首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment of cardiac sarcoplasmic reticulum with the crosslinking reagent dithiobis (succinimidyl propionate) in the presence of125I-calmodulin, resulted in the formation of a 40,000-dalton affinity labeled component, consisting of a 11, phospholamban:125I-calmodulin complex. In parallel experiments, sarcoplasmic reticulum was phosphorylated in the presence of calmodulin and [-32P]ATP, and then treated with the crosslinking reagent to produce an affinity labeled component consisting of a 11, calmodulin:32P-phospholamban complex. These experiments permitted determination of the amount of125I and32P incorporated into the 40,000-dalton complexes, as well as the amount of32P incorporated into the 23,000-dalton form of phospholamban. If 1 mol of Ca2+-dependent ATPase phosphoprotein represents 1 mol of 100,000-dalton Ca2+-dependent ATPase monomer, then there are 4.88±1.33 mol Ca2+-dependent ATPase/mol of phospholamba. If there are 2 mol of Ca2+-dependent ATPase phosphoprotein/mol of 100,000-dalton Ca2+-dependent ATPase monomer, then there are 9.76±2.66 mol Ca2+-dependent ATPase/mol phospholamban.Special issue dedicated to Dr. E. M. Shooter and Dr. S. Varon.  相似文献   

2.
ATPase activity in rat heart sarcoplasmic reticulum was stimulated in a concentration-dependent manner by both Ca2+ and Mg2+ in the complete absence of the other cation. Increasing concentrations of Mg2+ produced an apparent inhibition of the Ca2+-dependent ATP hydrolysis. CDTA (trans-1,2-diaminocyclohexane-N,N,N,N-tetraacetate) had no effect on these responses. The results indicate the presence of a low affinity non-specific divalent cation-stimulated ATPase in rat heart sarcoplasmic reticulum. However, sarcoplasmic reticulum vesicles transported Ca2+ with a high affinity (K0.5 Ca2+ = 0.41 M) suggesting the presence of a high affinity Ca2+-transporting ATPase. Calmodulin did not stimulate rat heart sarcoplasmic reticulum ATPase activity over a range of Ca2+ and Mg2+ concentrations and failed to stimulate membrane phosphorylation and Ca2+ transport into sarcoplasmic reticulum vesicles. Calmodulin antagonists trifluoperazine and compound 48180 did not affect the ATPase activity. Catalytic subunit of cAMP-dependent protein kinase was also ineffective in stimulating the ATPase activity. These results suggest the presence of an ATPase activity in rat heart sarcoplasmic reticulum with different properties from the high affinity Ca2+-pumping ATPase previously characterized in dog heart and other species.Abbreviations cAMP adenosine 3,5-monophosphate - CaM calmodulin - CDTA trans-1,2-diaminocyclohexane-N,N,N,N-tetraacetate - EDTA ethylene-diaminetetraacetate - EGTA ethylene glycol bis(-aminoethyl ether)-N,N,N,N-tetraacetate - PLB phospholamban - SR sarcoplasmic reticulum - TFP trifluoperazine  相似文献   

3.
Summary Canine cardiac sarcoplasmic reticulum is phosphorylated by adenosine 3,5-monophosphate (cAMP)-dependent and by calcium · calmodulin-dependent protein kinases on a 27 000 proteolipid, called phospholamban. Both types of phosphorylation are associated with an increase in the initial rates of Ca2+ transport by SR vesicles which reflects an increased turnover of elementary steps of the calcium ATPase reaction sequence. The stimulatory effects of the protein kinases on the calcium pump may be reversed by an endogenous protein phosphatase, which can dephosphorylate both the CAMP-dependent and the calcium · calmodulin-dependent sites on phospholamban. Thus, the calcium pump in cardiac sarcoplasmic reticulum appears to be under reversible regulation mediated by protein kinases and protein phosphatases.  相似文献   

4.
Summary Sarcoplasmic reticulum has been isolated from the white muscle of 15 species of teleost fish adapted to diverse thermal environments. Evidence has been obtained that the Ca2+-dependent ATPase of fish sarcoplasmic reticulum has undergone evolutionary modification for function at different temperatures. Compared with tropical fish, cold adapted species have higher rates of Ca2+ transport and Ca2+-ATPase activities at low temperatures. Most species have linear Arrhenius plots over the temperature range 0–30°C. Activation enthalpies (H ) of the ATPase ranged from 53–190 kJ mol–1 and were positively correlated with environment temperature. Activation entropy (S ) varied from negative values in cold adapted species to positive values in tropical fish.In contrast to the Ca2+-ATPase, the basal ATPase of fish sarcoplasmic reticulum showed no relationship between either ATPase activity or thermodynamic activation parameters and environmental temperature.Only the Ca2+-dependent ATPase is coupled to Ca2+ transport. The percentage of total ATPase activity which is Ca2+ activated is higher at low temperatures in cold than in warm adapted species. For example, ratios of Ca2+-dependent/total ATPase at 2°C varied from 80–98% in Arctic, Antarctic and North Sea species to only 2–50% in various tropical fish. Above 20°C, similar ratios in the range 80–98% were obtained for all species. The nature of the basal ATPase and mechanisms of temperature adaptation of fish sarcoplasmic reticulum are discussed.Abbreviations ET environmental temperature - EGTA ethylene glycol-bis (-aminolethyl ether)-N, N-tetraacetic acid - HEPES N-2-hydroxylpiperazine-N-2-ethanesulfonic acid - SR sarcoplasmic reticulum  相似文献   

5.
Phosphorylation of cardiac junctional and free sarcoplasmic reticulum (SR) by protein kinase C (PKC) isoforms and was investigated. Both SR and PKC were isolated from canine heart. Junctional and free SR vesicles were prepared by calcium-phosphate-loading. The substrate specificities of PKC and PKC were found to be similar in both SR fractions. A high molecular weight junctionally-associated protein was phosphorylated by PKA, PKC and an endogenous Ca2+/calmodulin-dependent protein kinase activity: the highest levels of phosphate incorporation being catalysed by the latter kinase. In addition to this high molecular weight junctionally-associated protein, PKC induced phosphorylation of 45, 96 kDa and several proteins of greater than 200 kDa in junctional SR. A protein of 96 kDa was phosphorylated by both isoforms in junctional and free SR. The major substrate for PKA, PKC, PKC and the Ca2+/calmodulin-dependent protein kinase, in both junctional and free SR, was phospholamban. Although the phosphorylation of phospholamban by PKC was activated by Ca2+, a component of this activity appeared to be independent of Ca2+. PKC-mediated phosphorylation of phospholamban was fully activated by 1 M Ca2+ whereas the Ca2+/calmodulin dependent kinase required concentrations in excess of 5 M Ca2+. In the in vitro system employed in these studies, the concentrations of either PKC or the catalytic subunit of PKA required to phosphorylate phospholamban were found to be similar. In addition, in the presence of a 15 kDa sarcolemmal-associated protein, which becomes phosphorylated upon activation of PKC in vivo, phosphorylation of phospholamban by PKC was unaffected. These results demonstrate that, although substrates for both subtypes are found in both junctional and free SR, PKC and PKC do not show differences in selectivity towards these substrates.Abbreviations Ca2+ free calcium - CaM kinase Ca2+/calmodulin-dependent protein kinase - DTT dithiothreitol - EDTA ethylenediaminetetraacetic acid - EGTA ethylene glycol bis(b-aminoethylether)-N,N,N,N-tetraacetic acid - FSR free sarcoplasmic reticulum - JSR junctional sarcoplasmic reticulum - PKC protein kinase C - PS phosphatidylserine - SDS sodium dodecyl sulfate - SAG 1-stearoyl-2-arachidonylglycerol - TPCK L-1-tosylamido-2-phenylethyl chloromethyl ketone - Tris/HCI tris(hydroxymethyl)aminomethane hydrochloride This work was supported by a grant (to S.K.) from the Heart and Stroke Foundation of B.C. and Yukon. The costs of publication of this article were defrayed in part by the payment of page charges This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.Recipient of a Studentship form the Heart and Stroke Foundation of Canada.  相似文献   

6.
Partially purified plasma membrane fractions were prepared from guinea-pig pancreatic acini. These membrane preparations were found to contain an ATP-dependent Ca2+-transporter as well as a heterogenous ATP-hydrolytic activity. The Ca2+-transporter showed high affinity for Ca2+ (KCa 2+ = 0.04 ± 0.01 M), an apparent requirement for Mg2+ and high substrate specificity. The major component of ATPase activity could be stimulated by either Ca2+ or Mg2+ but showed a low affinity for these cations. At low concentrations, Mg2+ appeared to inhibit the Ca2+-dependent ATPase activity expressed by these membranes. However, in the presence of high Mg2+ concentration (0.5–1 mM), a high affinity Ca2+-dependent ATPase activity was observed (KCa 2+ = 0.08 ± 0.02 M). The hydrolytic activity showed little specificity towards ATP. Neither the Ca2+-transport nor high affinity Ca2+-ATPase activity were stimulated by calmodulin. The results demonstrate, in addition to a low affinity Ca2+ (or Mg+)-ATPase activity, the presence of both a high affinity Ca2+-pump and high affinity Ca2+-dependent ATPase. However, the high affinity Ca2+-ATPase activity does not appear to be the biochemical expression of the Ca2+-pump.Abbreviations Ca2+-ATPase calcium-activated, magnesium-dependent adenosine triphosphatase - CaM calmodulin - CDTA trans-1,2-diaminocyclohexane-N,N,N,N-tetraacetate - EDTA ethylene-diaminetetraacetate - EGTA ethylene glycol bis(-aminoethyl ether)-N,N,N,N-tetraacetate - NADPH reduced form of nicotinamide adenine dinucleotide phosphate  相似文献   

7.
  • 1.1. Ca2+ uptake, Ca2+-dependent ATPase activity and halothane-induced Ca2+ release from the heavy sarcoplasmic reticulum fraction of muscle from malignant hyperthermia susceptible individuals are similar to those of normal human muscle.
  • 2.2. Ca2+-induced Ca2+ release from the diseased muscle was increased by 13%.
  相似文献   

8.
In order to determine whether polymorphic forms of the Ca2+ + Mg2+-dependent ATPase exist, we have examined the cross-reactivity of five monoclonal antibodies prepared against the rabbit skeletal muscle sarcoplasmic reticulum enzyme with proteins from microsomal fractions isolated from a variety of muscle and nonmuscle tissues. All of the monoclonal antibodies cross-reacted in immunoblots against rat skeletal muscle Ca2+ + Mg2+-dependent ATPase but they cross-reacted differentially with the enzyme from chicken skeletal muscle. No cross-reactivity was observed with the Ca2+ + Mg2+-dependent ATPase of lobster skeletal muscle. The pattern of antibody cross-reactivity with a 100,000 dalton protein from sarcoplasmic reticulum and microsomes isolated from various muscle and nonmuscle tissues of rabbit demonstrated the presence of common epitopes in multiple polymorphic forms of the Ca2+ + Mg2+-dependent ATPase. One of the monoclonal antibodies prepared against the purified Ca2+ + Mg2+-dependent ATPase of rabbit skeletal muscle sarcoplasmic reticulum was found to cross-react with calsequestrin and with a series of other Ca2+-binding proteins and their proteolytic fragments. Its cross-reactivity was enhanced in the presence of EGTA and diminished in the presence of Ca2+. Its lack of cross-reactivity with proteins that do not bind Ca2+ suggests that it has specificity for antigenic determinants that make up the Ca2+-binding sites in several Ca2+-binding proteins including the Ca2+ + Mg2+-dependent ATPase.This paper is dedicated to the memory of Dr. David E. Green.  相似文献   

9.
This study investigates sarcoplasmic reticulum (SR) calcium-(Ca2+) transport ATPase (SERCA2a) and phospholamban (PLB) in cultured spontaneously contracting neonatal rat cardiomyocytes (CM) to ascertain the function of both SR proteins under various culture conditions. The two major SR proteins were readily detectable in cultured CM by immunofluorescent microscopy using specific anti-SERCA2 and anti-PLB antibodies. Double labeling technique revealed that PLB-positive CM also labeled with anti-SERCA2. Coexpression of SERCA2 and PLB in CM was supported by measurement of cell homogenate oxalate-supported Ca2+ uptake which was completely inhibited by thapsigargin and stimulated by protein kinase A-catalyzed phosphorylation. Under serum-free conditions, incubation of CM with the SERCA2a expression modulator 3,3,5-triiodo-L-thyronine (100 nM, 72 h) resulted in elevated Ca2+ uptake of +33%. Specific Ca2+ uptake activity was not altered if insulin was omitted from the serum-free culture medium but total SR Ca2+ transport activity was reduced under this culture condition. The results indicate that primary culture of spontaneously contracting neonatal rat CM can be employed as a useful model system for investigating both short- and long-term mechanisms determining the Ca2+ re-uptake function of the SR under defined culture conditions.  相似文献   

10.
11.
The aim of the study was to find out whether low phospholamban level in atria as compared with ventricles is associated with differences in sarcoplasmic reticular Ca2+-uptake and contractile performance. Relationship between phospholamban and -adrenergic stimulation in rat left atria and papillary muscles were examined by means of contractile measurements, sarcoplasmic reticular oxalate-supported Ca2+-uptake, and Western blotting of phosphorylated phospholamban. Phosphoprotein determination after -adrenergic stimulation demonstrated that the levels of Ser16 and Thr17 phosphorylated phospholamban in atria remained at about one-third of that in ventricles. However, comparison of sarcoplasmic reticular Ca2+-uptake in control and isoproterenol perfused preparations demonstrated that the effect of -adrenergic stimulation on sarcoplasmic reticular Ca2+-uptake was stronger in atrial preparations. Moreover, atria responded to isoproterenol with much larger increases in developed tension, contractility and relaxation rates than papillary muscles. Thus, despite lower level of phospholamban, the -adrenergic activation of sarcoplasmic reticular Ca2+-uptake and contractile indices are higher in atria.  相似文献   

12.
Canine cardiac sarcoplasmic reticulum is phosphorylated by cyclic AMP-dependent and by Ca2+-calmodulin-dependent protein kinases on a 22 kDa protein, called phospholamban. Both types of phosphorylation have been shown to stimulate the initial rates of Ca2+ transport. To establish the interrelationship of the cAMP-dependent and Ca2+-calmodulin-dependent phosphorylation on Ca2+ transport, cardiac sarcoplasmic reticulum vesicles were preincubated under optimum conditions for: (a) cAMP-dependent phosphorylation, (b) Ca2+-calmodulin-dependent phosphorylation, and (c) combined cAMP-dependent and Ca2+-calmodulin-dependent phosphorylation. Control vesicles were treated under identical conditions, but in the absence of ATP, to avoid phosphorylation. Control and phosphorylated sarcoplasmic reticulum vesicles were subsequently centrifuged and assayed for Ca2+ transport in the presence of 2.5 mM Tris-oxalate. Our results indicate that cAMP-dependent and Ca2+-calmodulin-dependent phosphorylation can each stimulate calcium transport in an independent manner and when both are operating, they appear to have an additive effect. Stimulation of Ca2+ transport was associated with a statistically significant increase in the apparent affinity for calcium by each type of phosphorylation. The degree of stimulation of the calcium affinity was relatively proportional to the degree of phospholamban phosphorylation. These findings suggest the presence of a dual control system which may operate in independent and combined manners for regulating cardiac sarcoplasmic reticulum function.  相似文献   

13.
The Ca2+-ATPase of cardiac muscle cells transports Ca2+ ions against a concentration gradient into the sarcoplasmic reticulum and is regulated by phospholamban, a 52-residue integral membrane protein. It is known that phospholamban inhibits the Ca2+ pump during muscle contraction and that inhibition is removed by phosphorylation of the protein during muscle relaxation. Phospholamban forms a pentameric complex with a central pore. The solid-state magic angle spinning (MAS) NMR measurements presented here address the structure of the phospholamban pentamer in the region of Gln22-Gln29. Rotational echo double resonance (REDOR) NMR measurements show that the side chain amide groups of Gln29 are in close proximity, consistent with a hydrogen-bonded network within the central pore. 13C MAS NMR measurements are also presented on phospholamban that is 1-13C-labeled at Leu52, the last residue of the protein. pH titration of the C-terminal carboxyl group suggests that it forms a ring of negative charge on the lumenal side of the sarcoplasmic reticulum membrane. The structural constraints on the phospholamban pentamer described in this study are discussed in the context of a multifaceted mechanism for Ca2+ regulation that may involve phospholamban as both an inhibitor of the Ca2+ ATPase and as an ion channel.  相似文献   

14.
In this paper we review some of the large quantities of information currently available concerning the identification, structure and function of Ca2+-binding proteins of endoplasmic and sarcoplasmic reticulum membranes. The review places particular emphasis on identification and discussion of Ca2+ storage proteins in these membranes. We believe that the evidence reviewed here supports the contention that the Ca2+-binding capacity of both calsequestrin and calreticulin favor their contribution as the major Ca2+-binding proteins of muscle and nonmuscle cells, respectively. Other Ca2+-binding proteins discovered in both endoplasmic reticulum and sarcoplasmic reticulum membranes probably contribute to the overall Ca2+ storage capacity of these membrane organelles, and they also play other important functional role such as posttranslational modification of newly synthesized proteins, a cytoskeletal (structural) function, or movement of Ca2+ within the lumen of the sarcoplasmic/endoplasmic reticulum towards the storage sites.Abbreviations SR Sarcoplasmic Reticulum - ER Endoplasmic Reticulum - InsP3 Inositol 1,4,5-trisphosphate - SDS-PAGE Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis - PDI Protein Disulphide Isomerase - T3BP Thyroid Hormone Binding Protein - Grp Glucose regulated proteins - HCP Histidine-rich Ca2+ binding Protein - LDL Low Density Lipoprotein  相似文献   

15.
J. P. Arsanto 《Protoplasma》1986,132(3):160-171
Summary In stem ofCicer arietinum, the loss of ribosomes attached to the rough ER cisternae during sieve element ontogeny results in the formation of sieve element reticulum (SER). By enhancing contrast of the SER, the OsFeCN postfixation/staining of material prefixed in glutaraldehyde in presence of calcium enables a good visualization of this membrane system. The pattern of staining in the SER is slightly lower when Mg2+ is substituted for Ca2+. These results support the view that the OsFeCN staining requires divalent cations and that the SER can accumulate Ca2+. The detection of Ca2+ by means of the pyroantimonate method in conjunction with X-ray microanalysis and the cytochemical localization of Ca2+ -ATPase in the SER cisternae provides evidence for Ca2+ sequestration by the SER. On the other hand, Ca2+-binding sites and ATPase activity are localized in P-protein. The ability to bind Ca2+ seems to enable the SER to function as an effective Ca2+ sink which may participate—with the sieve tube plasma membrane and mitochondria—in the maintenance of low Ca2+ concentration in phloem sap. In addition, the close association between P-protein and SER membranes exhibiting Ca2+-binding capabilities suggests that a Ca2+-mediated functional relationship may exist between the two structures. It is postulated that the SER may play a role in putative Ca2+ control of P-protein organization.Abbreviations SER sieve element reticulum - ER endoplasmic reticulum - P protein, phloem protein - OsFeCN method, osmium tetroxide-ferricyanide method - EDTA ethylenediamine tetraacetic acid - EGTA ethyleneglycol-bis-(-aminoethyl ether) N,N-tetraacetic acid - ATP adenosine 5-triphosphoric acid - ATPase adenosine triphosphatase - PCMB p chloromercuribenzoate - IDP inosine diphosphate  相似文献   

16.
Cardiac sarcoplasmic reticulum is phosphorylated by a cytosolic Ca2+-activated, phospholipid-dependent protein kinase. This phosphorylation is independent of cyclic nucleotides and enhanced by unsaturated diacylglycerols; saturated diacylglycerols, mono- and tri-glycerides are ineffective. Diacylglycerol stimulation is due to increased Ca2+ sensitivity of the kinase reaction. Protein kinase catalyzed phosphorylation results in enhanced Ca2+-transport ATPase activity and may be an important determinant of cardiac sarcoplasmic reticulum function.  相似文献   

17.
The roles of cyclic AMP, cyclic AMP-dependent protein kinase and the phosphorylation of specific proteins in the regulation of cardiac contractility are briefly reviewed. Criteria for determining whether changes in cyclic AMP and protein phosphorylation are involved in a physiological response are discussed. Although cyclic AMP-dependent phosphorylation of the voltage-operated Ca2– channel, phospholamban, troponin-I and C-protein have all been implicated in the response of the heart to inotropic agents which elevate cyclic AMP, none of these phosphorylations satisfy all of the criteria completely. Evidence is presented that there are compartments of cyclic AMP in heart which are coupled to different functional responses.Abbreviations cAMP 3,5 cyclic adenosine monophosphate - PDE cyclic nucleotide phosphodiesterase - cA-PrK cAMP-dependent protein kinase - SR sarcoplasmic reticulum - PGE1 prostaglandin E1 - Tn-I troponin I  相似文献   

18.
The major protein in the sarcoplasmic reticulum (SR) membrane is the Ca2+ transporting ATPase which carries out active Ca2+ pumping at the expense of ATP hydrolysis. The aim of this work was to elucidate the mechanisms by which oxidative stress induced by Fenton's reaction (Fe2+ + H2O2 HO· + OH+ Fe3+) alters the function of SR. ATP hydrolysis by both SR vesicles (SRV) and purified ATPase was inhibited in a dose-dependent manner in the presence of 0–1.5 MM H2O2 plus 50 M Fe2+ and 6 mM ascorbate. Ca2+ uptake carried out by the Ca2+-ATPase in SRV was also inhibited in parallel. The inhibition of hydrolysis and Ca2+ uptake was not prevented by butylhydroxytoluene (BHT) at concentrations which significantly blocked formation of thiobarbituric acid-reactive substances (TBARS), suggesting that inhibition of the ATPase was not due to lipid peroxidation of the SR membrane. In addition, dithiothreitol (DTT) did not prevent inhibition of either ATPase activity or Ca2+ uptake, suggesting that inhibition was not related to oxidation of ATPase thiols. The passive efflux of 45Ca2+ from pre-loaded SR vesicles was greatly increased by oxidative stress and this effect could be only partially prevented (ca 20%) by addition of BHT or DTT. Trifluoperazine (which specifically binds to the Ca2+-ATPase, causing conformational changes in the enzyme) fully protected the ATPase activity against oxidative damage. These results suggest that the alterations in function observed upon oxidation of SRV are mainly due to direct effects on the Ca2+-ATPase. Electrophoretic analysis of oxidized Ca2+-ATPase revealed a decrease in intensity of the silver-stained 110 kDa Ca2+-ATPase band and the appearance of low molecular weight peptides (MW < 100 kDa) and high molecular weight protein aggregates. Presence of DTT during oxidation prevented the appearance of protein aggregates and caused a simultaneous increase in the amount of low molecular weight peptides. We propose that impairment of function of the Ca2+-pump may be related to aminoacid oxidation and fragmentation of the protein.Abbreviations AcP acetylphosphate - BHT butylhydroxytoluene - DTT dithiothreitol - Hepes 4-(2-hydroxyethyl)-1-piperazine-ethanesulfonic acid - SDS sodium dodecyl sulfate - SDS-PAGE polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate - SR sarcoplasmic reticulum - SRV sarcoplasmic reticulum vesicles - TBA thiobarbituric acid - TBARS thiobarbituric acid-reactive substances - TFP trifluoperazine  相似文献   

19.
20.
The procedure for the isolation of the highly active fraction of sarcoplasmic reticulum from pigeon and dog hearts is described. The method is based on the partial loading of heart microsomes with calcium and oxalate ions and the precipitation of loaded vesicles in sucrose and potassium chloride concentration gradients. Preparations obtained possess high activity of Ca2+-dependent ATPase and are also able to accumulate up to 10 μmol Ca2+ per mg protein. Purification of sarcoplasmic reticulum membranes is accompanied by a decrease in concentration of cytochrome a+a3 and an increase in the content of [32P]phosphoenzyme. The basic components in “calcium-oxalate preparation” from hearts are proteins with molecular weights of about 100 000 (Ca2+-dependent ATPase) and 55 000 Calcium-oxalate preparation from pigeon hearts was used for subsequent purification of Ca2+-dependent ATPase. Specific activity of purified enzyme from pigeon hearts is 12–16 μmol Pi/min per mg protein. Enzyme activity of purified Ca2+-dependent ATPase is inhibited by EGTA and is not sensitive to azide, 2,4-dinitrophenol and ouabain. The data obtained demonstrate the similarity of calcium pump systems and Ca2+-dependent ATPases isolated from heart and skeletal muscles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号