首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Oestrus was synchronized in 116 mares by means of an i.m. injection of prostaglandin F-2 alpha (Day 0) and of fluprostenol (a PG analogue) on Day 16. Mares were then randomly divided into three groups. Group A mares (N = 30) were given 2500 i.u. hCG I.M. ON Day 20 and artificially inseminated on Day 21 without detection of oestrus. Group B mares (N = 32) were given 2500 i.u. hCG i.m. on Day 20 and inseminated on Days 21 and 23, also without oestrus detection. Group C mares (N = 54) were teased on Days 18, 19, 21, 23 and 25 and inseminated on Days 19, 21, 23 and 25 while they were in oestrus. Semen was collected by artificial vagina from 3 stallions. One-third of the mares in each group were assigned to each stallion at random. The gel-free fraction was divided equally among the mares, and used within 1 h of collection. Pregnancy rates at about 60 days of gestation were not significantly different. A high rate of synchronization of oestrus (80%) was attained within 48 h of treatment with fluprostenol.  相似文献   

2.
Fifty-four normally cycling, non-lactating mares were given 2 injections (i.m.) of PGF-2 alpha (10 mg) 14 days apart without regard to stage of the oestrous cycle. At 19 days after the first PGF-2 alpha treatment, a single i.m. injection of either hCG (3300 i.u.) or a GnRH-analogue (500 micrograms) was administered. Each mare was inseminated with 100 X 10(6) motile spermatozoa at one of the following frequencies: once only on Day 20; every other day during oestrus or at least on Days 19 and 21; or daily during oestrus or at least on Days 19, 20, 21 and 22. Eighteen control mares received saline injections on Days 0 and 14, and were inseminated either on the 4th day of oestrus or every other day or daily beginning on the 2nd day of oestrus. More (P greater than 0.05) PGF-2 alpha treated mares displayed their 1st day of oestrus on Days 14 to 20 than control mares (80.6 versus 27.8%). During cycle 1, fewer (P greater than 0.05) treated mares became pregnant compared to controls; 38.9, 25.0 and 66.7% for PGF-2 alpha + hCG, PGF-2 alpha + GnRH-A and control mares, respectively. After three cycles, the pregnancy rates for mares inseminated every other day or daily were higher (P less than 0.05) than mares inseminated only once during oestrus (88.9 and 88.2 versus 64.7%).  相似文献   

3.
Dispersed horse luteal cells were used to evaluate the ability of horse LH, hCG and PMSG to stimulate progesterone secretion in vitro. Morphological characterization of these cells before gonadotrophin stimulation indicated the presence of two populations of cells based on cell diameters. In luteal cells incubated as suspended cells, horse LH and hCG stimulated (P less than or equal to 0.05) progesterone production at all levels of treatment. Stimulation of progesterone secretion by hCG was greater (P less than or equal to 0.05) than by horse LH over the range of concentrations utilized. When mares (N = 7) received an intramuscular injection of 1000 i.u. hCG on Days 3, 4 and 5 after the end of oestrus, there was an increase (P less than or equal to 0.05), in peripheral progesterone concentrations beginning on Day 7 and continuing until Day 14 compared with controls (N = 7). Peripheral progesterone concentrations continued to be elevated in hCG-treated mares for Days 15-30 after oestrus in those mares that conceived. Although treatment with hCG increased progesterone concentrations, it had no influence on anterior pituitary release of LH as measured by frequency and amplitude of LH discharge. We conclude that the mare corpus luteum is responsive to gonadotrophins in vitro and that exogenous hCG can enhance serum progesterone concentrations throughout the oestrous cycle and early pregnancy.  相似文献   

4.
Pony mares were observed from January to August for incidence of oestrus, duration of oestrus, length of the oestrous cycle and for ovulation and fertility after injection of HCG. From January to 15 May most mares showed oestrus but the duration of oestrus was quite variable and few mares ovulated in response to HCG. From 15 May to 17 August oestrous cycles were more regular and ovulation was induced within 40-50 h by an intramuscular injection of 1500-5000 i.u. HCG. Pregnancy was established by one mating at a fixed time after HCG in 20 of 69 mares. Degenerate eggs were recovered from the oviducts of anoestrous recently ovulated, mated, unmated and pregnant mares. The first polar body was formed before ovulation in 2 eggs and had not formed in 2 recently ovulated eggs flushed from the oviduct. The second polar body formed after sperm penetration 10-12 h after ovulation. After formation of pronuclei, the first cleavage division occurred at 20 h and the second at 32 h after ovulation. Oestrus was inhibited by progesterone administered by vaginal devices but occurred within 1-3 days in 12 of the 20 mares after withdrawal of the devices.  相似文献   

5.
This study investigated the effects of different artificial insemination (AI) regimes on the pregnancy rate in mares inseminated with either cooled or frozen-thawed semen. In essence, the influence of three different factors on fertility was examined; namely the number of inseminations per oestrus, the time interval between inseminations within an oestrus, and the proximity of insemination to ovulation. In the first experiment, 401 warmblood mares were inseminated one to three times in an oestrus with either cooled (500 x 10(6) progressively motile spermatozoa, stored at +5 degrees C for 2-4 h) or frozen-thawed (800 x 10(6) spermatozoa, of which > or =35% were progressively motile post-thaw) semen from fertile Hanoverian stallions, beginning -24, -12, 0, 12, 24 or 36 h after human chorionic gonadotrophin (hCG) administration. Mares were injected intravenously with 1500 IU hCG when they were in oestrus and had a pre-ovulatory follicle > or =40mm in diameter. Experiment 2 was a retrospective analysis of the breeding records of 2,637 mares inseminated in a total of 5,305 oestrous cycles during the 1999 breeding season. In Experiment 1, follicle development was monitored by transrectal ultrasonographic examination of the ovaries every 12 h until ovulation, and pregnancy detection was performed sonographically 16-18 days after ovulation. In Experiment 2, insemination data were analysed with respect to the number of live foals registered the following year. In Experiment 1, ovulation occurred within 48 h of hCG administration in 97.5% (391/401) of mares and the interval between hCG treatment and ovulation was significantly shorter in the second half of the breeding season (May-July) than in the first (March-April, P< or =0.05). Mares inseminated with cooled stallion semen once during an oestrus had pregnancy rates comparable to those attained in mares inseminated on two (48/85, 56.5%) or three (20/28, 71.4%) occasions at 24 h intervals, as long as insemination was performed between 24 h before and 12 h after ovulation (78/140, 55.7%). Similarly, a single frozen-thawed semen insemination between 12 h before (31/75, 41.3%) and 12 h after (24/48, 50%) ovulation produced similar pregnancy rates to those attained when mares were inseminated either two (31/62, 50%) or three (3/9, 33.3%) times at 24 h intervals.In the retrospective study (Experiment 2), mares inseminated with cooled semen only once per cycle had significantly lower per cycle foaling rates (507/1622, 31.2%) than mares inseminated two (791/1905, 41.5%), three (464/1064, 43.6%) or > or =4 times (314/714, 43.9%) in an oestrus (P< or =0.001). In addition, there was a tendency for per cycle foaling rates to increase when mares were inseminated daily (619/1374, 45.5%) rather than every other day (836/2004, 42.1%, P = 0.054) until ovulation.It is concluded that under conditions of frequent veterinary examination, a single insemination per cycle produces pregnancy rates as good as multiple insemination, as long as it is performed between 24 h before and 12 h after AI for cooled semen, or 12 h before and 12 h after AI for frozen-thawed semen. If frequent scanning is not possible, fertility appears to be optimised by repeating AI on a daily basis.  相似文献   

6.
The objective of the present study was to evaluate the beneficial effect of hCG injected immediately after mating in Arabian barren mares treated with uterine lavage and oxytocin. Arabian barren mares (n = 36) with PMIE were subjected to detailed clinical examinations including palpation per rectum, vaginoscopy, and cytological examination. After mating the 36 mares were randomly divided into four groups. The mares in group 1 (n = 10) were immediately after breeding injected with hCG 3000 IU IM. Uterine lavage with 1 L of N-saline containing 4 million IU of crystalline penicillin and 4 g of streptomycin sulphate was performed 4 h after breeding. Then mares received two injections of oxytocin 40 IU IM 2 h apart after 6 h of mating. Mares in group 2 (n = 10) treated with uterine lavage and oxytocin as group 1. While mares in group 3 (n = 10) received uterine lavage only. A control group (n = 6) as group 4 did not received any treatment. The results of clinical examination indicated that 69.4% of PMIE mares were harboring severe endometritis and 30.6% with a moderate form of endometritis. Significant (P < 0.01) increase in lymphocytes were founded in barren mares included in this study. Higher pregnancy rate (P < 0.01) was founded in Arabian barren mares 80% injected with hCG immediately after breeding and uterine lavage and oxytocin. No significant difference was found in mares received uterine lavage and oxytocin and uterine lavage only. In a conclusion, administration of hCG immediately after mating and intrauterine lavage containing antibiotics performed 4 h and two injections of oxytocin 40 IU IM 2 h apart after 6 h of mating had improved fertility of Arabian barren mares.  相似文献   

7.
Ovarian response to hCG treatment during the oestrous cycle in heifers   总被引:2,自引:0,他引:2  
The aims of this study were to investigate whether treatment with a single ovulatory dose of hCG, between the day of oestrus and the end of the luteal phase, could induce extra ovulations in heifers and whether the presence of an existing corpus luteum (CL) affected the response. Heifers (N = 32) were injected with 1500 i.u. hCG or saline on a given day of the oestrous cycle. Treatments were repeated during subsequent cycles to provide a total of 71 observations, 57 of which followed an injection of hCG, given between Day 0 (oestrus) and Day 16, and 14 of which followed saline injections as controls. Ovulatory responses were noted by laparoscopy 2 days after hCG treatment. No heifers injected with saline produced additional CL. Of the hCG-treated cycles, 23 resulted in the formation of an additional CL, and this was significantly affected by the stage of the oestrous cycle when hCG was given; a greater response was observed during the early (Days 4-7) and late (Days 14-16) stages of the luteal phase than at the mid-luteal phase of the oestrous cycle. Two heifers were also treated with hCG on Days 17 or 18 of the oestrous cycle, but before oestrus; both had induced CL. There were no significant differences between the left-right orientation of the existing CL or the hCG-induced CL. These results demonstrate that the large, luteal-phase follicle of the cow is capable of ovulating in response to hCG and that the induced CL is not affected by the presence of an existing CL.  相似文献   

8.
Service records of 253 mares (1181 mare-years) spanning over 7 consecutive years, from nine organized Thoroughbred stud farms, situated in the subtropical northwestern India were retrospectively analyzed to assess their reproductive performance. The overall per cycle pregnancy rate at Day 16 and overall foaling rates were 50.30% and 68.95%, respectively, and were significantly higher in mares aged 3–7 years than ≥18 years old mares. The late embryonic losses (9.86%) that occurred between Days 16 and 39 post-ovulation contributed more than 50% of the overall detected pregnancy losses (19.11%). The overall percent detected pregnancy losses were lower in mares at ages 3–7 years compared to those at ages ≥18 years (14.78% vs. 46.43%, respectively; P < 0.0001). Chronic barren and habitual aborter mares tended to affect reproductive efficiency of mares. Fifty percent of the mares that experienced ≥2 consecutive abortions or barren years, again stayed aborted or barren in the next seasons, respectively. No effect of numbers of matings per oestrus was observed on overall fertility. Neither the induction of oestrus nor ovulation by exogenous hormonal treatment had any effect on most of the analyzed reproductive parameters. Regarding breeding month or years, the reproductive efficiency did not differ significantly. The incidence of multiple pregnancies was 5.40% and percent late embryonic loses were higher (P = 0.0016) in twin (21.98%) than singleton (8.64%) pregnancies. In conclusion, comparatively lower fertility rates were recorded in Thoroughbred mares bred under Indian subtropical climatic conditions than those reported from temperate regions that might be due to difference in breeding management rather than prevailing environment.  相似文献   

9.
We tested whether short periods of increased nutrition will improve ovulation rate and prolificacy, irrespective of the method used to synchronise the cycles of the ewes. In Experiment 1, we used 138 Corriedale ewes to evaluate two factors: synchronization treatment (sponges versus a single injection of prostaglandin) and type of pasture (native versus improved with Lotus corniculatus). Ewes were mated at the end of the grazing period and prolificacy was evaluated at lambing. Grazing Lotus corniculatus for 12 days tended to increase the number of twin lambs born (P=0.09). The percentage of ewes showing oestrus during a 9-day period was similar among synchronization treatments. Animals in Experiments 2 (n=282) and 3 (n=288) were allocated to a control group or a group fed a supplement of corn grain and soybean meal for 7 days. Ewes received 2 prostaglandin injections and the supplement was fed from Days 11 to 17 after the second prostaglandin. Ovulation rate was measured in 65 (Experiment 2) and 61 (Experiment 3) ewes that were confirmed to have consumed the supplement and showed oestrus in a 4-day period. The supplement increased ovulation rate by 14% in both experiments (P<0.05). We conclude that Corriedale ewes can respond with increases in prolificacy to a 12-day period grazing Lotus corniculatus and in ovulation rate to 7 days feeding with a supplement rich in energy and protein. Moreover, in these studies, prostaglandin was as effective as sponges for synchronising oestrus, an important factor in future decisions about hormonal management of fertility.  相似文献   

10.
A regimen of progesterone plus estradiol (P&E) was used as a standard for ovarian synchronization to test the efficacy and evaluate the commercial application of ultrasound-guided follicle ablation as a non-steroidal alternative for ovulation synchronization in mares. Recipient mares at a private embryo transfer facility were at unknown stages of the estrous cycle at the start of the experiment on Day 1 when they were randomly assigned to an ablation group (n=18-21 mares) or to a P&E group (n=20-21 mares). In the ablation group, mares were lightly sedated and all follicles > or = 10 mm were removed by transvaginal ultrasound-guided follicle aspiration. In the P&E group, a combination of progesterone (150 mg) plus estradiol (10mg) prepared in safflower oil was given daily (im) for 10 d. Two doses of prostaglandin F(2alpha) (PGF, 10mg/dose, im) were given 12 h apart on Day 5 in the ablation group, or a single dose on Day 10 in the P&E group. Human chorionic gonadotropin (hCG, 2500 IU/mare, im) was given at a fixed time, 6 and 10 d after PGF treatment in the ablation and P&E groups, respectively, with the expectation of a follicle > or = 30 mm at the time of treatment. In both the ablation and P&E groups, transrectal ultrasonography was done at the start of the study (Day 1) and again on the day of hCG treatment and daily thereafter to determine the presence of a CL, measure diameter of the largest follicle and detect ovulation. The mean interval from the start of the study and from PGF treatment to ovulation was shorter (P<0.0001) in the ablation group (13.7 and 9.7 d, respectively) compared to the P&E group (22.3 and 13.2 d, respectively). Following fixed-day treatment with hCG after PGF treatment, the degree of ovulation synchronization was not different (P>0.05) between the ablation and P&E groups within a 2-d (56 and 70%) or 4-d (83% and 90%) period. Although ultrasound-guided follicle ablation may not be practical in all circumstances, it excluded the conventional 10-d regimen of progesterone and estradiol and was considered an efficacious and feasible, non-steroidal alternative for ovulation synchronization in mares during the estrous cycle.  相似文献   

11.
Two experiments were conducted using a 21-day GnRH analogue treatment regimen to induce ovulation in seasonally anovulatory mares. In Experiment 1, nontreated (n=20) and treated (n=83) mares were defined as having inactive ovaries (largest follicle相似文献   

12.
Two studies were conducted to determine the relationship between LH and progesterone and between PMSG and progesterone during pregnancy in mares. In the first, samples of jugular blood were collected daily from 7 mares from the first day of oestrus until Day 28 of pregnancy, and in the second, samples were collected weekly from 14 mares from Day 35 of gestation until parturition. In an attempt to prolong secretion of progesterone from accessory corpora lutea, 7 of these 14 mares were injected with increasing doses (2--10 mg) of diethylstilboestrol (DES) between Days 84 and 142 of gestation. The remaining 7 mares received injections of vehicle. Concentrations of LH, PMSG and progesterone in serum were determined by radioimmunoassay. From the onset of oestrus until Day 4 of gestation, serum concentrations of LH and progesterone were negatively correlated (r = 0.67, P less than 0.01), but from Days 5 to 28 a positive correlation (r = 0.80, P less than 0.01) was noted. Likewise, serum concentrations of PMSG and progesterone were highly correlated between Days 35 and 196 in mares injected with DES (r = 0.72, P less than 0.01) and the vehicle (r = 0.75, P less than 0.01). Injections of DES did not influence serum concentrations of LH, PMSG or progesterone, or affect the length of gestation. It was concluded that DES does not influence the maintenance of pregnancy in the mare.  相似文献   

13.
The objective of this study was to determine whether periovulatory treatments with PGF2alpha affects the development of the CL, and whether the treatment was detrimental to the establishment of pregnancy. Reproductively sound mares were assigned randomly to one of the following treatment groups during consecutive estrus cycles: 1. 3,000 IU hCG within 24 hours before artificial insemination and 500 microg cloprostenol (PGF2alpha analogue) on Days 0, 1, and 2 after ovulation (n=8), 2. 2 mL sterile water injection within 24 hours before artificial insemination and 500 microg cloprostenol on Days 0, 1, and 2 after ovulation (n=8); 3. 3,000 IU hCG within 24 hours before artificial insemination and 500 microg cloprostenol on Day 2 after ovulation (n=8); or 4. 3,000 IU hCG within 24 hours before artificial insemination and 2 mL of sterile water on Days 0, 1, and 2 after ovulation (controls; n=8). Blood samples were collected from the jugular vein on Days 0, 1, 2, 5, 8, 11, and 14 after ovulation. Plasma progesterone concentrations were determined by the use of a solid phase 125I radioimmunoassay. All mares were examined for pregnancy by the use of transrectal ultrasonography at 14 days after ovulation. Mares in Group 1 and 2 had lower plasma progesterone concentrations at Day 2 and 5, compared to mares in the control group (P < 0.001). No difference was detected between group 1 and 2. Plasma progesterone concentrations in group 3 were similar to the control group until the day of treatment, but decreased after treatment and were significantly lower than the control group at Day 5 (P < 0.001). Plasma progesterone concentrations increased in all treatment groups after Day 5, and were comparable among all groups at Day 14 after ovulation. Cloprostenol treatment had a significant effect on pregnancy rates (P < 0.01). The pregnancy rate was 12.5% in Group 1, 25% in Group 2, 38% in Group 3, and 62.5% in Group 4. It was concluded that periovulatory treatment with PGF2alpha has a detrimental effect on early luteal function and pregnancy.  相似文献   

14.
Despite the widespread use of hCG to advance ovulation in the mare there is little information on efficacy of dose rates and any contraindications of its use. This study aims to investigate the effect of dose of hCG on ovulation within 48h and the effect of hCG on: ovulation, multiple ovulation (MO), pregnancy, multiple pregnancy (MP) rates and synchrony of MO; additionally whether any seasonal effect is evident. Sequential ultrasonic scanning was used to monitor the occurrence of ovulation, within 48h of treatment, in 1291 Thoroughbred mares treated with either 750iu hCG or 1500iu hCG s.c. Ovulation rate, type (single ovulations (SO), MO, synchronous, asynchronous) and subsequent pregnancy were then monitored in 1239 Thoroughbred mares on a commercial stud over 3 years, 536 of which were treated with 750iu hCG at mating, all mares were also allocated into groups according to month of mating. No significant difference existed between the two dose levels of hCG and no significant difference existed between treated and untreated mares in overall ovulations (1.32 and 1.28 respectively), MO (31.7% and 27.7%), pregnancy (65.1% and 65.6%) or MP rates (10.8% and 11.8%). There was no significant association between month of year and pregnancy or MP rates for either treated or control mares, nor for MO for untreated mares. A significant (p<0.05) association was evident between month and MO in treated mares, MO being lowest in April (22.3%). 95.9% of treated mares multiple ovulated within 48h compared with 90.7% controls, a near significant difference. In conclusion this study demonstrates that: (i) hCG dose of 750iu s.c. is just as effective in inducing ovulation within 48h as 1500iu, (ii) 750iu hCG has no significant effect on ovulation, MO, pregnancy or MP rates; (iii) a significant (p<0.05) association exists between season and MO in hCG treated mares; (iv) a tighter synchrony (ovulation within 48h) of MO is evident in hCG treated compared with control mares (p=0.052).  相似文献   

15.
Conceptuses were obtained from pony mares on each day of pregnancy between Days 12 and 28, and on Days 39, 45, 65 and 100. Endometrium was obtained from mares at Days 12, 14, 16, 18, 39, 45, 65 and 100 of pregnancy, and from non-pregnant mares during anoestrus, during transition into the breeding season, at oestrus, or during dioestrus. Tissues were incubated in vitro for 24 h with L-[3H]leucine. Proteins synthesized and released into the culture medium were analysed by two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) and fluorography. Conceptuses obtained before Day 14 after ovulation released a characteristic pattern of labelled proteins. These included two groups of apparent isoelectric variants of relative molecular weights (Mr) 30,000-40,000 (pI values 4.5-5.5 and 6-7), one group of Mr approximately 22,000 (pI 6.5-7), and large protein(s) that did not enter the 10% polyacrylamide gel. After Day 14 the array of labelled proteins had changed and resembled that produced by isolated yolk sac at the later stages of pregnancy studied. Included amongst these were several acidic polypeptides with Mr 20,000 (pI 5-6). The endometrial samples released an array of non-dialysable polypeptides into the culture medium. Fluorograms could be assigned to one of three general groups, with endometrium from mares within each group producing similar patterns of labelled proteins. The first group consisted of anoestrous, transitional and ovariectomized mares, and mares at oestrus or Day 1 or Day 18 after ovulation. The second group was comprised of mares at Days 12-16 of dioestrus or Days 12-18 of pregnancy.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Between Days 9 and 15 after oestrus, concentrations of pregnenolone, pregnenolone sulphate, dehydroepiandrosterone (DHEA), DHEA sulphate, androstenedione, oestrone and oestrone sulphate in free uterine fluid collected from non-pregnant gilts were greater than respective values in plasma (P less than 0.05). The total contents of pregnenolone, progesterone, DHEA, testosterone, oestrone and oestradiol in washings from pregnant uteri exceeded (P less than 0.05) respective non-pregnancy levels during this same period. Concentrations of pregnenolone, pregnenolone sulphate, DHEA, DHEA sulphate, androstenedione, oestrone, oestrone sulphate and oestradiol in free uterine fluid recovered from gravid uteri were also higher (P less than 0.05) than respective plasma values. By contrast, the progesterone concentration in uterine fluid from pregnant animals was lower (P less than 0.001) than the plasma value. Concentrations of DHEA, DHEA sulphate, androstenedione and oestrone sulphate in plasma of pregnant gilts between Days 9 and 15 after mating exceeded (P less than 0.05) the respective concentrations in unmated gilts between Days 9 and 15 after oestrus. Plasma levels of pregnenolone sulphate were lower (P less than 0.05) in the pregnant animals. We therefore suggest that the endometrium of the pig can concentrate steroid hormones in uterine fluid and that increases in steroid levels in this milieu between Days 9 and 15 after coitus reflect steroidogenesis by embryonic tissues and modification of enzyme activities within uterine tissues under the influence of progestagens. The pool of steroid sulphoconjugates present in uterine fluid between Days 9 and 15 post coitum could serve as an important precursor source for progestagen, androgen and oestrogen synthesis by tissues of pig embryos before implantation.  相似文献   

17.
Reproductive cycle of goats   总被引:1,自引:0,他引:1  
Goats are spontaneously ovulating, polyoestrous animals. Oestrous cycles in goats are reviewed in this paper with a view to clarifying interactions between cyclical changes in tissues, hormones and behaviour. Reproduction in goats is described as seasonal; the onset and length of the breeding season is dependent on various factors such as latitude, climate, breed, physiological stage, presence of the male, breeding system and specifically photoperiod. In temperate regions, reproduction in goats is described as seasonal with breeding period in the fall and winter and important differences in seasonality between breeds and locations. In tropical regions, goats are considered continuous breeders; however, restricted food availability often causes prolonged anoestrous and anovulatory periods and reduced fertility and prolificacy. Different strategies of breeding management have been developed to meet the supply needs and expectations of consumers, since both meat and milk industries are subjected to growing demands for year-round production. Hormonal treatments, to synchronize oestrus and ovulation in combination with artificial insemination (AI) or natural mating, allow out-of-season breeding and the grouping of the kidding period. Photoperiodic treatments coupled with buck effect now allow hormone-free synchronization of ovulation but fertility results after AI are still behind those of hormonal treatments. The latter techniques are still under study and will help meeting the emerging social demand of reducing the use of hormones for the management of breeding systems.  相似文献   

18.
The influence of the ovaries and presence of a foal on periparturient concentrations of FSH and LH were studied in 19 Pony mares. In intact and ovariectomized mares, mean concentrations of FSH fluctuated between 1.1and 9.9 ng/ml on Days -14 to-1 before parturition (Day 0). A surge of FSH occurred in all mares in association with parturition. From Days 1 to 10, the high levels of FSH gradually decreased in the intact group to the minimal concentrations that occur during oestrus, but remained elevated in the ovariectomized mares. There were no significant pre-partum changes in LH in either type of mare. Post-partum changes in LH concentrations increased at a similar rate in ovariectomized and intact mares. The presence of a foal significantly lengthened the interval to first oestrus, depressed LH levels on Days 6--10 and decreased the FSH concentrations as averaged over the 10 days before the first ovulation after parturition.  相似文献   

19.
The viability of embryos before flushing from donor mares (n = 5) and after transfer to recipient mares (n = 7) was monitored in mare serum by detecting early pregnancy factor (EPF) using the rosette inhibition test (RIT). The EPF activity was measured in donor mares before and after natural mating at natural estrus; after ovulation on Days 2, 5 and 8; and after embryo flushing (Day 8) on Days 8, 9, 10 and 13 after ovulation. The collected embryos were transferred immediately after flushing. The EPF activity in recipient mares were measured on the day of transfer and after embryo transfer on Days 1, 2, 3 and 5. Pregnancy was confirmed on Day 12 to 14 after embryo transfer. The mean EPF activity of donor mares was increased to the pregnant level (> an RI titer score of 10) on Day 2 after ovulation. Two days after flushing the embryos, the EPF activity of donor mares had decreased to the nonpregnant level. Among the 7 recipient mares, 3 mares were diagnosed pregnant on Day 12 after embryo transfer with ultrasound. The EPF activity of the pregnant recipient mares was increased above the minimum level observed in pregnant mares on Days 2 to 3 after transfer. However, among the nonpregnant recipient mares after embryo transfer, the EPF activity of 3 mares remained at the pregnant level only 2 to 3 d and then declined to the nonpregnant level. In one recipient mare, EPF activity did not reach the pregnant level throughout the sample collection. The results of this study indicated that equine EPF can be detected in serum of pregnant mares as early as Day 2 after ovulation. From our observation, we conclude that the measurement of EPF activity is useful for monitoring the in vivo viability of equine embryos and early detection of embryonic death.  相似文献   

20.
Human chorionic gonadotrophin (hCG) plus PGF2 alpha was compared with GnRH plus PGF2 alpha for estrus synchronization of dairy cows. There were 3 treatments: GnRH analog (Buserelin, 12.6 micrograms) plus PGF2 alpha analog (Cloprostenol, 150 micrograms) 6 d later (GnRH + PGF[Day 6]); hCG (2000 IU) plus PGF2 alpha 9 d later (hCG + PGF[Day 9]); and hCG plus PGF2 alpha 6 d later (hCG + PGF[Day 6]). Treatment occurred either Days 55 to 90 or Days 91 to 135 post partum. For responses during the first 10 d after PGF2 alpha administration, estrus synchronization (P = 0.24), efficacy (percentage of treated pregnant; P = 0.20) and conception (percentage of inseminated pregnant; P = 0.23) rates were not different among the 3 treatments. Cows treated between Days 55 and 90 had a higher rate (P < 0.05) of detected estrus during this period (69% for GnRH + PG [Day 6], 70% for hCG + PGF[Day 9] and 72% for hCG + PGF[Day 6]) compared with cows treated between Days 91 and 135 (52% for GnRH + PGF[Day 6], 50% for hCG + PGF[Day 9] and 57% for hCG + PGF[Day 6]). Efficacy of treatment was higher (P < 0.05) in animals treated between Days 55 and 90 (54% for GnRH + PGF[Day 6], 56% for hCG + PGF[Day 9] and 63% for hCG + PGF [Day 6]) compared to animals treated between Days 91 and 135 (36% for GnRH + PGF[Day 6], 35% for hCG + PGF[Day 9] and 47% for hCG + PGF[Day 6]). There were no significant differences in conception between Days 51 and 90 and Days 91 and 135. The interval between parturition-first AI with conception was significantly (P < 0.001) shorter in GnRH + PGF (Day 6; 106 d), hCG + PGF (Day 9; 109 d) and hCG + PGF (Day 6; 103 d) treated cattle than in 106 untreated animals (136 d). Thus, GnRH plus PGF2 alpha or hCG plus PGF2 alpha treatments elicited similar effects in estrus synchronization, treatment efficacy, and conception rate in post-partum dairy cows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号