首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Limited data are currently available on the concentrations of airborne bacteria, fungi, and endotoxins in indoor environments. The levels of aerial bacteria and fungi were measured at several microenvironments within a well-ventilated residential apartment in Singapore including the living room, kitchen, bedroom, toilet, and at a workplace environment by sampling indoor air onto culture medium plates using the 6-stage Andersen sampler. Total microbial counts were determined by collecting the air samples in water with the Andersen sampler, staining the resultant extracts with a fluorescent dye, acridine orange, and counting the microbes using a fluorescent microscope. The levels of airborne endotoxins were also determined by sampling the airborne microorganisms onto 0.4?μm polycarbonate membrane filter using the MiniVol sampler at 5?l/min for 20?h with a PM2.5 cut-off device. The aerial bacterial and fungal concentrations were found to be in the ranges of 117–2,873?CFU/m3 and 160–1,897?CFU/m3, respectively. The total microbial levels ranged from 49,000 to 218,000?microbes/m3. The predominant fungi occurring in the apartment were Aspergillus and Penicillium while the predominant bacterial strains appeared to be Staphylococcus and Micrococcus. The average indoor endotoxin level was detectable in the range of 6–39?EU/m3. The amount of ventilation and the types of human activities carried out in the indoor environment appeared to be important factors affecting the level of these airborne biological contaminants.  相似文献   

2.
A new personal bioaerosol sampler has recently been developed and evaluated for sampling of viable airborne bacteria and fungi under controlled laboratory conditions and in the field. The operational principle of the device is based on the passage of air through porous medium immersed in liquid. This process leads to the formation of bubbles within the filter as the carrier gas passes through and thus provides effective mechanisms for aerosol removal. As demonstrated in previous studies, the culturability of sampled bacterium and fungi remained high for the entire 8-h sampling period. The present study is the first step of the evaluation of the new sampler for monitoring of viable airborne viruses. It focuses on the investigation of the inactivation rate of viruses in the bubbling process during 4 h of continuous operation. Four microbes were used in this study, influenza, measles, mumps, and vaccinia viruses. It was found that the use of distilled water as the collection fluid was associated with a relatively high decay rate. A significant improvement was achieved by utilizing virus maintenance fluid prepared by using Hank's solution with appropriate additives. The survival rates of the influenza, measles, and mumps viruses were increased by 1.4 log, 0.83 log, and 0.82 log, respectively, after the first hour of operation compared to bubbling through the sterile water. The same trend was observed throughout the entire 4-h experiment. There was no significant difference observed only for the robust vaccinia virus.  相似文献   

3.
A new personal bioaerosol sampler has recently been developed and evaluated for sampling of viable airborne bacteria and fungi under controlled laboratory conditions and in the field. The operational principle of the device is based on the passage of air through porous medium immersed in liquid. This process leads to the formation of bubbles within the filter as the carrier gas passes through and thus provides effective mechanisms for aerosol removal. As demonstrated in previous studies, the culturability of sampled bacterium and fungi remained high for the entire 8-h sampling period. The present study is the first step of the evaluation of the new sampler for monitoring of viable airborne viruses. It focuses on the investigation of the inactivation rate of viruses in the bubbling process during 4 h of continuous operation. Four microbes were used in this study, influenza, measles, mumps, and vaccinia viruses. It was found that the use of distilled water as the collection fluid was associated with a relatively high decay rate. A significant improvement was achieved by utilizing virus maintenance fluid prepared by using Hank's solution with appropriate additives. The survival rates of the influenza, measles, and mumps viruses were increased by 1.4 log, 0.83 log, and 0.82 log, respectively, after the first hour of operation compared to bubbling through the sterile water. The same trend was observed throughout the entire 4-h experiment. There was no significant difference observed only for the robust vaccinia virus.  相似文献   

4.
The PCR technique has potential for use in detection of low concentrations of airborne microorganisms. In this study, the sensitivity of PCR and its susceptibility to environmental interference were assessed with Escherichia coli DH1 as the target organism. Air samples, containing environmental bioaerosols, were collected with AGI-30 samplers and seeded with E. coli DH1 cells. Parallel studies were performed with cells seeded into the sampler prior to collection of air samples to determine the effects of environmental inhibition and sampling stress on the PCR assay. Baseline studies were also performed without environmental challenge or sampling stress to compare two protocols for cell lysis, solid phase and freeze-thaw. Amplification of a plasmid target sequence resulted in a detection limit of a single bacterial cell by the freeze-thaw and solid-phase methods within 5 and 9 h, respectively. With a genomic target, the sensitivity of the solid-phase method was 10-fold lower than that of freeze-thaw. Samples which contained 10(3) to 10(4) CFU of environmental organisms per m3 inhibited amplification; however, a 1/10 dilution of these samples resulted in successful amplifications. No difference in sensitivity of the PCR assay was obtained as a result of sampling stress, although a 10-fold decrease in culturability was observed. A field validation of the protocol with genomic primers demonstrated the presence of airborne E. coli and/or Shigella spp. in outdoor samples. This study indicates that the PCR method for detection of airborne microorganisms is rapid and sensitive and can be used as an alternative method for air quality monitoring.  相似文献   

5.
Cultivation-based microbiological methods are a gold standard for monitoring of airborne micro-organisms to determine the occupational exposure levels or transmission paths of a particular infectious agent. Some highly contagious microorganisms are not easily culturable but it is becoming evident that cultivation and molecular methods are complementary and in these cases highly relevant. We report a simple and efficient method for sampling and analyzing airborne bacteria with an impactor-type high-flow-rate portable air sampler, currently used for monitoring culturable bacteria or fungi. A method is reported for extraction of nucleic acids from impacted cells without prior cultivation and using agarose as a sampling matrix. The DNA extraction efficiency was determined in spiked samples and, samples taken from a wastewater treatment plant and an alpine area. The abundance, diversity and quantity of total bacteria were analysed by a quantitative polymerase chain reaction, and by construction and analysis of clone libraries. The method does not interfere with downstream PCR analysis and can cover the gap between traditional culture and molecular techniques of bioaerosol monitoring.  相似文献   

6.
A field study was performed to identify the size distribution characteristics of viable, cultivable airborne microorganisms (heterotrophic bacteria, fungi, and total coliforms) at a municipal wastewater treatment facility, and their association with inhalable particulate matter (PM1, PM2.5, and PM10), as well as hydrogen sulfide concentrations and ambient meteorological parameters. The highest concentrations of cultivable, airborne heterotrophic bacteria, total coliforms, mass and number concentration of particulate matter, as well as hydrogen sulfide were observed at the aerated grit removal chambers at the pretreatment stage (3 to 2030 times higher than the values of the background ambient air). In contrast, the mean concentrations of cultivable, airborne mesophilic fungi at the aerated grit chambers were 0.6 time lower than the background site, where fungi presented the most abundant taxonomic group in the ambient air. Although the highest concentrations of the airborne fungi were determined at aerodynamic diameters between 2.1 and 3.3 μm, a nearly equal distribution of the mean concentrations of the cultivable, airborne heterotrophic bacteria were observed in the six different size fractions at the primary settling tanks and in the ambient air. Interestingly, their size distribution profiles at the aerated grit chambers were different and showed a maximum aerodynamic diameter at the size range from 3.3 to 4.7 μm, similar to that of the cultivable, airborne total coliforms. In general, low positive or no significant linear relationships could be found between the cultivable airborne heterotrophic bacteria, total coliforms, or fungi at the two wastewater treatment stages and the ambient background microbial community.  相似文献   

7.
Novel Multi-Slit Large-Volume Air Sampler   总被引:1,自引:1,他引:0       下载免费PDF全文
Scientific investigators who are interested in the various facets of airborne transmission of disease in research laboratories and hospitals need a simple, continuous, high-volume sampling device that will recover a high percentage of viable microorganisms from the atmosphere. Such a device must sample a large quantity of air. It should effect direct transfer of the air into an all-purpose liquid medium in order to collect bacteria, viruses, rickettsia, and fungi, and it should be easy to use. A simple multi-slit impinger sampler that fulfills these requirements has been developed. It operates at an air-sampling rate of 500 liters/min, has a high collection efficiency, functions at a low pressure drop, and, in contrast to some earlier instruments, does not depend upon electrostatic precipitation at high voltages. When compared to the all-glass impinger, the multi-slit impinger sampler collected microbial aerosols of Serratia marcescens at 82% efficiency, and aerosols of Bacillus subtilis var. niger at 78% efficiency.  相似文献   

8.
Aims:  To use real-time PCR for the detection of bacterial bioterror agents in a liquid air sample containing potential airborne interferences, including bacteria, without the need for DNA extraction.
Methods and Results:  Bacteria in air were isolated after passive sedimentation onto R2A agar plates and characterized by 16S rRNA sequencing. Real-time PCR was used to identify different bacterial bioterror agents in an artificial air sample consisting of a liquid air sample and a mixture of miscellaneous airborne bacteria showing different colony morphology on R2A agar plates. No time-consuming DNA extraction was performed. Specifically designed fluorescent hybridization probes were used for identification.
Conclusions:  Fourteen different bacterial genera were classified by 16S rRNA gene sequencing of selected bacterial colonies showing growth on R2A agar plates. Real-time PCR amplification of all the bacterial bioterror agents was successfully obtained in the artificial air sample containing commonly found airborne bacteria and other potential airborne PCR interferences.
Significance and Impact of the Study:  Bacterial bioterror agents can be detected within 1 h in a liquid air sample containing a variety of commonly found airborne bacteria using real-time PCR. Airborne viable bacteria at Kjeller (Norway) were classified to the genera level using 16S rRNA gene sequencing.  相似文献   

9.
The biological loading of viable, cultivable airborne microbes (heterotrophic bacteria, actinobacteria and fungi) in 6 size fractions as well as the three different fractions of respirable particulate matter (PM1, PM2.5 and PM10) and their relationship to meteorological conditions were studied in the ambient air due to health-related interests. An Andersen six stage viable particle impactor and a MAS 100 sampler were used for microbial measurements. 82 measurements were performed at three different periods (41 days) at a suburban, residential site in the city of Chania (Crete, Greece) during the period from April 2008 to June 2009. The concentrations of the viable, cultivable airborne microbes (bioaerosols) as well as of the PM1, PM2.5 and PM10 were highly variable during the whole measurement period. Among the airborne microbes, fungi presented the most abundant taxonomic group in the ambient air. A characteristic profile of the mean size distribution of biological loading in different PM fractions was obtained for every measured microbial taxonomic group. Although, the highest concentrations of the airborne fungi and actinobacteria were determined at aerodynamic diameters between 2.1 and 3.3 μm, a nearly equal distribution of the mean concentrations of the airborne heterotrophic bacteria was observed in the six different size fractions. However, two small maxima were observed at the airborne heterotrophic bacteria distribution, one at the fraction with aerodynamic diameters between 1.1 and 2.1 μm, and at other at the coarse fraction with aerodynamic diameter larger than 7 μm. A considerable part of the airborne microbes Cycloheximide per mL of growth medium of bacteriwere resistant to drugs. Between 10 and 40 % of the viable, cultivable airborne microbes were resistant to low concentrations of drugs (5–10 μg of Streptomycin or a or fungi, respectively). Furthermore, multiple linear regression of the data showed that the variation in fungi concentrations depends on the variation in PM10 mass concentration, PM1 number concentration, relative humidity and solar radiation. Likewise, the concentration of heterotrophic bacteria was found proportional to the values of relative humidity and fungal concentration, whereas was negatively correlated to the solar radiation.  相似文献   

10.
Summary: To better understand the underlying mechanisms of aerovirology, accurate sampling of airborne viruses is fundamental. The sampling instruments commonly used in aerobiology have also been used to recover viruses suspended in the air. We reviewed over 100 papers to evaluate the methods currently used for viral aerosol sampling. Differentiating infections caused by direct contact from those caused by airborne dissemination can be a very demanding task given the wide variety of sources of viral aerosols. While epidemiological data can help to determine the source of the contamination, direct data obtained from air samples can provide very useful information for risk assessment purposes. Many types of samplers have been used over the years, including liquid impingers, solid impactors, filters, electrostatic precipitators, and many others. The efficiencies of these samplers depend on a variety of environmental and methodological factors that can affect the integrity of the virus structure. The aerodynamic size distribution of the aerosol also has a direct effect on sampler efficiency. Viral aerosols can be studied under controlled laboratory conditions, using biological or nonbiological tracers and surrogate viruses, which are also discussed in this review. Lastly, general recommendations are made regarding future studies on the sampling of airborne viruses.  相似文献   

11.
Ambient bioaerosols are ubiquitous in the daily environment and can affect health in various ways. However, few studies have been conducted to comprehensively evaluate personal bioaerosol exposure in occupational and indoor environments because of the complex composition of bioaerosols and the lack of standardized sampling/analysis methods. We conducted a study to determine the most efficient collection/analysis method for the personal exposure assessment of multiple bioaerosols. The sampling efficiencies of three filters and four samplers were compared. According to our results, polycarbonate (PC) filters had the highest relative efficiency, particularly for bacteria. Side-by-side sampling was conducted to evaluate the three filter samplers (with PC filters) and the NIOSH Personal Bioaerosol Cyclone Sampler. According to the results, the Button Aerosol Sampler and the IOM Inhalable Dust Sampler had the highest relative efficiencies for fungi and bacteria, followed by the NIOSH sampler. Personal sampling was performed in a pig farm to assess occupational bioaerosol exposure and to evaluate the sampling/analysis methods. The Button and IOM samplers yielded a similar performance for personal bioaerosol sampling at the pig farm. However, the Button sampler is more likely to be clogged at high airborne dust concentrations because of its higher flow rate (4 L/min). Therefore, the IOM sampler is a more appropriate choice for performing personal sampling in environments with high dust levels. In summary, the Button and IOM samplers with PC filters are efficient sampling/analysis methods for the personal exposure assessment of multiple bioaerosols.  相似文献   

12.
Exposure of workers to airborne microorganisms in open-air swine houses   总被引:7,自引:0,他引:7  
This study quantified the levels of airborne microorganisms in six swine farms with more than 10,000 pigs in subtropical Taiwan. We evaluated breeding, growing, and finishing stalls, which were primarily open-air buildings, as well as partially enclosed farrowing and nursery piggeries. Airborne culturable bacteria, gram-negative bacteria, and fungi were placed on appropriate media by using an all-glass impinger or single-stage Andersen microbial sampler. Results showed that mean concentrations of culturable bacteria and gram-negative bacteria were 3.3 x 10(5) and 143.7 CFU/m(3), respectively. The concentration of airborne culturable fungi was about 10(3) CFU/m(3), with Cladosporium the predominant genus. The highest airborne levels of culturable bacteria and gram-negative bacteria were identified in the finishing units. The air of the nursery stalls was the least contaminated with culturable and gram-negative bacteria. Irregular and infrequent cleaning, high pig density, no separation of wastes from pen floors, and accumulation of water as a result of the processes for cleaning and reducing pig temperature possibly compromise the benefits of the open characteristic of the finishing units with respect to airborne bacterial concentration.  相似文献   

13.
Experiments for microbiological evaluation of airborne particles were led in two haemodialysis rooms at the beginning and at the end of activity time (6 h). The efficiency of a new personal and portable aerobiological sampler in comparison with a fixed sampler and a traditional sedimetric method was evaluate. The personal and portable sampler allowed a good evaluation of concentration of bacteria and fungi per cubic metres of sampled air. Since its aspiration flow is equal to Minute Ventilation of an adult; this device provides a quantification of inhaled particles. We propose this device for evaluating the risk for patients and sanitary operators, for monitoring air quality and in implementing adequate environmental prophylaxis and for other applications, e.g. environmental applications.  相似文献   

14.

In recent years, monitoring of airborne bacteria and fungi concentrations has obtained increasing universal attraction not only for influences on ecological balance but also for evaluating their public health consequences. In this study, we aimed to investigate culturable airborne bacteria and fungi levels in different sites of Abadan, and their association with meteorological parameters and PM2.5 levels. Abadan is one of the most industrialized cities in the southwest of Iran where over the current decade has experienced lots of dust storm episodes. In total, 400 air samples were collected in 6 months (autumn and winter) using a single-stage viable Andersen cascade impactor for sampling airborne bacteria and fungi and portable DustTrak Aerosol Monitor 8520 for measuring PM2.5 concentrations and meteorological parameters. Microbial concentrations showed a significant difference between various sites over the study period with averages of 569.57?±?312.64 and 482.73?±?242.86 CFU/M3 for bacteria and fungi, respectively. The air temperature had a significant effect on the concentration of both airborne bacteria and fungi. A significant positive correlation between relative humidity and fungi but no correlation between relative humidity and bacteria concentrations were observed. The average airborne PM2.5 concentrations of all sites among the study period was 93.24?±?116.72 μg/m3. The atmospheric bacterial and fungal communities were strongly positively correlated with the ambient PM2.5 level. The levels of airborne bacteria and fungi along with PM2.5 in the air of the city were relatively higher than the recommended levels. Therefore, the best course of action is needed to control emission sources. Further studies are also needed to evaluate the clinical analysis of the health effects of exposure to these pollutants.

  相似文献   

15.
This study quantified the levels of airborne microorganisms in six swine farms with more than 10,000 pigs in subtropical Taiwan. We evaluated breeding, growing, and finishing stalls, which were primarily open-air buildings, as well as partially enclosed farrowing and nursery piggeries. Airborne culturable bacteria, gram-negative bacteria, and fungi were placed on appropriate media by using an all-glass impinger or single-stage Andersen microbial sampler. Results showed that mean concentrations of culturable bacteria and gram-negative bacteria were 3.3 × 105 and 143.7 CFU/m3, respectively. The concentration of airborne culturable fungi was about 103 CFU/m3, with Cladosporium the predominant genus. The highest airborne levels of culturable bacteria and gram-negative bacteria were identified in the finishing units. The air of the nursery stalls was the least contaminated with culturable and gram-negative bacteria. Irregular and infrequent cleaning, high pig density, no separation of wastes from pen floors, and accumulation of water as a result of the processes for cleaning and reducing pig temperature possibly compromise the benefits of the open characteristic of the finishing units with respect to airborne bacterial concentration.  相似文献   

16.
Airborne microbial flora in a cattle feedlot   总被引:1,自引:0,他引:1  
A total of 1,408 cattle held in eight commercial feedlot pens were used to examine the quantity and diversity of microorganisms in cattle feedlot air. The effect of two feeding patterns on the generation of airborne dust and the total numbers of microorganisms was also examined (four feedlot pens/treatment). Microbial samples were collected, and dust particles that were 2.5 microm or less in diameter were measured with a Dustrak monitor during the evening dust peak for 4 days at sites both upwind and downwind of the feedlot pens. An Andersen biological cascade sampler was employed with different medium and incubation combinations for the capture and identification of bacteria and fungi. The results showed that when bacteria were considered, only nonpathogenic gram-positive organisms were recovered. However, gram-negative bacteria may have been present in a viable but nonculturable state. Fungi were recovered in smaller numbers than bacteria, and none of the fungi were pathogenic. The Dustrak results showed that one feeding pattern resulted in cattle behavior that generated levels of downwind dust lower (P = 0.04) than the levels generated by the behavior resulting from the other feeding pattern. However, the Andersen sampler results showed that there were no differences between feeding patterns with regard to the total number or diversity of microorganisms. The disparity may have been due to the different operating principles of the two systems. The overall numbers of microorganisms recovered were lower than those reported in studies of intensively housed farm animals in which similar recovery techniques were used.  相似文献   

17.
Several studies have showed an association between the work in waste treatment plants and occupational health problems such as irritation of skin, eyes and mucous membranes, pulmonary diseases, gastrointestinal problems and symptoms of organic dust toxic syndrome (ODTS). These symptoms have been related to bioaerosol exposure. The aim of this study was to investigate the occupational exposure to biological agents in a plant sorting source-separated packages (plastics materials, ferric and non-ferric metals) household waste. Airborne samples were collected with M Air T Millipore sampler. The concentration of total fungi and bacteria and gram-negative bacteria were determined and the most abundant genera were identified. The results shown that the predominant airborne microorganisms were fungi, with counts greater than 12,000 cfu/m(3) and gram-negative bacteria, with a environmental concentration between 1,395 and 5,280 cfu/m(3). In both cases, these concentrations were higher than levels obtained outside of the sorting plant. Among the fungi, the predominant genera were Penicillium and Cladosporium, whereas the predominant genera of gram-negative bacteria were Escherichia, Enterobacter, Klebsiella and Serratia. The present study shows that the workers at sorting source-separated packages (plastics materials, ferric and non-ferric metals) domestic waste plant may be exposed to airborne biological agents, especially fungi and gram-negative bacteria.  相似文献   

18.
Airborne Microbial Flora in a Cattle Feedlot   总被引:1,自引:0,他引:1       下载免费PDF全文
A total of 1,408 cattle held in eight commercial feedlot pens were used to examine the quantity and diversity of microorganisms in cattle feedlot air. The effect of two feeding patterns on the generation of airborne dust and the total numbers of microorganisms was also examined (four feedlot pens/treatment). Microbial samples were collected, and dust particles that were 2.5 μm or less in diameter were measured with a Dustrak monitor during the evening dust peak for 4 days at sites both upwind and downwind of the feedlot pens. An Andersen biological cascade sampler was employed with different medium and incubation combinations for the capture and identification of bacteria and fungi. The results showed that when bacteria were considered, only nonpathogenic gram-positive organisms were recovered. However, gram-negative bacteria may have been present in a viable but nonculturable state. Fungi were recovered in smaller numbers than bacteria, and none of the fungi were pathogenic. The Dustrak results showed that one feeding pattern resulted in cattle behavior that generated levels of downwind dust lower (P = 0.04) than the levels generated by the behavior resulting from the other feeding pattern. However, the Andersen sampler results showed that there were no differences between feeding patterns with regard to the total number or diversity of microorganisms. The disparity may have been due to the different operating principles of the two systems. The overall numbers of microorganisms recovered were lower than those reported in studies of intensively housed farm animals in which similar recovery techniques were used.  相似文献   

19.
This study investigates the exposure of workers to biological particles in a poultry litter burning plant in operation. The microorganism concentrations were examined at different workplaces during procedures leading to increased emissions. The concentrations of culturable airborne mesophilic, xerophilic and thermophilic microorganisms in the ambient air were tested inside and outside of the burning plant using two different methods of measuring. The focus of this study was on the quantitative evaluation of culturable bacteria as well as the quantitative and qualitative evaluation of gram-negative bacteria, fungi and thermophilic actinomycetes. The maximum airborne concentrations were found in the delivery hall. Mesophilic bacteria concentrations reached up to 1.7 × 106 CFU/m3; gram-negative bacteria up to 9.1 × 102 CFU/m3. Fungal propagule concentrations for xerophilic fungi were between 1.2 × 103 and 2.9 × 104 CFU/m3 and for mesophilic fungi between 4.4 × 102 and 2.9 × 104 CFU/m3. Among fungi, Aspergillus niger, Eurotium herbariorum and Scopulariopsis brevicaulis species were dominant. Thermophilic actinomycetes reached airborne concentrations of 8.7 × 104 CFU/m3, with increased concentrations of the pathogens causing extrinsic allergic alveolitis. The high concentrations of airborne microorganisms in poultry litter burning plants and the potential hazard of the intake of microorganisms including potential pathogens require the introduction of consistent measures in both technical areas and personnel management.  相似文献   

20.
Comparison of bioaerosol sampling methods in barns housing swine.   总被引:13,自引:0,他引:13  
The air in livestock buildings contains bioaerosol levels that are sufficiently high to cause adverse health effects in animals and workers. These bioaerosols are complex mixtures of live and dead microorganisms and their products as well as other aeroallergens. The effectiveness of sampling methods used for quantifying the very high concentrations of microorganisms in these environments has not been well studied. To facilitate an accurate assessment of respiratory hazards from viable organisms in agricultural environments, three bioaerosol sampling methods were investigated: the Andersen microbial sampler method (AMS), the all-glass impinger method (AGI), and the Nuclepore filtration-elution method (NFE). These methods were studied in a parallel fashion in 24 swine confinement buildings. Measurements were taken in two seasons with three types of culture media in duplicate to assess total bacteria, gram-negative enteric bacteria, and total fungi. Methods were analyzed for the proportion of samples yielding data within the limits of detection, intraclass reliability, and correlation between methods. For sampling viable bacteria, the AMS had a poor data yield because of overloading and demonstrated weak correlation with the AGI. Conversely, the AGI and NFE gave sufficient numbers of valid data points (90%), yielded high intraclass reliabilities (alpha greater than or equal to 0.92), and were highly correlated with each other (r = 0.86). The AGI and the NFE were suitable methods for assessing bacteria in this environment, but the AMS was not. The AMS was the only method that consistently recovered enteric bacteria (73% data yield). For sampling fungi, the AGI and AMS both yielded sufficient data and all three methods demonstrated high intraclass reliability.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号