate caused a marked decrease in plasma apoB-48-carrying IDL and LDL but at the same time caused a large accumulation of triglyceride-depleted apoB-100-carrying IDL and LDL, resulting in a significant increase in plasma cholesterol levels. These plasma lipoprotein changes were associated with an increase in the hepatic secretion of apoB-100-carrying very low density lipoproteins (VLDL) and a decrease in the secretion of apoB-48-carrying VLDL, accompanied by a significant decrease in hepatic apoB mRNA editing. Hepatic apobec-1 complementation factor mRNA and protein abundance were significantly decreased, whereas apobec-1 mRNA and protein abundance remained unchanged. No changes in apoB mRNA editing occurred in the intestine of the treated animals. After 150 days of treatment with ciprofibrate, consistent with the increased plasma accumulation of apoB-100-carrying IDL and LDL, the LDLR-deficient mice displayed severe atherosclerotic lesions in the aorta. These findings demonstrate that ciprofibrate treatment decreases hepatic apoB mRNA editing and alters the pattern of hepatic lipoprotein secretion toward apoB-100-associated VLDL, changes that in turn lead to increased atherosclerosis.  相似文献   

12.
The synthesis and secretion of apolipoprotein B-100 (apoB-100) have been studied in a human hepatoma cell line, the Hep G2 cells. The time needed for the synthesis of apoB-100 was estimated to be 14 min, which corresponds to a translation rate of approximately 6 amino acids/s. ApoB-100 was compared with albumin and alpha 2-macroglobulin as to the distribution between the membrane and the luminal content in the endoplasmic reticulum (ER) and the Golgi apparatus. The results suggested that apoB-100 approximately followed the distribution of these secretory proteins in the Golgi, while the ratios between the percent membrane-bound apoB-100 and percent membrane-bound albumin or alpha 2-macroglobulin were 3-4:1 in the ER. This may suggest that apoB-100 occurs in a membrane-associated form in ER prior to the integration in the lipoproteins. Pulse-chase studies combined with subcellular fractionation was used to investigate the kinetics for the intracellular transfer of apoB-100. A 3-min pulse of [35S]methionine was followed by an increase in apoB-100 radioactivity in the ER during the first 10-15 min of chase. The following 10-15 min of chase were characterized by linear decrease in apoB-100 radioactivity with a decay rate of approximately 6%/min. The residence kinetics for apoB-100 in the ER differed from that of transferrin and probably also from that of albumin. By comparing the time for the pulse maximum in ER with that in the denser Golgi fractions the time needed for the transfer between ER and Golgi could be estimated to be 10 min. The time needed for the secretion of newly synthesized apoB-100 was estimated to be 30 min. This indicates that the transfer of the protein through the Golgi apparatus to the extracellular space requires 20 min.  相似文献   

13.
Apolipoprotein E (apoE) is essential for the clearance of plasma chylomicron and VLDL remnants. The human APOE locus is polymorphic and 5-10% of APOE*2 homozygotes exhibit type-III hyperlipoproteinemia (THL), while the remaining homozygotes have less than normal plasma cholesterol. In contrast, mice expressing APOE*2 in place of the mouse Apoe (Apoe(2/2) mice) are markedly hyperlipoproteinemic, suggesting a species difference in lipid metabolism (e.g., editing of apolipoprotein B) enhances THL development. Since apoB-100 has an LDLR binding site absent in apoB-48, we hypothesized that the Apoe(2/2) THL phenotype would improve if all Apoe(2/2) VLDL contained apoB-100. To test this, we crossed Apoe(2/2) mice with mice lacking the editing enzyme for apoB (Apobec(-/-)). Consistent with an increase in remnant clearance, Apoe(2/2). Apobec(-/-) mice have a significant reduction in IDL/LDL cholesterol (IDL/LDL-C) compared with Apoe(2/2) mice. However, Apoe(2/2).Apobec(-/-) mice have twice as much VLDL triglyceride as Apoe(2/2) mice. In vitro tests show the apoB-100-containing VLDL are poorer substrates for lipoprotein lipase than apoB-48-containing VLDL. Thus, despite a lowering in IDL/LDL-C, substituting apoB-48 lipoproteins with apoB-100 lipoproteins did not improve the THL phenotype in the Apoe(2/2).Apobec(-/-) mice, because apoB-48 and apoB-100 differentially influence the catabolism of lipoproteins.  相似文献   

14.
We have used an extraction procedure, which released membrane-bound apoB-100, to study the assembly of apoB-48 VLDL (very low density lipoproteins). This procedure released apoB-48, but not integral membrane proteins, from microsomes of McA-RH7777 cells. Upon gradient ultracentrifugation, the extracted apoB-48 migrated in the same position as the dense apoB-48-containing lipoprotein (apoB-48 HDL (high density lipoprotein)) secreted into the medium. Labeling studies with [(3)H]glycerol demonstrated that the HDL-like particle extracted from the microsomes contains both triglycerides and phosphatidylcholine. The estimated molar ratio between triglyceride and phosphatidylcholine was 0.70 +/- 0.09, supporting the possibility that the particle has a neutral lipid core. Pulse-chase experiments indicated that microsomal apoB-48 HDL can either be secreted as apoB-48 HDL or converted to apoB-48 VLDL. These results support the two-step model of VLDL assembly. To determine the size of apoB required to assemble HDL and VLDL, we produced apoB polypeptides of various lengths and followed their ability to assemble VLDL. Small amounts of apoB-40 were associated with VLDL, but most of the nascent chains associated with VLDL ranged from apoB-48 to apoB-100. Thus, efficient VLDL assembly requires apoB chains of at least apoB-48 size. Nascent polypeptides as small as apoB-20 were associated with particles in the HDL density range. Thus, the structural requirements of apoB to form HDL-like first-step particles differ from those to form second-step VLDL. Analysis of proteins in the d < 1.006 g/ml fraction after ultracentrifugation of the luminal content of the cells identified five chaperone proteins: binding protein, protein disulfide isomerase, calcium-binding protein 2, calreticulin, and glucose regulatory protein 94. Thus, intracellular VLDL is associated with a network of chaperones involved in protein folding. Pulse-chase and subcellular fractionation studies showed that apoB-48 VLDL did not accumulate in the rough endoplasmic reticulum. This finding indicates either that the two steps of apoB lipoprotein assembly occur in different compartment or that the assembled VLDL is transferred rapidly out of the rough endoplasmic reticulum.  相似文献   

15.
A monoclonal antibody to apolipoprotein (apo) B-100 (JI-H) with unique binding properties has been used to separate a population of triglyceride-rich lipoproteins from blood plasma of normotriglyceridemic individuals and patients with various forms of hypertriglyceridemia. This antibody fails to recognize an apoE-rich population of very low density lipoproteins (VLDL) containing apoB-100 as well as all triglyceride-rich lipoproteins containing apoB-48, but it binds other VLDL that contain apoE and almost all lipoproteins that contain apoB-100, but no apoE. The unbound triglyceride-rich lipoproteins separated by ultracentrifugation after separation from plasma by immunoaffinity chromatography contained 10-13% of the apoB of triglyceride-rich lipoproteins from three normotriglyceridemic individuals, 10-29% of that from five patients with endogenous hypertriglyceridemia, 40-48% of that from three patients with familial dysbetablipoproteinemia, and 65% of that from a patient with lipoprotein lipase deficiency. In all cases, the unbound triglyceride-rich lipoproteins contained more molecules of apoE and cholesteryl esters per particle than those that were bound to monoclonal antibody JI-H, and they were generally depleted of C apolipoproteins. These properties resemble those described for partially catabolized remnants of chylomicrons and VLDL. The affinity of the unbound lipoproteins for the low density lipoprotein (LDL) receptor varied widely, and closely resembled that of the total triglyceride-rich lipoproteins from individual subjects. Our results demonstrate that remnant-like chylomicrons and a population of remnant-like VLDL can be isolated and quantified in blood plasma obtained in the postabsorptive state from normotriglyceridemic and hypertriglyceridemic individuals alike.  相似文献   

16.
The hamster was developed as a model to study very low density lipoprotein (VLDL) metabolism, since, as is the case in humans, the hamster liver was found to synthesize apoB-100 and not apoB-48. The effect of inhibiting fatty acid synthesis on the hepatic secretion of VLDL triglyceride (TG) and apolipoprotein (apo) B-100 in this model was then investigated. In an in vivo study, hamsters were fed a chow diet containing 0.15% TOFA (5-tetradecyloxy-2-furancarboxylic acid), an inhibitor of acetyl-CoA carboxylase. After 6 days of treatment, plasma triglyceride and cholesterol levels were decreased by 30.2% and 11.6%, respectively. When the secretion of VLDL-TG by the liver was measured in vivo after injection of Triton WR 1339, TOFA treatment was found to decrease VLDL-TG secretion by 40%. In subsequent in vitro studies utilizing cultured primary hamster hepatocytes, incubation with 20 microM TOFA for 4 h resulted in 98% and 76% inhibition in fatty acid and triglyceride synthesis, respectively; VLDL-TG secretion was decreased by 90%. When hepatocytes were pulsed with [3H]leucine, incubation with TOFA resulted in a 50% decrease in the incorporation of radiolabel into secreted VLDL apoB-100. The results of this study indicate that inhibition of intracellular triglyceride synthesis decreases the secretion of VLDL-TG and apoB-100, and does not result in the secretion of a dense, triglyceride-depleted lipoprotein.  相似文献   

17.
Impaired chylomicron (chylo) remnant clearance and small VLDL overproduction are major metabolic abnormalities in familial combined hyperlipidemia (FCHL). Quantitative data on postprandial apolipoprotein B-48 (apoB-48) and apolipoprotein B-100 (apoB-100) in TG rich lipoproteins (TRL) in FCHL have not been reported before. Eight untreated FCHL patients and 10 matched controls underwent a 24 h oral fat load. Fasting apoB-48 and apoB-100 were significantly higher in all TRL in FCHL. Maximal concentrations of chylo-[Svedberg's flotation rate (Sf) >400] apoB-48 and apoB-100 were reached later in FCHL (at t = 6 h), in contrast to controls (t = 4 h). Maximal VLDL1-(Sf60-400)-apoB-48 occurred at the same time point (t = 2 h) in both, whereas VLDL1-apoB-100 was maximal at t = 4 h in both, most likely representing delayed VLDL clearance by preferential clearance of chylo and their remnants by competition for the same clearance mechanisms. VLDL2-(Sf20-60)-apoB-48 and VLDL2- apoB-100 decreased in FCHL, in contrast to an increase of apoB-48, and no change of apoB-100 in controls, suggesting impaired conversion of VLDL1-apoB-48 into VLDL2-apoB-48 in FCHL, and partly also of VLDL1-apoB-100. In conclusion, in FCHL clearance of large postprandial Sf >400 apoB-48 and apoB-100 TRL is delayed. ApoB-100 accumulates in the VLDL1 range postprandially in both FCHL and controls, reaching higher levels in FCHL and thereby conferring a higher atherogenic burden in the postprandial situation in FCHL.  相似文献   

18.
The peroxisome proliferator-activated receptor (PPAR) alpha agonist WY 14,643 increased the secretion of apolipoprotein (apo) B-100, but not that of apoB-48, and decreased triglyceride biosynthesis and secretion from primary rat hepatocytes. These effects resulted in decreased secretion of apoB-100-very low density lipoprotein (VLDL) and an increased secretion of apoB-100 on low density lipoproteins/intermediate density lipoproteins. ApoB-48-VLDL was also replaced by more dense particles. The proteasomal inhibitor lactacystin did not influence the recovery of apoB-100 or apoB-48 in primary rat hepatocytes, indicating that co-translational (proteasomal) degradation is of less importance in these cells. Treatment with WY 14,643 made the recovery of apoB-100 sensitive to lactacystin, most likely reflecting the decreased biosynthesis of triglycerides. The PPAR alpha agonist induced a significant increase in the accumulation of pulse-labeled apoB-100 even after a short pulse (2-5 min). There was also an increase in apoB-100 nascent polypeptides, indicating that the co-translational degradation of apoB-100 was inhibited. However, a minor influence on an early posttranslation degradation cannot be excluded. This decreased co-translational degradation of apoB-100 explained the increased secretion of the protein. The levels of apoB-48 remained unchanged during these pulse-chase experiments, and albumin production was not affected, indicating a specific effect of PPAR alpha agonists on the co-translational degradation of apoB-100. These findings explain the difference in the rate of secretion of the two apoB proteins seen after PPAR alpha activation. PPAR alpha agonists increased the expression and biosynthesis of liver fatty acid-binding protein (LFABP). Increased expression of LFABP by transfection of McA-RH7777 cells increased the secretion of apoB-100, decreased triglyceride biosynthesis and secretion, and increased PPAR alpha mRNA levels. These findings suggest that PPAR alpha and LFABP could interact to amplify the effect of endogenous PPAR alpha agonists on the assembly of VLDL.  相似文献   

19.
The aim of this study was to investigate the direct effects of growth hormone (GH) on production and secretion of apolipoprotein B (apoB)-containing lipoproteins from hepatocytes. Bovine GH (5-500 ng/ml) was given for 1 or 3 days to rat hepatocytes cultured on laminin-rich matrigel in serum-free medium. The effects of GH were compared with those of 3 nM insulin and 500 microM oleic acid. GH increased the editing of apoB mRNA, and the proportion of newly synthesized apoB-48 (of total apoB) in the cells and secreted into the medium changed in parallel. GH increased total secretion of apoB-48 (+30%) and apoB-48 in very low density lipoproteins (VLDL) more than twofold. Total apoB-100 secretion decreased 63%, but apoB-100-VLDL secretion was unaffected by GH. Pulse-chase studies indicated that GH increased intracellular early degradation of apoB-100 but not apoB-48. GH had no effect on apoB mRNA or LDL receptor mRNA levels. The triglyceride synthesis, the mass of triglycerides in the cells, and the VLDL fraction of the medium increased after GH incubation. Three days of insulin incubation had effects similar to those of GH. Combined incubation with oleic acid and GH had additive effects on apoB mRNA editing and apoB-48-VLDL secretion. In summary, GH has direct effects on production and secretion of apoB-containing lipoproteins, which may add to the effects of hyperinsulinemia and increased flux of fatty acids to the liver during GH treatment in vivo.  相似文献   

20.
The incorporation of [3H]leucine in vivo into very low density lipoproteins (VLDL) from the rat hepatic Golgi apparatus and serum was studied. A Golgi-rich fraction isolated on a discontinuous sucrose gradient between 0.5 and 1.1 M was found to contain VLDL having common antigenic determinants with serum VLDL. The incorporation of the [3H]leucine into the Golgi VLDL and serum VLDL suggested a precursor-product relationship. Analysis of the apoproteins of the Golgi VLDL by polacrylamide gel electrophoresis revealed protein bands with similar mobility to those of serum VLDL, except that the former contained virtually no rapidly migrating peptides with the mobility of serum apo-C-II and apo-C-III. The pattern of incorporation of the [3H]leucine into the apoproteins was similar in VLDL from Golgi apparatus and serum, except for the absence of radioactivity in the area of the gel of Golgi apo-VLDL corresponding to apo-C-II and apo-C-III. The radioactive amino acid was incorporated predominantly into the Golgi apo-VLDL bands with similar mobility to apo-B and an apoprotein or group of apoproteins containing the arginine-rich peptide of serum VLDL. In vitro incubation of the Golgi VLDL with [3H]leucine-labeled HDL resulted in the acquisition of a number of proteins, including the rapidly migrating proteins. Administration of colchicine prior to the injection of [3H]leucine resulted in the appearance of gel bands and radioactivity in the apo-C-II and apo-C-III areas of Golgi apo-VLDL, suggesting that these can be acquired if secretion of VLDL is slowed or inhibited. The hepatic Golgi apparatus was then divided into fractions of predominantly forming face (GF3) or secretory granules (GF1). After polyacrylamide gel electrophoresis of the apo-VLDL from GF, no visible bands or incorporation of [3H]leucine was found in the region of apo-C-II or apo-C-III. However VLDL from GF1, showed visible and radioactive bands in the apo-C-II and apo-C-III area although they represented a much smaller proportion of the total apoprotein than was found in the corresponding serum apo-VLDL. In the isolated perfused liver the percentage incorporation of [3H]leucine into the rapidly migrating apoproteins of Golgi VLDL was considerably less than that found in the corresponding apoproteins of perfusate VLDL, where circulating C lipoproteins are virtually absent. The data indicate that nascent VLDL begins to acquire the C-II and C-III apoproteins during its passage through the Golgi apparatus but that the main acquisition occurs during or after secretion into the space of Disse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号