首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The emerging structural information about allosteric kinase complexes and the growing number of allosteric inhibitors call for a systematic strategy to delineate and classify mechanisms of allosteric regulation and long-range communication that control kinase activity. In this work, we have investigated mechanistic aspects of long-range communications in ABL and EGFR kinases based on the results of multiscale simulations of regulatory complexes and computational modeling of signal propagation in proteins. These approaches have been systematically employed to elucidate organizing molecular principles of allosteric signaling in the ABL and EGFR multi-domain regulatory complexes and analyze allosteric signatures of the gate-keeper cancer mutations. We have presented evidence that mechanisms of allosteric activation may have universally evolved in the ABL and EGFR regulatory complexes as a product of a functional cross-talk between the organizing αF-helix and conformationally adaptive αI-helix and αC-helix. These structural elements form a dynamic network of efficiently communicated clusters that may control the long-range interdomain coupling and allosteric activation. The results of this study have unveiled a unifying effect of the gate-keeper cancer mutations as catalysts of kinase activation, leading to the enhanced long-range communication among allosterically coupled segments and stabilization of the active kinase form. The results of this study can reconcile recent experimental studies of allosteric inhibition and long-range cooperativity between binding sites in protein kinases. The presented study offers a novel molecular insight into mechanistic aspects of allosteric kinase signaling and provides a quantitative picture of activation mechanisms in protein kinases at the atomic level.  相似文献   

2.
Dixit A  Verkhivker GM 《PloS one》2011,6(10):e26071
The growing interest in quantifying the molecular basis of protein kinase activation and allosteric regulation by cancer mutations has fueled computational studies of allosteric signaling in protein kinases. In the present study, we combined computer simulations and the energy landscape analysis of protein kinases to characterize the interplay between oncogenic mutations and locally frustrated sites as important catalysts of allostetric kinase activation. While structurally rigid kinase core constitutes a minimally frustrated hub of the catalytic domain, locally frustrated residue clusters, whose interaction networks are not energetically optimized, are prone to dynamic modulation and could enable allosteric conformational transitions. The results of this study have shown that the energy landscape effect of oncogenic mutations may be allosteric eliciting global changes in the spatial distribution of highly frustrated residues. We have found that mutation-induced allosteric signaling may involve a dynamic coupling between structurally rigid (minimally frustrated) and plastic (locally frustrated) clusters of residues. The presented study has demonstrated that activation cancer mutations may affect the thermodynamic equilibrium between kinase states by allosterically altering the distribution of locally frustrated sites and increasing the local frustration in the inactive form, while eliminating locally frustrated sites and restoring structural rigidity of the active form. The energy landsape analysis of protein kinases and the proposed role of locally frustrated sites in activation mechanisms may have useful implications for bioinformatics-based screening and detection of functional sites critical for allosteric regulation in complex biomolecular systems.  相似文献   

3.
Protein phosphorylation in eukaryotes is carried out by a large and diverse family of protein kinases, which display remarkable diversity and complexity in their modes of regulation. The complex modes of regulation have evolved as a consequence of natural selection operating on protein kinase sequences for billions of years. Here we describe how quantitative comparisons of protein kinase sequences from diverse organisms, in particular prokaryotes, have contributed to our understanding of the structural organization and evolution of allosteric regulation in the protein kinase domain. An emerging view from these studies is that regulatory diversity and complexity in the protein kinase domain evolved in a 'modular' fashion through elaboration of an ancient core component, which existed before the emergence of eukaryotes. The core component provided the conformational flexibility required for ATP binding and phosphoryl transfer in prokaryotic kinases, but evolved into a highly regulatable domain in eukaryotes through the addition of exaggerated structural features that facilitated tight allosteric control. Family and group-specific features are built upon the core component in eukaryotes to provide additional layers of control. We propose that 'modularity' and 'conformational flexibility' are key evolvable traits of the protein kinase domain that contributed to its extensive regulatory diversity and complexity.  相似文献   

4.
Protein phosphorylation participates in the regulation of all fundamental biological processes, and protein kinases have been intensively studied. However, while the focus was on catalytic activities, accumulating evidence suggests that non-catalytic properties of protein kinases are essential, and in some cases even sufficient for their functions. These non-catalytic functions include the scaffolding of protein complexes, the competition for protein interactions, allosteric effects on other enzymes, subcellular targeting, and DNA binding. This rich repertoire often is used to coordinate phosphorylation events and enhance the specificity of substrate phosphorylation, but also can adopt functions that do not rely on kinase activity. Here, we discuss such kinase independent functions of protein and lipid kinases focussing on kinases that play a role in the regulation of cell proliferation, differentiation, apoptosis, and motility.  相似文献   

5.
The group of AGC protein kinases includes more than 60 protein kinases in the human genome, classified into 14 families: PDK1, AKT/PKB, SGK, PKA, PKG, PKC, PKN/PRK, RSK, NDR, MAST, YANK, DMPK, GRK and SGK494. This group is also widely represented in other eukaryotes, including causative organisms of human infectious diseases. AGC kinases are involved in diverse cellular functions and are potential targets for the treatment of human diseases such as cancer, diabetes, obesity, neurological disorders, inflammation and viral infections. Small molecule inhibitors of AGC kinases may also have potential as novel therapeutic approaches against infectious organisms. Fundamental in the regulation of many AGC kinases is a regulatory site termed the “PIF-pocket” that serves as a docking site for substrates of PDK1. This site is also essential to the mechanism of activation of AGC kinases by phosphorylation and is involved in the allosteric regulation of N-terminal domains of several AGC kinases, such as PKN/PRKs and atypical PKCs. In addition, the C-terminal tail and its interaction with the PIF-pocket are involved in the dimerization of the DMPK family of kinases and may explain the molecular mechanism of allosteric activation of GRKs by GPCR substrates. In this review, we briefly introduce the AGC kinases and their known roles in physiology and disease and the discovery of the PIF-pocket as a regulatory site in AGC kinases. Finally, we summarize the current status and future therapeutic potential of small molecules directed to the PIF-pocket; these molecules can allosterically activate or inhibit the kinase as well as act as substrate-selective inhibitors. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).  相似文献   

6.
The ErbB protein tyrosine kinases are among the most important cell signaling families and mutation-induced modulation of their activity is associated with diverse functions in biological networks and human disease. We have combined molecular dynamics simulations of the ErbB kinases with the protein structure network modeling to characterize the reorganization of the residue interaction networks during conformational equilibrium changes in the normal and oncogenic forms. Structural stability and network analyses have identified local communities integrated around high centrality sites that correspond to the regulatory spine residues. This analysis has provided a quantitative insight to the mechanism of mutation-induced “superacceptor” activity in oncogenic EGFR dimers. We have found that kinase activation may be determined by allosteric interactions between modules of structurally stable residues that synchronize the dynamics in the nucleotide binding site and the αC-helix with the collective motions of the integrating αF-helix and the substrate binding site. The results of this study have pointed to a central role of the conserved His-Arg-Asp (HRD) motif in the catalytic loop and the Asp-Phe-Gly (DFG) motif as key mediators of structural stability and allosteric communications in the ErbB kinases. We have determined that residues that are indispensable for kinase regulation and catalysis often corresponded to the high centrality nodes within the protein structure network and could be distinguished by their unique network signatures. The optimal communication pathways are also controlled by these nodes and may ensure efficient allosteric signaling in the functional kinase state. Structure-based network analysis has quantified subtle effects of ATP binding on conformational dynamics and stability of the EGFR structures. Consistent with the NMR studies, we have found that nucleotide-induced modulation of the residue interaction networks is not limited to the ATP site, and may enhance allosteric cooperativity with the substrate binding region by increasing communication capabilities of mediating residues.  相似文献   

7.
The regulation of the activity of kinases and phosphatases is an essential aspect of intracellular signal transduction. Recently determined structures of AGC protein kinases, including isoforms of PKB, PKC, GRK and ROCK, indicate that occupancy of a hydrophobic pocket in the kinase N-lobe by a segment of the protein immediately C terminal to the kinase domain provides a mechanism for regulating kinase activity. In addition, crystal structures of Aurora-A and Aurora-B, which are closely related to AGC family kinases, in complex with their activators, TPX2 and INCENP, respectively, show how allosteric kinase activation is achieved by the binding of the activator protein to an equivalent hydrophobic pocket. Hence, regulation of kinase activity by analogous interactions is a shared regulatory mechanism of these kinases. Two crystal structures have explained the molecular basis of PKA anchoring through its regulatory subunits by members of the AKAP family of scaffold proteins. AKAPs can also interact directly with protein kinase and phosphatase catalytic domains. The crystal structure of the PP1 catalytic subunit in complex with the targeting subunit MYPT1 indicates that there is also scope for intimate phosphatase regulation by scaffold proteins.  相似文献   

8.
Membranes are sites of intense signaling activity within the cell, serving as dynamic scaffolds for the recruitment of signaling molecules and their substrates. The specific and reversible localization of these signaling molecules to membranes is critical for the appropriate activation of downstream signaling pathways. Phospholipid-binding domains, including C1, C2, PH, and PX domains, play critical roles in the membrane targeting of protein kinases. Recent structural studies have identified a new membrane association domain, the Kinase Associated 1 (KA1) domain, which targets a number of yeast and mammalian protein kinases to membranes containing acidic phospholipids. Despite an abundance of localization studies on lipid-binding proteins and structural studies of the isolated lipid-binding domains, the question of how membrane binding is coupled to the activation of the kinase catalytic domain has been virtually untouched. Recently, structural studies on protein kinase C (PKC) have provided some of the first structural insights into the allosteric regulation of protein kinases by lipid second messengers.  相似文献   

9.
10.
A historical account of the discovery of reversible protein phosphorylation is presented. This process was uncovered in the mid 1950s in a study undertaken with Edwin G. Krebs to elucidate the complex hormonal regulation of skeletal muscle glycogen phosphorylase. Contrary to the known activation of this enzyme by AMP which serves as an allosteric effector, its hormonal regulation results from a phosphorylation of the protein by phosphorylase kinase following the activation of the latter by Ca2+ and ATP. The study led to the establishment of the first hormonal cascade of successive enzymatic reactions, kinases acting on kinases, initiated by cAMP discovered by Earl Sutherland. It also showed how two different physiological processes, carbohydrate metabolism and muscle contraction, could be regulated in concert.  相似文献   

11.
In the last step of glycolysis Pyruvate kinase catalyzes the irreversible conversion of ADP and phosphoenolpyruvate to ATP and pyruvic acid, both crucial for cellular metabolism. Thus pyruvate kinase plays a key role in controlling the metabolic flux and ATP production. The hallmark of the activity of different pyruvate kinases is their tight modulation by a variety of mechanisms including the use of a large number of physiological allosteric effectors in addition to their homotropic regulation by phosphoenolpyruvate. Binding of effectors signals precise and orchestrated movements in selected areas of the protein structure that alter the catalytic action of these evolutionarily conserved enzymes with remarkably conserved architecture and sequences. While the diverse nature of the allosteric effectors has been discussed in the literature, the structural basis of their regulatory effects is still not well understood because of the lack of data representing conformations in various activation states. Results of recent studies on pyruvate kinases of different families suggest that members of evolutionarily related families follow somewhat conserved allosteric strategies but evolutionarily distant members adopt different strategies. Here we review the structure and allosteric properties of pyruvate kinases of different families for which structural data are available.  相似文献   

12.
Conformational change associated with allosteric regulation in a protein is ultimately driven by energy transformation. However, little is known about the latter process. In this work, we combined steered molecular dynamics simulations and sequence conservation analysis to investigate the conformational changes and energy transformation in the allosteric enzyme aspartokinase III (AK III) from Escherichia coli. Correlation analysis of energy change at residue level indicated significant transformation between electrostatic energy and dihedral angle energy during the allosteric regulation. Key amino acid residues located in the corresponding energy transduction pathways were identified by dynamic energy correlation analysis. To verify their functions, residues with a high energy correlation in the pathways were altered and their effects on allosteric regulation of AKIII were determined. This study sheds new insights into energy transformation during allosteric regulation of AK III and proposes a strategy to identify key residues that are involved in intramolecular energy transduction and thus in driving the allosteric process.  相似文献   

13.
Allosteric regulation of proteins has been utilized to study various aspects of cell signaling, from unicellular events to organism-wide phenotypes. However, traditional methods of allosteric regulation, such as constitutively active mutants and inhibitors, lack tight spatiotemporal control. This often leads to unintended signaling consequences that interfere with data interpretation. To overcome these obstacles, researchers employed protein engineering approaches that enable tight control of protein function through allosteric mechanisms. These methods provide high specificity as well as spatial and temporal precision in regulation of protein activity in vitro and in vivo. In this review, we focus on the recent advancements in engineered allosteric regulation and discuss the various bioengineered allosteric techniques available now, from chimeric GPCRs to chemogenetic and optogenetic switches. We highlight the benefits and pitfalls of each of these techniques as well as areas in which future improvements can be made. Additionally, we provide a brief discussion on implementation of engineered allosteric regulation approaches, demonstrating that these tools can shed light on elusive biological events and have the potential to be utilized in precision medicine.  相似文献   

14.
Allosteric binding sites, as opposed to traditional orthosteric binding sites, offer unparalleled opportunities for drug discovery by providing high levels of selectivity, mimicking physiological conditions, affording fewer side effects because of desensitization/downregulation, and engendering ligands with chemotypes divergent from orthosteric ligands. For kinases, allosteric mechanisms described to date include alteration of protein kinase conformation blocking productive ATP binding which appear 'ATP competitive' or blocking kinase activation by conformational changes that are 'ATP non-competitive'. For GPCRs, allosteric mechanisms impart multiple modes of target modulation (positive allosteric modulation (PAM), negative allosteric modulation (NAM), neutral cooperativity, partial antagonism (PA), allosteric agonism and allosteric antagonism). Here, we review recent developments in the design principles and structural diversity of allosteric ligands for kinases and GPCRs.  相似文献   

15.
Protein kinases are key components in cellular signaling pathways as they carry out the phosphorylation of proteins, primarily on Ser, Thr, and Tyr residues. The catalytic activity of protein kinases is regulated, and they can be thought of as molecular switches that are controlled through protein–protein interactions and post-translational modifications. Protein kinases exhibit diverse structural mechanisms of regulation and have been fascinating subjects for structural biologists from the first crystal structure of a protein kinase over 30 years ago, to recent insights into kinase assemblies enabled by the breakthroughs in cryo-EM. Protein kinases are high-priority targets for drug discovery in oncology and other disease settings, and kinase inhibitors have transformed the outcomes of specific groups of patients. Most kinase inhibitors are ATP competitive, deriving potency by occupying the deep hydrophobic pocket at the heart of the kinase domain. Selectivity of inhibitors depends on exploiting differences between the amino acids that line the ATP site and exploring the surrounding pockets that are present in inactive states of the kinase. More recently, allosteric pockets outside the ATP site are being targeted to achieve high selectivity and to overcome resistance to current therapeutics. Here, we review the key regulatory features of the protein kinase family, describe the different types of kinase inhibitors, and highlight examples where the understanding of kinase regulatory mechanisms has gone hand in hand with the development of inhibitors.  相似文献   

16.
Protein kinases provide a platform for the integration of signal transduction networks. A key feature of transmitting these cellular signals is the ability of protein kinases to activate one another by phosphorylation. A number of kinases are predicted by sequence homology to be incapable of phosphoryl group transfer due to degradation of their catalytic motifs. These are termed pseudokinases and because of the assumed lack of phosphoryltransfer activity their biological role in cellular transduction has been mysterious. Recent structure-function studies have uncovered the molecular determinants for protein kinase inactivity and have shed light to the biological functions and evolution of this enigmatic subset of the human kinome. Pseudokinases act as signal transducers by bringing together components of signalling networks, as well as allosteric activators of active protein kinases.  相似文献   

17.
The precise regulation of protein activity is fundamental to life. The allosteric control of an active site by a remote regulatory binding site is a mechanism of regulation found across protein classes, from enzymes to motors to signaling proteins. We describe a general approach for manipulating allosteric control using synthetic optical switches. Our strategy is exemplified by a ligand-gated ion channel of central importance in neuroscience, the ionotropic glutamate receptor (iGluR). Using structure-based design, we have modified its ubiquitous clamshell-type ligand-binding domain to develop a light-activated channel, which we call LiGluR. An agonist is covalently tethered to the protein through an azobenzene moiety, which functions as the optical switch. The agonist is reversibly presented to the binding site upon photoisomerization, initiating clamshell domain closure and concomitant channel gating. Photoswitching occurs on a millisecond timescale, with channel conductances that reflect the photostationary state of the azobenzene at a given wavelength. Our device has potential uses not only in biology but also in bioelectronics and nanotechnology.  相似文献   

18.
Despite the established view of protein kinases as dynamic and versatile allosteric regulatory machines, our knowledge of allosteric functional states, allosteric interaction networks, and the intrinsic folding energy landscapes is surprisingly limited. We discuss the latest developments in structural characterization of allosteric molecular events underlying protein kinase dynamics and functions using structural, biophysical, and computational biology approaches. The recent studies highlighted progress in making the invisible aspects of protein kinase ‘life’ visible, including the determination of hidden allosteric states and mapping of allosteric energy landscapes, discovery of new mechanisms underlying ligand-induced modulation of allosteric activity, evolutionary adaptation of kinase allostery, and characterization of allosteric interaction networks as the intrinsic driver of kinase adaptability and signal transmission in the regulatory assemblies.  相似文献   

19.
Bacterial UMP kinases are essential enzymes involved in the multistep synthesis of nucleoside triphosphates. They are hexamers regulated by the allosteric activator GTP and inhibited by UTP. We solved the crystal structure of Escherichia coli UMP kinase bound to the UMP substrate (2.3 A resolution), the UDP product (2.6 A), or UTP (2.45 A). The monomer fold, unrelated to that of other nucleoside monophosphate kinases, belongs to the carbamate kinase-like superfamily. However, the phosphate acceptor binding cleft and subunit assembly are characteristic of UMP kinase. Interactions with UMP explain the high specificity for this natural substrate. UTP, previously described as an allosteric inhibitor, was unexpectedly found in the phosphate acceptor site, suggesting that it acts as a competitive inhibitor. Site-directed mutagenesis of residues Thr-138 and Asn-140, involved in both uracil recognition and active site interaction within the hexamer, decreased the activation by GTP and inhibition by UTP. These experiments suggest a cross-talk mechanism between enzyme subunits involved in cooperative binding at the phosphate acceptor site and in allosteric regulation by GTP. As bacterial UMP kinases have no counterpart in eukaryotes, the information provided here could help the design of new antibiotics.  相似文献   

20.
Protein kinase inhibitors with enhanced selectivity can be designed by optimizing binding interactions with less conserved inactive conformations because such inhibitors will be less likely to compete with ATP for binding and therefore may be less impacted by high intracellular concentrations of ATP. Analysis of the ATP-binding cleft in a number of inactive protein kinases, particularly in the autoinhibited conformation, led to the identification of a previously undisclosed non-polar region in this cleft. This ATP-incompatible hydrophobic region is distinct from the previously characterized hydrophobic allosteric back pocket, as well as the main pocket. Generalized hypothetical models of inactive kinases were constructed and, for the work described here, we selected the fibroblast growth factor receptor (FGFR) tyrosine kinase family as a case study. Initial optimization of a FGFR2 inhibitor identified from a library of commercial compounds was guided using structural information from the model. We describe the inhibitory characteristics of this compound in biophysical, biochemical, and cell-based assays, and have characterized the binding mode using x-ray crystallographic studies. The results demonstrate, as expected, that these inhibitors prevent activation of the autoinhibited conformation, retain full inhibitory potency in the presence of physiological concentrations of ATP, and have favorable inhibitory activity in cancer cells. Given the widespread regulation of kinases by autoinhibitory mechanisms, the approach described herein provides a new paradigm for the discovery of inhibitors by targeting inactive conformations of protein kinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号