首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondrial extracts of dog, cat, rat and mouse liver contain two forms of alanine-glyoxylate aminotransferase (EC 2.6.1.44): one, designated isoenzyme 1, has mol.wt. approx. 80 000 and predominates in dog and cat liver; the other, designated isoenzyme 2, has mol.wt. approx. 175 000 and predominates in rat and mouse liver. In rat and mouse liver, isoenzyme 1 activity was increased by the injection in vivo of glucagon, but not isoenzyme 2 activity. Isoenzyme 1 was purified and characterized from liver mitochondrial extracts of the four species. Both rat and mouse enzyme preparations catalysed transamination between a number of L-amino acids and glyoxylate, and with L-alanine as amino donor the effective amino acceptors were glyoxylate, phenylpyruvate and hydroxypyruvate. In contrast, both dog and cat enzyme preparations were specific for L-alanine and L-serine with glyoxylate, and used glyoxylate and hydroxypyruvate as effective amino acceptors with L-alanine. Evidence that isoenzyme 1 is identical with serine-pyruvate aminotransferase (EC 2.6.1.51) was obtained. Isoenzyme 2 was partially purified from mitochondrial extracts of rat and mouse liver. Both enzyme preparations were specific for L-alanine and glyoxylate. On the basis of physical properties and substrate specificity, it was concluded that isoenzyme 2 is a separate enzyme. Some other properties of isoenzymes 1 and 2 are described.  相似文献   

2.
The first step of the utilization of the aromatic amino acids as sole nitrogen sources by Brevibacterium linens strain 47 was found to be a transamination. The deaminated metabolites of the amino acids were detected in culture supernatants, and the enzyme activity was identified in cell free extracts. The cells contained increased aromatic amino acid aminotransferase activities on growth on the aromatic amino acids as sole nitrogen sources. Two aromatic aminotransferases (AT-I and AT-II) were separated upon diethylaminoethyl-Trisacryl M column chromatography of cell free extracts. Only AT-I was responsible for the increased level of aromatic amino acid aminotransferase activity of induced cells. The results suggested a catabolic role of AT-I in vivo.Abbreviations DNP dinitrophenyl - HPLC high performance liquid chromatography - PLP pyridoxal-5-phosphate  相似文献   

3.
The aromatic amino acid aminotransferase was purified to a homogenous state from a gramicidin S-producing strain of Bacillus brevis. The enzyme shows a molecular weight of about 71,000 on gel-filtration. The subunit molecular weight is about 35,000 as determined by sodium dodecyl sulfate gel electrophoresis, indicating that the enzyme is a dimer. The enzyme exhibits absorption maxima near 425 and 330 nm at neutral pH. One mole of pyridoxal phosphate is bound per subunit. The enzyme has amino donor specificity for aromatic amino acids, L-phenylalanine, L-tyrosine, and L-tryptophan, and utilizes 2-oxoglutarate as the amino acceptor. This enzyme activity was separated from both the aspartate aminotransferase activity and the branched chain amino acid aminotransferase activity by chromatography on DEAE-Sephadex.  相似文献   

4.
An aromatic amino acid aminotransferase (aromAT) was purified over 33 000-fold from the shoots and primary leaves of mung beans (Vigna radiata L. Wilczek). The enzyme was purified by ammonium sulfate precipitation, gel filtration and anion exchange followed by fast protein liquid chromatography using Mono Q and Phenylsuperose. The relative amino transferase activities using the most active amino acid substrates were: tryptophan 100, tyrosine 83 and phenylalanine 75, withK m values of 0.095, 0.08 and 0.07 mM, respectively. The enzyme was able to use 2-oxoglutarate, oxaloacetate and pyruvate as oxo acid substrates at relative activities of 100, 128 and 116 andK m values of 0.65, 0.25 and 0.24 mM, respectively. In addition to the aromatic amino acids the enzyme was able to transaminate alanine, arginine, aspartate, leucine and lysine to a lesser extent. The reverse reactions between glutamate and the oxo acids indolepyruvate and hydroxyphenylpyruvate occurred at 30 and 40% of the forward reactions of tryptophan and tyrosine, withK m, values of 0.1 and 0.8 mM, respectively. The enzyme was not inhibited by indoleacetic acid, although -naphthaleneacetic acid did inhibit slightly. Addition of the cofactor pyridoxal phosphate only slightly increased the activity of the purified enzyme. The aromAT had a molecular weight of 55–59 kDa. The possible role of the aromAT in the biosynthesis of indoleacetic acid is discussed.Abbreviations AAT aspartate aminotransferase - aromAT aromatic amino acid aminotransferase - FPLC fast protein liquid chromatography - IPyA indolepyruvate - OHPhPy hydroxyphenylpyruvate - PLP pyridoxal phosphate - TAT tryptophan aminotransferase  相似文献   

5.
Mutants of Bacillus subtilis constitutive for L-leucine dehydrogenase synthesis were selected. Using these mutants we could determine two functional roles for the L-leucine dehydrogenase. This enzyme liberates ammonium ions from branched chain amino acids when supplied as the sole nitrogen source. Another function is to synthesize from L-isoleucine, L-leucine, and L-valine the branched chain -keto acids which are precursors of branched chain fatty acid biosynthesis. These results together with the inducibility of the enzyme suggest that the L-leucine dehydrogenase has primarily a catabolic rather than an anabolic function in the metabolism of Bacillus subtilis.  相似文献   

6.
Ferredoxin was purified to apparent homogeneity from cell extracts of the homoacetogen Peptostreptococcus productus (strain Marburg). The yield was 70 g ferredoxin per g wet cells of P. productus. The UV-vis spectrum exhibited characteristics of a typical clostridial ferredoxin spectrum with a molar extinction coefficient 385 of 30000 M-1 cm-1 and an A385/A280 ratio of 0.76. The molecular weight Mr was near 5700 as calculated from the amino acid composition. The protein contained per mol 9.9 mol iron, 8.2 mol acid-labile sulfide, and near 7 mol cysteine indicating the presence of two 4 Fe/4 S clusters. The redox potential was determined to be-410 mV. The purified ferredoxin was reduced with carbon monoxide by the carbon monoxide dehydrogenase from crude extracts and by the partially enriched enzyme of P. productus.  相似文献   

7.
After glucagon injection, rats showed virtually identical percentage increases in hepatic histidine-pyruvate aminotransferase and serine-pyruvate aminotransferase activities, both in the mitochondria and in the cytosol. Histidine-pyruvate aminotransferase isoenzyme 1, with pI8.0, was purified to homogeneity from the mitochondrial fraction of liver from glucagon-injected rats. The purified enzyme catalysed transamination between a number of amino acids and pyruvate or phenylpyruvate. For transamination with pyruvate, the activity with serine reached a constant ratio to that with histidine during purification, which was unchanged by a variety of treatments of the purified enzyme. Serine was found to act as a competitive inhibitor of histidine transamination, and histidine of serine transamination. These results suggest that histidine-pyruvate amino-transferase isoenzymes 1 is identical with serine-pyruvate aminotransferase. The enzyme is probably composed of two identical subunits with mol. wt. approx. 38000. The absorbance maximum at 410 nm and the inhibition by carbonyl reagents strongly indicate the presence of pyridoxal phosphate.  相似文献   

8.
1. Histidine-pyruvate aminotransferase (isoenzyme 1) was purified to homogeneity from the mitochondrial and supernatant fractions of rat liver, as judged by polyacrylamide-gel electrophoresis and isolectric focusing. Both enzyme preparations were remarkably similar in physical and enzymic properties. Isoenzyme 1 had pI8.0 and a pH optimum of 9.0. The enzyme was active with pyruvate as amino acceptor but not with 2-oxoglutarate, and utilized various aromatic amino acids as amino donors in the following order of activity: phenylalanine greater than tyrosine greater than histidine. Very little activity was found with tryptophan and 5-hydroxytryptophan. The apparent Km values were about 2.6mM for histidine and 2.7 mM for phenylalanine. Km values for pyruvate were about 5.2mM with phenylalanine as amino donor and 1.1mM with histidine. The aminotransferase activity of the enzyme towards phenylalanine was inhibited by the addition of histidine. The mol.wt. determined by gel filtration and sucrose-density-gradient centrifugation was approx. 70000. The mitochondrial and supernatant isoenzyme 1 activities increased approximately 25-fold and 3.2-fold respectively in rats repeatedly injected with glucagon for 2 days. 2. An additional histidine-pyruvate aminotransferase (isoenzyme 2) was partially purified from both the mitochondrial and supernatant fractions of rat liver. Nearly identical properties were observed with both preparations. Isoenzyme 2 had pI5.2 and a pH optimum of 9.3. The enzyme was specific for pyruvate and did not function with 2-oxoglutarate. The order of effectiveness of amino donors was tyrosine = phenylalanine greater than histidine greater than tryptophan greater than 5-hydroxytryptophan. The apparent Km values for histidine and phenylalanine were about 0.51 and 1.8 mM respectively. Km values for pyruvate were about 3.5mM with phenylalanine and 4.7mM with histidine as amino donors. Histidine inhibited phenylalanine aminotransferase activity of the enzyme. Gel filtration and sucrose-density-gradient centrifugation yielded a mol.wt. of approx. 90000. Neither the mitochondrial nor the supernatant isoenzyme 2 activity was elevated by glucagon injection.  相似文献   

9.
Tryptophan aminotransferase was purified from rat brain extracts. The purified enzyme had an isoelectric point at pH 6.2 and a pH optimum near 8.0. On electrophoresis the enzyme migrated to the anode. The enzyme was active with oxaloacetate or 2-oxoglutarate as amino acceptor but not with pyruvate, and utilized various L-amino acids as amino donors. With 2-oxoglutarate, the order of effectiveness of the L-amino acids was aspartate > 5-hydroxytryptophan > tryptophan > tyrosine > phenylalanine. Aminotransferase activity of the enzyme towards tryptophan was inhibited by L-glutamate. Sucrose density gradient centrifugation gave a molecular weight of approx. 55,000. The enzyme was present in both the cytosol and synaptosomal cytosol, but not in the mitochondria. The isoelectric focusing profile of tryptophan: oxaloacetate aminotransferase activity was identical with that of L-aspartate: 2-oxoglutarate aminotransferase (EC 2.6.1.1) activity, with both subcellular fractions. On the basis of these data, it is suggested that the enzyme is identical with the cytosol aspartate: 2-oxoglutarate aminotransferase.  相似文献   

10.
L-Kynurenine aminotransferase [L-kynurenine:2-oxoglutarate aminotransferase (cyclizing), EC 2.6.1.7] has been purified to homogeneity and crystallized from cell-free extracts of a yeast, Hansenula schneggii, grown in a medium containing L-tryptophan as an inducer. The enzyme has a molecular weight of about 100,000 and consists of two subunits identical in molecular weight (52,000). The enzyme exhibits absorption maxima at 280, 335, and 430 nm, and contains 2 mol of pyridoxal 5'-phosphate per mol of enzyme. The enzyme-bound pyridoxal 5'-phosphate shows negative circular dichroic extrema, in contrast with other pyridoxal 5'-phosphate acting on L-amino acids. In addition to L-kynurenine and alpha-ketoglutarate, which are the most preferred substrates, a large number of L-amino acids and alpha-keto acids can serve as substrates; the extremely broad substrate specificity is the most characteristic feature of this yeast enzyme. The enzyme activity is significantly affected by both carbonyl and sulfhydryl reagents. Certain dicarboxylic acids such as adipate and pimelate act as competitive inhibitors. Addition of various substrate amino acids to the culture medium results in the inductive formation of aminotransferases which are immunochemically indistinguishable from L-kynurenine aminotransferase.  相似文献   

11.
Four strains of the green sulfur bacterium Chlorobium were studied in respect to nitrogen nutrition and nitrogen fixation. All strains grew on ammonia, N2, or glutamine as sole nitrogen sources; certain strains also grew on other amino acids. Acetylene-reducing activity was detectable in all strains grown on N2 or on amino acids (except for glutamine). In N2 grown Chlorobium thiosulfatophilum strain 8327 1 mM ammonia served to switch-off nitrogenase activity, but the effect of ammonia was much less dramatic in glutamate or limiting ammonia grown cells. The glutamine synthetase inhibitor methionine sulfoximine inhibited ammonia switch-off in all but one strain. Cell extracts of glutamate grown strain 8327 reduced acetylene and required Mg2+ and dithionite, but not Mn2+, for activity. Partially purified preparations of Rhodospirillum rubrum nitrogenase reductase (iron protein) activating enzyme slightly stimulated acetylene reduction in extracts of strain 8327, but no evidence for an indigenous Chlorobium activating enzyme was obtained. The results suggest that certain Chlorobium strains are fairly versatile in their nitrogen nutrition and that at least in vivo, nitrogenase activity in green bacteria is controlled by ammonia in a fashion similar to that described in nonsulfur purple bacteria and in Chromatium.Non-common abbreviations MSX Methionine sulfoximine - MOPS 3-(N-morpholino) propane sulfonic acid This paper is dedicated to Professor Norbert Pfennig on the occasion of his 60th birthday  相似文献   

12.
Alanine: glyoxylate aminotransferase (EC 2.6.1.44), which is involved in the glyoxylate pathway of glycine and serine biosynthesis from tricarboxylic acid-cycle intermediates in Saccharomyces cerevisiae, was highly purified and characterized. The enzyme had Mr about 80 000, with two identical subunits. It was highly specific for L-alanine and glyoxylate and contained pyridoxal 5'-phosphate as cofactor. The apparent Km values were 2.1 mM and 0.7 mM for L-alanine and glyoxylate respectively. The activity was low (10 nmol/min per mg of protein) with glucose as sole carbon source, but was remarkably high with ethanol or acetate as carbon source (930 and 430 nmol/min per mg respectively). The transamination of glyoxylate is mainly catalysed by this enzyme in ethanol-grown cells. When glucose-grown cells were incubated in medium containing ethanol as sole carbon source, the activity markedly increased, and the increase was completely blocked by cycloheximide, suggesting that the enzyme is synthesized de novo during the incubation period. Similarity in the amino acid composition was observed, but immunological cross-reactivity was not observed among alanine: glyoxylate aminotransferases from yeast and vertebrate liver.  相似文献   

13.
Summary Several L-amino acids (tyrosine, glutamate, methionine, tryptophan, and phenylalanine) and penicillamine destabilized purified tyrosine aminotransferase by removing enzyme-bound pyridoxal 5-phosphate. The destabilization was measured as a progressive loss of enzyme activity in samples taken at intervals from a primary mixture that was incubated at 37°C. Each destabilizing amino acid either served as a substrate for this enzyme or was a product of transamination. In contrast, L-cysteine destabilized the enzyme only if liver homogenate was added, which generated polysulfide by desulfuration. Cysteine complexed free pyridoxal-5-phosphate but did not remove it from the enzyme. Other amino acids did not destabilize tyrosine aminotransferase at the concentrations tested.Abbreviations TyrAT tyrosine aminotransferase (E.C. 2.6.1.5) - PLP pyridoxal-5-phosphate  相似文献   

14.
-Isopropylmalate synthase (EC 4.1.3.12) is present in extracts of Bacteroides fragilis, Clostridium thermoaceticum, Clostridium formicoacetium, Clostridium pasteurianum, and Clostridium kluyveri with specific activities (mol -isopropylmalate formed per min and g protein) of 8.6, 8.9, 2.4, 1.9, and 0.3, respectively. The product -isopropylmalate was identified by gas chromatography combined with mass spectroscopy. The presence of 5 mM leucine in the growth medium represses the synthesis of -isopropylmalate synthase in C. thermoaceticum by 40 and 70 %. The enzyme from C. pasteurianum was partially purified to a specific activity of 1413. All studied enzyme properties are similar to those of the enzymes from aerobic bacteria. It is suggested that in these anaerobic bacteria the -isopropylmalate pathway is present in addition to the pathway via the ferrodoxin-dependent, reductive carboxylation of branched chain fatty acids.Abbreviations used -KIV -Ketoisovalerate - -IPM -Isopropylmalate - CoA Coenzyme A  相似文献   

15.
Glutamine synthetase (EC 6.3.1.2) has been purified from a collagenolytic Vibrio alginolyticus strain. The apparent molecular weight of the glutamine synthetase subunit was approximately 62,000. This indicates a particle weight for the undissociated enzyme of 744,000, assuming the enzyme is the typical dodecamer. The glutamine synthetase enzyme had a sedimentation coefficient of 25.9 S and seems to be regulated by a denylylation and deadenylylation. The pH profiles assayed by the -glutamyltransferase method were similar for NH4-shocked and unshocked cell extracts and isoactivity point was not obtained from these eurves. The optimum pH for purified and crude cell extracts was 7.9. Cell-free glutamine synthetase was inhibited by some amino acids and AMP. The transferase activity of glutamine synthetase from mid-exponential phase cells varied greatly depending on the sources of nitrogen or carbon in the growth medium. Glutamine synthetase level was regulated by nitrogen catabolite repression by (NH4)2SO4 and glutamine, but cells grown, in the presence of proline, leucine, isoleucine, tryptophan, histidine, glutamic acid, glycine and arginine had enhanced levels of transferase activity. Glutamine synthetase was not subject to glucose, sucrose, fructose, glycerol or maltose catabolite repression and these sugars had the opposite effect and markedly enhanced glutamine synthetase activity.Abbreviations GS glutamine synthetase - SMM succinate minimal medium - ASMM ammonium/succinate minimal medium - GT -glutamyl transferase - SVP snake venom phosphodiesterase  相似文献   

16.
Summary It is reported that the enzyme activity for oxydative decarboxylation of the -keto acis derived from the branched chain amino acids valine, leucine and isoleucine in peripheral blood is located in the lymphocytes. The equation for the relationship of enzyme activity for these reactions and the relative lymphocyte count of the leukocyte suspension is given. Thus the possibility of faulty interpretation can be reduced. Further evidence for the existence of different oxidase proteins for the catabolism of the three branched chain -keto acids is given.This investigation was supported by the Deutsche Forschungsgemeinschaft and by the Fonds der Chemie (Verband der Chemischen Industrie).U.L. is recipient of a stipend from the Deutsche Forschungsgemeinschaft.  相似文献   

17.
Pyruvate (glyoxylate) aminotransferase from rat liver peroxisomes was highly purified and characterized. The enzyme preparation has a mol.wt. of approx. 80,000 with two identical subunits, and isoelectric point of 8.0 and a pH optimum between 8.0 and 8.5. The enzyme catalysed transamination between a number of L-amino acids and pyruvate or glyoxylate. The effective amino acceptors were pyruvate, phenylpyruvate and glyoxylate with serine, and glyoxylate and phenylpyruvate with alanine as amino donor. These properties and kinetic parameters of the enzyme are remarkably similar to those previously described for mitochondrial alanine-glyoxylate aminotransferase isoenzyme 1 from glucagon-injected rat liver [Noguchi, Okuno, Takada, Minatogawa, Okai & Kido (1978, Biochem. J. 169, 113-122].  相似文献   

18.
1. A procedure is described for purifying the enzyme L-alanine:4,5-dioxovaleric acid aminotransferase (DOVA transaminase) from chicken liver. The enzyme catalyzes a transamination reaction between L-alanine and 4,5-dioxovaleric acid (DOVA), yielding delta-aminolevulinic acid (ALA). 2. In cell fractionation studies, DOVA transaminase activities were detected in mitochondria and in the post-mitochondrial supernatant fraction from liver homogenates. 3. For the mitochondrial enzyme, any of most L-amino acids could serve as a source for the amino group transferred to DOVA, but L-alanine appeared the preferred substrate. At pH 7.0, the enzyme had an apparent Km of 60 microM for DOVA and of 400 microM for L-alanine. 4. The enzyme was purified from disrupted mitoplasts in three steps: chromatography on DEAE-Sephacel, gel filtration through Sephadex G-150, and chromatography on hydroxyapatite. The yield was approx. 100 micrograms of enzyme protein per 10 g wet wt of liver. 5. The purified enzyme had a subunit mol. wt of 63,000 as determined by gel electrophoresis under denaturing conditions. 6. The activity of DOVA transaminase was also measured in embryonic chicken liver, and based on activity, the enzyme's capacity to produce ALA was significantly greater than that of ALA synthase. Unlike ALA synthase, however, DOVA transaminase activity did not increase in liver mitochondria of chicken embryos exposed for 18 hr to two potent porphyrogenic agents.  相似文献   

19.
  • 1.1. An aminopeptidase from human urine, which hydrolyses dipeptides and β-naphthylamides of neutral and basic amino acids and which converts the peptides lysylbradykinin and methionyllysyl-bradykinin into bradykinin, was highly purified by a four-step procedure.
  • 2.2. The enzyme (mol. wt 100,000) has several similarities with kinin-converting aminopeptidases found in human serum and liver, and is inhibited by 1,10-phenanthroline and puromycin.
  相似文献   

20.
The 7-keto-8-aminopelargonic acid (KAPA) synthetase activities of cell-free extracts from various bacteria were investigated. The experiments on the substrate specificity of KAPA synthetase, using crude cell-free extracts from bacteria having high enzyme activity, showed that l-serine and pyruvic acid could replace l-alanine, but that, when the enzyme was partially purified, these compounds were not effective. Many kinds of amino acids such as l-cysteine, l-serine, d-alanine, glycine, d-histidine, and l-histidine, inhibited the enzyme activity. This inhibition was found to be competitive with l-alanine. Pyridoxal 5′-phosphate, which is a cofactor of the enzyme, also inhibited the enzyme activity at high concentrations. The repression of KAPA synthetase by biotin occurred in Bacillus subtilis and B. sphaericus but not in Micrococcus roseus and Pseudomonas fluorescens, even at a concentration of 1000 mµg per ml of biotin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号