首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role(s) of copper in a bacterial cytochrome oxidase of the aa 3-type was investigated by growth of Paracoccus denitrificans NCIB 8944, in batch and steady state continuous culture, in a medium from which the bulk of the copper had been extracted. In a medium containing approximately 0.02 M copper, cellular copper content, cytochromes a+a 3 and cytochrome a 3 were reduced to 55%, 58% and 33% respectively of control values and there were also less marked decreases in cytochromes c+c 1 (to 85%) and a CO-binding b-type cytochrome, possibly cytochrome o (to 71%). Copper deficiency elicited in reduced minus oxidized difference spectra a shift to shorter wavelengths and narrowing of the band width of the -band of the oxidase, and loss of a (negative) band near 830 nm attributable to CuA (the copper functionally associated with haem a in the oxidase complex). The oxidase in copper-deficient cells reacted with oxygen to form the oxy Compound A at rates similar to that in control cells but CO recombination to ferrous haem a 3 was slowed 4-fold in the copper deficient case. The results are interpreted as indicating loss of CuA and changes in the proportions of haems a and a 3 with retention of catalytic activity. Titrations of respiration rates with antimycin suggested that copper deficiency did not result in diversion of electron flux through an antimycin A-insensitive, cytochrome o-terminated branch of the respiratory chain.  相似文献   

2.
The effect of copper on the uptake of nitrogen and the tissue contents of inorganic nitrogen, amino acids and proteins were studied in cooper-sensitive Silene vulgaris (Moench) Garcke, grown at different nitrogen sources (NH4 + or NO3 -). All the toxic copper levels tested, i.e. 4, 8, 16 M Cu2+, strongly inhibited the uptake of nitrogen, especially of NO3 -, and decreased the content of NO3 -, amino acids and proteins. Especially at 4 and 8 M Cu2+, NH4 + accumulated in the plants, suggesting that the conversion of NH4 - into amino acids was inhibited.  相似文献   

3.
In order to clarify the binding states of copper in microbial cells, copper biosorption from aqueous systems using the chemically treated Micrococcus luteus IAM 1056 cells (hot water-treated, diluted NaOH-treated, chloroform–methanol-treated, and chloroform–methanol/concentrated KOH-treated cells) was examined. The intact cells of M. luteus adsorbed 527 mol of copper per g cells, and its copper adsorption was very rapid and was affected by the solution pH. The chloroform–methanol/concentrated KOH-treated cells showed higher copper biosorption capacity than the intact and the other chemically treated cells. The electron paramagnetic resonance (EPR) parameters, g and |A |, of Cu(II) ion in microbial cells indicate that Cu(II) ion in the intact and all the chemically treated cells have coordination environments with nitrogen and oxygen as donor atoms, being similar to those of type II proteins. The parameter g also indicated that the coupling between Cu(II) ion and the cell materials in the CHCl3–MeOH/concentrated KOH-treated cells is rather more stable than those between Cu(II) ion and the cell materials in the other treated cells.  相似文献   

4.
Copper(II) ,-dicarboxylate complexes of general formulae, [Cu(O2C(CH2)nCO2)]·xH2O, [Cu(O2C(CH2)nCO2) (phen)2xH2O and [Cu(O2C(CH2)nCO2)(bipy)yxH2O (n=1–8; y=1, 2; phen = 1,10-phenanthroline; bipy = 2,2-bipyridine) were synthesised. These copper complexes, some related manganese(II) complexes and the metal-free ligands were screened in vitro for their ability to inhibit the growth of Candida albicans. Metal-free 1,10-phenanthroline and all of the copper(II) and manganese(II) phenanthroline complexes were potent growth inhibitors, with only one bipyridine complex, [Cu(O2C(CH2)CO2)(bipy)2]·2H2O, having moderate activity. The remaining substances were effectively inactive. Complexes which were active against C. albicans also proved effective against C. glabrata, C. tropicalis and C. kreusi with the manganese complexes retaining superior activity. For the phenanthroline complexes the active drug species is thought to be the dication [M(phen)2(H2O)n]2+ (M = Cu, Mn). Escherichia coli and Staphylococcus aureus were resistant to all of the metal complexes and also to metal-free 1,10-phenanthroline. Only the copper phenanthroline complexes showed intermediate activity against Pseudomonas aeruginosa.  相似文献   

5.
Kim HJ  Graham DW 《Biodegradation》2003,14(6):407-414
Transformation kinetics of trans- andcis-dichloroethylenes (DCE) by Methylosinus trichosporium OB3b wild type (WT)and PP319, a mutant that expresses soluble methane monooxygenase at copper levels upto 12 M Cu (sMMOC), were determined to assess theeffects of O2level and N2-fixation on degradationcapabilities. Two issues were examined: (1) the influence of O2level and nitrogen-limitation on DCE degradationkinetics and toxicity in both organisms, and (2) the relative utility of PP319 forcontaminant degradation in bioreactors. When both organisms were grown underhigh O2conditions (80% saturation in air), maximum transformation rates(Vmax) and apparent first-order rate constants(Vmax/KM) were lower compared with organisms grown under low O2conditions (10% saturation in air)regardless of nitrogen level. Further, Vmax values were near zero innitrogen-limited WT cultures when O2was high (as expected), whereas PP319 retainedmoderate Vmax levels even at high O2levels. In general, elevatedO2conditions reduced DCE degradation rates in OB3b, although the negative effectsof O2were less in PP319 than in the WT. Given that PP319 retained moderate DCEdegradation rates under most O2and copper conditions, the mutant appears to havesome utility for biodegradation applications.  相似文献   

6.
The preparation and crystal structures for three Cu(II) polynuclear, chain complexes with 2,3-bis(2-pyridyl)pyrazine (dpp) as bridging ligand are reported, [Cu(dpp)(H2O)2]n(NO3)2n·2n/3H2O (1), [Cu(dpp)(H2O)2]n(CF3SO3)2n (2), and [Cu(dpp)(H2O)2]n(BF4)2n·2nH2O (3). For the latter compound the crystal structure at four different temperatures have been studied. Variable-temperature magnetic susceptibility data and ESR measurements of 13 and of the related copper(II) chain [Cu(dpp)(H2O)2]n(ClO4)2n·2nH2O (4) (whose structure was previously reported) have been performed. Compounds 1 and 2 crystallize in the same trigonal space group, R c; 3 is orthorhombic, space group Pbca. Complexes 1 and 2 are built of linear dpp-bridged chains which extend along threefold screw axes. The copper atom has in each case an elongated octahedral geometry with pyrazine nitrogen atoms in axial positions. The prominent feature of the crystal packing is the supramolecular arrangement of six chains around a threefold inversion axis, creating channels housing the counter ions, and in the case of 1, also crystal water. In 3 the chain is zig–zag shaped and extends along a twofold screw axis. Counter ions and crystal water are situated in channels formed between four symmetry related chains. At room temperature (r.t.) the X-ray results show a copper ion with a compressed octahedral coordination geometry, pyrazine and pyridyl nitrogen atoms binding in equatorial and axial positions, respectively. The low temperature X-ray studies of 3 show significant changes in the copper coordination geometry, strongly suggesting that the apparent compressed geometry at r.t. is due to a dynamic Jahn–Teller distortion. The CuCu separations across the bridging dpp at r.t. are, 7.133(1) (1), 7.228(1) (2), 7.005(1) (3) and 7.002(2) Å (4). X-band ESR spectra of 1 and 2 exhibit the pattern of Cu(II) in elongated geometry (g>g>2.0), whereas those of 3 and 4 exhibit inverse (g>g>2.0) patterns with a shoulder in the perpendicular signal. Complexes 14 exhibit a Curie law behaviour with very weak intrachain antiferromagnetic coupling, the relevant magnetic parameters being J=−0.27 cm−1, g=2.11 for 1, J=−0.17 cm−1, g=2.09 for 2, J=−1.38 cm−1, g=2.15 for 3, and J=−1.36 cm−1, g=2.14 for 4 (the Hamiltonian being =−JSASB).  相似文献   

7.
Acutely lethal (24 h) exposure of adult rainbow trout (Oncorhynchus mykiss) to 4.9 mol copper·l-1 in fresh water (pH 7.9, [Ca2+]0.8 mEq·l-1) caused a rapid decline of plasma Na+ and Cl- and arterial O2 tension, and initially a pronounced tachycardia. The internal hypoxia probably resulted from histopathologies observed in the gills of fish exposed to copper, such as cell swelling, thickening and curling of the lamellae, and haematomas. Copper cannot therefore be considered purely as an ionoregulatory toxicant during acutely lethal conditions. Mortality during exposure to copper could not simply be explained by the plasma ionic dilution, nor by the internal hypoxia, since arterial O2 content remained relatively unchanged. Secondary to the ionoregulatory and respiratory disturbances were a number of deleterious physiological responses which included a massive haemoconcentration (haematocrit values as high as 60%) and a doubling of the mean arterial blood pressure. The time-course of these changes suggest that cardiac failure was the final cause of death. In this respect copper exposure resembles low pH exposure in freshwater trout (Milligan and Wood 1982). Copper and H+ appear to be similar in both the primary site of their toxic action (the gills) and the secondary physiological consequences which result from acutely lethal exposures. Furthermore, the acute toxicity syndrome observed may be common to many metals which cause ionoregulatory and/or respiratory problems in freshwater fish.Abbreviations C aO2 arterial oxygen content - FR water flow rate - Hb haemoglobin - Hct haematocrit - H m + net metabolic acid load - IU international unit - MABP mean arterial blood pressure - MCHC mean corpuscular haemoglobin content - MO2 rate of oxygen consumption - P aCO2 arterial carbon dioxide tension - P aO2 arterial oxygen partial pressure - T amm total ammonia (=NH3+NH 4 + ) - TCO2 total carbon dioxide - TOC total organic carbon - %Hb–O2 percentage of haemoglobin saturated with oxygen  相似文献   

8.
There was no direct effect of copper on the ontogeny or function of the heart of the brine shrimp Artemia franciscana in sea water (salinity= 36 mg·ml-1, 25°C). There was, however, an indirect effect as an increase in copper concentration resulted in a reduced growth rate. There was no difference between the critical O2 tensions of newly hatched (stage 0/1) nauplii of control and treated (<0.32 and 10.11 mol·l-1 copper, respectively) individuals. However by developmental stages 4–6, when both the heart and thoracic gills are in the process of differentiating, respiratory performance had improved (i.e. critical O2 tension decreased from 6.27±0.45 to 4.69±0.24 kPa) in control but not in copper-treated individuals. It is suggested that respiratory impairment of stages 4–6 individuals is unlikely to be related to differences in cardiac performance or cellular respiration. Instead it may be related to metal-related damage to newly differentiating gill tissue and/or by copper in some way compromising the normal ontogenic shift in haemoglobin O2 affinity. Copper-related respiratory impairment develops at a critical point in brine shrimp organogenesis when a good supply of O2 is essential for normal development and if compromised may reduce the ability of this species to survive copper exposure.Abbreviations BL body length - BW body weight - HR heart rate - HM heavy metals - SW sea water - P c critical oxygen tension  相似文献   

9.
The purification method of particulate methane monooxygenase (pMMO) from Methylosinus trichosporium OB3b was improved, and purified pMMO retained its activity with duroquinol as a reductant. n-Dodecyl-,d-maltoside was used for the solubilization of pMMO and Brij 58 was used for the purification for anion exchange chromatography. Compared to the original pMMO activity in the membrane fraction, 88% of the activity was now retained in the purified material. The purified pMMO monomer (94 kDa) contained only two copper atoms and did not contain iron. Both copper ions showed only a typical type II copper EPR signal with a superhyperfine structure at the g region, indicating that the type II copper ions play an important role as the active site of methane hydroxylation in pMMO.  相似文献   

10.
Highly purified, intact chloroplasts were prepared from pea (Pisum sativum L.) and spinach (Spinacia oleracea L.) following an identical procedure, and were used to investigate the cupric cation inhibition on the photosynthetic activity. In both species, copper inhibition showed a similar inhibitor concentration that decreases the enzyme activity by 50% (IC50≈ 1.8 µM) and did not depend on the internal or external phosphate (Pi) concentration, indicating that copper did not interact with the Pi translocator. Fluorescence analysis suggested that the presence of copper did not facilitate photoinhibition, because there were no changes in maximal fluorescence (Fm) nor in basal fluorescence (Fo) of copper‐treated samples. The electron transport through the photosystem II (PSII) was also not affected (operating efficiency of PSII— similar in all conditions). Yet, under Cu2+ stress, the proportion of open PSII reaction centers was dramatically decreased, and the first quinone acceptor (QA) reoxidation was fully inhibited, as demonstrated by the constant photochemical quenching (qP) along experiment time. The quantum yield of PSII electron transport (ΦPSII) was also clearly affected by copper, and therefore reduced the photochemistry efficiency. Manganese, when added simultaneously with copper, delayed the inhibition, as measured by oxygen evolution and chlorophyll fluorescence, but neither reversed the copper effect when added to copper‐inhibited plastids, nor prevented the inhibition of the Hill activity of isolated copper‐treated thylakoids. Our results suggest that manganese competed with copper to penetrate the chloroplast envelope. This competition seems to be specific because other divalent cations e.g. magnesium and calcium, did not interfere with the copper action in intact chloroplasts. All results do suggest that, under these conditions, the stroma proteins, such as the Calvin–Benson cycle enzymes or others are the most probable first target for the Cu2+ action, resulting in the total inhibition of chloroplast photosynthesis and in the consequent unbalanced rate of production and consumption of the reducing power.  相似文献   

11.
The effect of high nutrient levels of copper on the low-molecular-weight copper-proteins of leaves from plants of two cultivars of Pisum sativum L., with different sensitivity to copper, was investigated. Gel-filtration chromatography of leaf extracts from Cu-tolerant and Cu-sensitive plants grown with 1 M Cu(II), showed the presence of only two copper peaks (I and II), but growth of plants with 240 M Cu(II) induced two additional copper fractions (III and IV). Fractions II and III were purified by solvent extraction, gel-filtration and ion-exchange chromatography, and their molecular weights, subunit sizes, absorption spectra, metalprotein stoichiometry and amino-acid contents were determined. Fraction II was a polypeptide of Mr 15000 composed of a single chain. The purification of fraction III produced a copper-containing fraction (III-1) of Mr 3700, and a copper-protein (III-2) with an Mr, by sodium dodecyl sulfate-urea-polyacrylamide gel electrophoresis, of 66000. The metal contents of fractions III-1 and III-2 were higher in Cu-tolerant than in Cu-sensitive plants. On the basis of amino-acid analyses, fraction III-1 appeared to be complexes of Cu(II)-poly-isoleucine and Cu(II)-poly-leucine. The results rule out the existence, in pea leaves, of any protein similar to either animal metallothioneins or to any of the low-molecularweight metal-binding proteins or peptides described in other plants and reported to be involved in metal tolerance. In the mechanism of copper tolerance at the leaf level, fractions III-1 (Mr 3700), III-2 (Mr 66000), and IV (Mr 2000) appear to have a role, fraction IV being specifically induced in the tolerant cultivar by Cu(II). Fractions III-1 and III-2 could participate in a different mechanism, adaptive in character, involving an enhanced capacity to bind copper in Cu-tolerant plants.Abbreviations DEAE diethylaminoethyl - Mr relative molecular mass - SDS sodium dodecyl sulfate - PAGE polyacrylamide-gel electrophoresis J.M. Palma was the recipient of a research fellowship from the Caja General de Ahorros y Monte de Piedad de Granada and CSIC. We are grateful to Dr. J. Moreno-Carretero, R + D Department, UNIASA, Granada, for conducting the amino-acid analyses. This work was supported by grant 603/275 from CAICYT-CSIC (Spain).  相似文献   

12.
A specific regulatory effect of copper ions on the microbiological synthesis of l-glutamate from acetate was found. The minimal concentration of copper ions necessary for the maximal production of l-glutamate was about 0.025 µg/ml at which the yield of l-glutamate was four times greater than that in the absence of copper ions. This effect of copper was demonstrated only when acetate was the substrate; it was not observed when the substrate was glucose ethanol, lactate or n-paraffin.

The physiological features of the l-glutamate production from acetate were examined in the presence or absence of copper ions. The most striking features of the culture without added copper ions were the increase in QO2 and NADH oxidase and the marked reduction of succinate oxidase accompanied with the reduction of l-glutamate formation. In addition, the regulation of l-glutamate synthesis by copper ions proved to have no relation to the wellknown regulatory factor, cell permeability. These facts suggest that the l-glutamate biosynthesis from acetate is regulated through unknown factors related to the respiratory activities.  相似文献   

13.
The crude extracellular cellulase from Clostridium thermocellum was oxidatively inactivated by air and inhibited by sulfhydryl reagents. Activity-loss was prevented and reversed by the addition of a high concentration (10 mM) dithiothreitol (DDT) at zero time and up to 24 h respectively. In the presence of a low concentration (0.4 mM) of DTT, the enzyme was more rapidly inactivated than in air alone. This was probably due to autoxidation of the low DTT concentration to H2O2 as shown by its prevention by a high DTT concentration, exclusion of air, or catalase; and by the oxidative inactivation of the enzyme by H2O2. The inactivation by H2O2 could be prevented by a high concentration of DTT but not by air exclusion. EDTA protected the enzyme from inactivation in air by a low concentration of DTT or by H2O2. This is presumably due to the role of metals in oxidation of SH groups. Furthermore, copper (5 M) also caused inactivation and this was prevented by the presence of a high DTT concentration. Even in the protective atmosphere of a high DTT concentration, cellulase was inactivated by certain apolar chelating agents such as o-phenanthroline and -1-dipyridyl, such inactivation being preventable by the prior incubation of the chelator with a mixture of Fe2+ and Fe3+. These data suggest that the clostridial cellulase, unlike the enzyme from aerobic fungi, contains essential sulfhydryl groups and is stimulated by iron. The endo--glucanase component of the cellulase complex was not susceptible to oxidative inactivation.Abbreviations DTT dithiothreitol - CMC carboxymethylcellulose - DTNB 5,5-dithiobis-(2-nitrobenzoic acid) - NEM N-ethylmaleimide - p-CMB p-chloromercuribenzoic acid  相似文献   

14.
Alkaline proteases are one of the most important group of enzymes that are indispensable in a number of different industrial sectors. In this work, the effect of copper ions (Cu2+) was investigated for improving the thermostability and hydrolytic performance of Bacillus clausii GMBE 42 alkaline protease at different temperatures (45–65°C). Maximal residual activity was observed in the presence of 5 mM CuCl2. The enzyme was thermoinactivated according to first‐order kinetics. A stabilization effect caused by copper ions was the result of a decrease in both autolysis and thermoinactivation rates. Thermodynamic analysis of the thermoinactivation process showed that Ea,i, ΔGi, and ΔHi values of the enzyme were higher in the presence of copper ions, but there was no measurable change in ΔSi values. These results show the thermostabilizing potential of copper ions on the enzyme. Lower Km values and higher kcat and kcat/Km values were obtained in the presence of copper ions, which is an indication of the nonessential activation of the enzyme by copper ions. Thermodynamic analysis of casein hydrolysis showed that in presence of copper ions Ea, ΔG, ΔH, , and values of enzyme were lower, but there was no change in ΔS values. This is so far the first study that investigates the effect of cations on the basic catalytic and thermodynamic properties of an alkaline serine protease, which may be used to remove protein wastes from various industries such as food and leather processing.  相似文献   

15.
Copper(II) coordination complexes of the neutral ligand, tris(3-tert-butyl-5-methyl-1-pyrazolyl)methane (L2′), i.e. the copper(II) nitrato complexes [Cu(L2′)(NO3)][Cu(NO3)4]1/2 (1) and [Cu(L2′)(NO3)](ClO4) (2) and the copper(II) chloro complex [Cu(L2′)(Cl)](ClO4) (3), and its anionic borate analogue, hydrotris(3-tert-butyl-5-methyl-1-pyrazolyl)borate (L2), i.e. the copper(II) nitrato complex [Cu(L2)(NO3)] (4) and the copper(II) chloro complex [Cu(L2)(Cl)] (5), were synthesized in order to investigate the influence of ligand framework and charge on their structure and physicochemical properties. While X-ray crystallography did not show any definitive trends in terms of copper(II) atom geometry in four-coordinate copper(II) chloro complexes 3 and 5, different structural trends were observed in five-coordinate copper(II) nitrato complexes 1, 2, and 4. These complexes were also characterized by spectroscopic techniques, namely, UV-Vis, ESR, IR/far-IR, and X-ray absorption spectroscopy.  相似文献   

16.
Menadione produces DNA strand breaks (DNA sb) in cultured Chinese hamster fibroblasts which are, to a great extent, mediated by OH radical. A reasonable hypothesis is that H2O2, a product of menadione metabolism, reacts with nuclear iron and produces OH radicalin situ. Consistent with that, 1,10-phenanthroline (PHEN) prevents menadione-induced DNA sb at low (<200 M) concentrations of the chelator. However, at higher PHEN concentrations, the effect is reversed and an enhancement of DNA sb is observed. The PHEN-induced enhancement of DNA sb becomes more evident at high (>60 M) menadione concentrations and is strongly prevented by neocuproine (NEO), an efficient copper chelator. However, NEO offers only a slight protection against DNA sb caused by menadione alone. The results are consistent with the following events: (i) the products of menadione metabolism causes copper ion release from some cellular compartment; (ii) in the presence of PHEN, a Cu(PHEN)2 complex is formed; (iii) the Cu(PHEN)2 complex is known to be very clastogenic, inducing DNA damage in a reducing environment.Evidence is also presented that menadione metabolism causes an increase in intracellular chelatable iron: in the presence of a constant 2,2-dipyridyl concentration, the DNA sb produced by increasing concentrations of menadione become progressively less susceptible to inhibition by the chelator.Therefore the DNA damage originated from menadione metabolism seems to be caused by two conjugated and synergistic events, viz., the production of reactive oxygen species and the release of copper and iron from a cellular storage site into a free form pool, capable of catalyzing DNA damaging reactions.Abbreviations sb strand breaks - PHEN 1,10-phenanthroline - PBS phosphate-buffered saline (8.1 mM Na2HPO4, 1.47 mM KH2PO4, 1.68 mM KCl, 137 mM NaCl, pH 7.0) - HP Hydrogen Peroxide - Md Menadione - NEO Neocuproine  相似文献   

17.
EDTA-enhanced phytoremediation of copper contaminated soil was evaluated. Up to 740 g g–1 of Na2H2 EDTA in solution was added to repacked soil columns, and intact cores of a sandy loam of volcanic origin, that was growing Agrostis tenuis. The soil contained up to 400 g g–1 of copper due to a history of fungicide spraying. EDTA application increased the herbage copper concentration of the grass growing in repacked soil from 30 to 300 g g–1, but the same application to an intact core only brought about an increase from 10 to 60 g g–1. More copper accumulated in the herbage when the EDTA was applied in numerous small doses than in just one or two larger amounts. Calculation of the concentration of copper in the water taken up by the grass revealed this to be two orders of magnitude lower than that in the soil solution. As a result of the EDTA applications, about 100 times more copper was leached than was taken up by the herbage. This means that a strategy for managing leaching losses needs to be part of any plan for EDTA-enhanced phytoremediation.  相似文献   

18.
Summary Immobilised Saccharomyces cerevisiae in batch reactors effectively removed copper from solution with a binding equilibrium of 70 % being attained within 20 minutes of contact. Maximum uptake was between pH 3 to 5 (Vmax = 24.1 mol/g) and was substantially reduced at pH 2. Bound copper was readily recovered by addition of 1.0 M HCl ( % v/v). In adsorption-desorption studies metal removal and recovery was high, and uptake was increased with repeated use. Electron microscopy confirmed that no morphological changes occur to the cells during repeated adsorption-desorption.  相似文献   

19.
Longnecker  Nancy  Slater  Jenny  Robson  Alan 《Plant and Soil》1993,(1):457-459
Copper deficiency can delay flowering and plant maturity. However, the effect of copper deficiency on the rate of leaf emergence has not been quantified. We tested the hypothesis that low copper supply decreases the rate of leaf emergence of wheat (Triticum aestivum L. cv Gamenya). Copper foliar sprays are commonly applied to wheat. We examined the response of the rate of leaf emergence to a foliar application of copper sulphate.Wheat was grown in root cooling tanks (20°C) in the glasshouse. Soil copper treatments were applied as solutions of CuSO4.5H2O at three rates: Cu0=no added Cu, Cu400=400 g Cu per 3 kg pot, and Cu1600=1600 g Cu per pot. An additional treatment of a foliar spray of CuSO4.5H2O (0.4 mg Cu per plant) was applied to Cu0 and Cu400 plants 45 days after sowing (5.5 leaves on the main stem). Leaves on the main stem were counted and the rate of leaf emergence was estimated from the regression of number of emerged leaves against thermal time (base 0°C). The phyllochron was calculated as 1/rate of emergence.Leaves on Cu0 and Cu400 plants took longer to emerge than on Cu1600 plants, with the phyllochron of Cu1600 plants being 130 compared to 137 for the Cu400 plants and 158 for the Cu0 plants. The foliar application of CuSO4 at the 5–6 leaf stage resulted in a decrease in the phyllochron of the Cu0 plants to 127, but no change in that of the Cu400 plants.  相似文献   

20.
A sensitive and precise spectrophotometric method has been developed for the determination of copper(I) in bacterial leach liquors produced by the action of Thiobacillus ferrooxidans and T. thiooxidans on copper ores. In this method bicinchoninic acid (BCA) has been used as the chromogenic reagent which produces a stable purple complex with Cu(I) which was found to obey Beer's Law and with max at 560 nm. The coloured complex has a molar extinction coefficient () value of 6.6 × 103 l mol–1 cm–1; specific absorptivity () value of 0.104 ml–1 g cm–1 and the Sandell sensitivity (S) value was 0.0096 g cm2. Optimal conditions for development of coloration/sensitivity were determined. Interferences due to cations and anions were investigated and various masking agents for alleviating their inhibition were studied. The method has been found very useful in determining ratios of Cu(I) to Cu(II) in bacterial leach liquors and should play a significant role in determining the reaction mechanisms of biological leaching and for environmental monitoring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号