首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
AIMS: This paper provides identification of a DNA sequence derived from Shiga toxin-producing Escherichia coli (STEC) O157:H7 and information on its utilization for detecting STEC O157 by PCR. METHODS AND RESULTS: Random Amplified Polymorphic DNA and DNA library were used to identify in STEC O157:H7 (strain EDL 933) a 2634-bp Small Inserted Locus, designated SILO157. Analysis of 211 bacterial strains showed that the PCR assays amplifying the SILO157 region could be used to detect STEC O157 with a good specificity. CONCLUSIONS: Characterization of a novel locus in STEC O157 is attractive since the serotype O157:H7 of STEC is still by far the most important serotype associated with more serious diseases. This island encodes putative proteins and especially one that is predicted to be an outer membrane protein designated IHP1. SIGNIFICANCE AND IMPACT OF THE STUDY: Further investigations could now be developed to appreciate the role of the SILO157 in pathogenicity.  相似文献   

2.
In an attempt to develop a standard for ELISA-PCR detection of Shiga toxin producing Escherichia coli (STEC) O157, six published PCR tests were tested in a comparative study on a panel of 277 bacterial strains isolated from foods, animals and humans. These tests were based on the detection of the genes rfbE [J. Clin. Microbiol. 36 (1998) 1801] and rfbB [Appl. Environ. Microbiol. 65 (1999) 2954], the 3' end of the eae gene [Epidemiol. Infect. 112 (1994) 449], the region immediately flanking the 5' end of the eae gene [Int. J. Food. Microbiol. 32 (1996) 103], the flicH7 gene [J. Clin. Microbiol. 35 (1997) 656], or a part of the recently described 2634-bp Small Inserted Locus (SILO(157) locus) of STEC O157 [J. Appl. Microbiol. 93 (2002) 250]. Unlike the other PCR assays, those amplifying the rfb sequences were unable to distinguish toxigenic from nontoxigenic O157. These assays were relatively specific to STEC O157, giving essentially a cross reaction with clonally related E. coli O55 and to a lesser extent with E. coli O145, O125, O126. They also detected the Shiga toxin (stx)-negative derivatives of STEC O157. Based on these results, an ELISA-PCR assay consisting of the solution hybridization of amplicons with two probes that ensured the specificity of the amplification was developed. The ELISA-PCR assay, which used an internal control (IC) of inhibition, was able to detect 1 to 10 copies of STEC O157 in the PCR tube. Adaptation of PCR into ELISA-PCR assay format facilitates specific and sensitive detection of PCR amplification products and constitutes a method of choice for screening STEC O157.  相似文献   

3.
Shiga toxin-producing Escherichia coli (STEC) strains are important food-borne pathogens capable of causing hemolytic-uremic syndrome. STEC O157:H7 strains cause the majority of severe disease in the United States; however, there is a growing concern for the amount and severity of illness attributable to non-O157 STEC. Recently, the Food Safety and Inspection Service (FSIS) published the intent to regulate the presence of STEC belonging to serogroups O26, O45, O103, O111, O121, and O145 in nonintact beef products. To ensure the effective control of these bacteria, sensitive and specific tests for their detection will be needed. In this study, we identified single nucleotide polymorphisms (SNPs) in the O-antigen gene cluster that could be used to detect STEC strains of the above-described serogroups. Using comparative DNA sequence analysis, we identified 22 potentially informative SNPs among 164 STEC and non-STEC strains of the above-described serogroups and designed matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF) assays to test the STEC allele frequencies in an independent panel of bacterial strains. We found at least one SNP that was specific to each serogroup and also differentiated between STEC and non-STEC strains. Differences in the DNA sequence of the O-antigen gene cluster corresponded well with differences in the virulence gene profiles and provided evidence of different lineages for STEC and non-STEC strains. The SNPs discovered in this study can be used to develop tests that will not only accurately identify O26, O45, O103, O111, O121, and O145 strains but also predict whether strains detected in the above-described serogroups contain Shiga toxin-encoding genes.  相似文献   

4.
This work aimed to compare real-time polymerase chain reaction (PCR) with the commercially available enzyme-linked fluorescent assay (ELFA) VIDAS ECOLI O157 for detecting Escherichia coli O157 in mincemeat. In addition, a PCR-based survey on Shiga-toxin-producing E. coli (STEC) in mincemeat collected in Italy is presented. Real-time PCR assays targeting the stx genes and a specific STEC O157 sequence (SILO157, a small inserted locus of STEC O157) were tested for their sensitivity on spiked mincemeat samples. After overnight enrichment, the presence of STEC cells could be clearly determined in the 25 g samples containing 10 bacterial cells, while the addition of five bacteria provided equivocal PCR results with Ct values very close to or above the threshold of 40. The PCR tests proved to be more sensitive than the ELFA-VIDAS ECOLI O157, whose detection level started from 50 bacterial cells/25 g of mincemeat. The occurrence of STEC in 106 mincemeat (bovine, veal) samples collected from September to November 2004 at five different points of sale in Italy (one point of sale in Arezzo, Tuscany, central Italy, two in Mantova, Lombardy, Northern Italy, and two in Bologna, Emilia-Romagna, upper-central Italy) was less than 1%. Contamination by the main STEC O-serogroups representing a major public health concern, including O26, O91, O111, O145, and O157, was not detected. This survey indicates that STEC present in these samples are probably not associated with pathogenesis in humans.  相似文献   

5.
AIMS: To investigate phenotypic and genotypic aspects of sorbitol-negative or slow-fermenting Escherichia coli, suspected to belong to O157 serogroup, isolated in Italy. METHODS AND RESULTS: Milk samples originating from goats and cows were screened for the presence of E. coli O157 with cultural methods. Sorbitol-negative or slow-fermenting strains were subjected to phenotypic characterization, antibiotic resistance profiles, PCR reactions for detection of toxins (stx(1) and stx(2)) and intimin (eae(GEN) and eae(O157)) genes and clustering by pulsed field gel electrophoresis (PFGE). Only one strain revealed to be O157. Susceptibility to 11 antibiotics highlighted the high resistance to tetracycline (50%), sulfonamide and streptomycin (33%). The stx(2) gene was detected in two strains; only the strain identified as O157 exhibited an amplicon for both eae genes. PFGE identified seven distinct XbaI macrorestriction patterns at a similarity level of 41%. CONCLUSIONS: The use of sorbitol fermentation as cultural method is not sufficient for STEC discrimination while PCR assay proved to be a valuable method. SIGNIFICANCE AND IMPACT OF THE STUDY: The study reports presence of Shiga toxin-producing E. coli in raw milk, signalling a potential risk for humans.  相似文献   

6.
Shiga toxin-producing Escherichia coli (STEC) strains belonging to serogroup O145 are important emerging food-borne pathogens responsible for sporadic cases and outbreaks of hemorrhagic colitis and hemolytic uremic syndrome. A large plasmid carried by STEC O145:NM strain 83-75 and named pO145-NM was sequenced, and the genes were annotated. pO145-NM is 90,103bp in size and carries 89 open reading frames. Four genes/regions in pO145-NM encode for STEC virulence factors, including toxB (protein involved in adherence), espP (a serine protease), katP (catalase peroxidase), and the hly (hemolysin) gene cluster. These genes have also been identified in large virulence plasmids found in other STEC serogroups, including O26, O157, O111, and O103. pO145-NM carries the espPα subtype that is associated with STEC strains that cause more severe disease. Phylogenetic analyses of HlyB, EspP, and ToxB in various STEC strains showed a high degree of similarity of these proteins in E. coli serotypes O145:NM, O26:H11/H-, O111:NM/H-, and O157:H7 potentially placing these STEC into a related group.  相似文献   

7.
AIMS: The aims of the study were to characterize the O91 O-antigen gene cluster from Shiga toxin-producing Escherichia coli (STEC) O91 and to provide the basis for a specific PCR test for rapid detection of E. coli O91. METHODS AND RESULTS: The published primers complementary to JUMPstart and gnd gene, the conserved flanking sequences of O-antigen genes clusters in E. coli and related species were used to amplify the 10-kbp O91 O-antigen biosynthesis locus of STEC O91. A DNA library representative of this cluster allowed two O91 specific probes to be identified, and two specific PCR O91 serotyping tests to be successfully developed. CONCLUSIONS: These results confirm that the O-antigen gene cluster sequences of E. coli allow rapidly a specific O-antigen PCR assay to be designed. SIGNIFICANCE AND IMPACT OF THE STUDY: These findings increase the number of PCR-assays available to replace the classical O-serotyping among E. coli O-antigen.  相似文献   

8.
AIMS: To investigate the physicochemical surface properties, such as cellular surface charge, hydrophobicity and electron donor/acceptor potential of a selection of Shiga toxigenic Escherichia coli (STEC) isolates grown in broth and agar culture. METHODS AND RESULTS: Cellular surface charge was determined using zeta potential measurements. Hydrophobicity of the isolates was determined using bacterial adhesion to hydrocarbons assay, hydrophobic interaction chromatography and contact angle measurements. Microbial adhesion to solvents was used to determine the electron donor/acceptor characteristics. No differences of surface charge measurements were found between broth and agar grown cultures. Isolates belonging to serogroup O157 and serotypes O26:H11 and O111:H- were significantly (P < 0.05) less negatively charged than other STEC serotypes tested. All strains were hydrophilic with most methods and demonstrated a lower hydrophobicity in agar culture compared with broth culture. All strains demonstrated a strong microbial adhesion to chloroform indicating that STEC possess an electron donor and basic character. A relationship between serogroup O157 and other STEC serotypes was apparent using principal-component analysis (PCA). CONCLUSIONS: Combining the results for physicochemical properties using PCA differentiated between strains belonging to the O157 serogroup and other STEC/non-STEC strains. PCA found similar results for broth and agar grown cultures. SIGNIFICANCE AND IMPACT OF THE STUDY: Particular serotypes of STEC possess similar physicochemical properties which may play a role in their pathogenicity or potential attachment to various surfaces.  相似文献   

9.
AIMS: To develop and evaluate a multiplex PCR (mPCR) system for rapid and specific identification of Shiga toxin-producing Escherichia coli (STEC) and their main virulence marker genes. METHODS AND RESULTS: A series of mPCR assays were developed using primer pairs that identify the sequences of Shiga toxins 1 and 2 (stx1 and stx2, including the stx2c, stx2d, stx2e and stx2f variants), intimin (eaeA), and enterohaemorrhagic E. coli enterohaemolysin (ehlyA). Moreover, two additional genes (rfb O157 and fliC H7), providing the genotypic identification of the O157:H7 E. coli serotype, were detected. As an internal positive control, primers designated to amplify the E. coli 16S rRNA were included in each mPCR. All the amplified genes in the E. coli reference strains were sucessfully identified by this procedure. The method was then used for the examination of 202 E. coli isolates recovered from cattle and children. Among them, 25 (12.4%) were stx positive including the strains of O157:H7 serotype (six isolates) and O157:NM serogroup (four strains). Moreover, 20 STEC strains possessed the eaeA (intimin) and ehlyA (enterohaemolysin) genes. CONCLUSIONS: The developed mPCR-based system enabled specific detection of STEC bacteria and identification of their main virulence marker genes. SIGNIFICANCE AND IMPACT OF THE STUDY: The ability to identify STEC bacteria and the majority of their virulence gene markers, including four variants of Shiga toxin, as well as the differentiation of O157:H7 from non-O157 isolates represents a considerable advancement over other PCR-based methods for rapid characterization of STEC.  相似文献   

10.
AIMS: The aims of the study were to identify the specific genes of O-antigen gene cluster from Shiga toxin-producing Escherichia coli (STEC) O103 and to provide the basis for a specific real-time PCR test for rapid detection of E. coli O103. METHODS AND RESULTS: The published primers complementary to JUMPstart and gnd gene, the conserved flanking sequences of O-antigen genes clusters in E. coli and related species, were used to amplify the 12-kbp O103 O-antigen biosynthesis locus of STEC O103. A DNA library representative of this cluster allowed two O103-specific probes to be identified in the flippase (wzx) and UDP-galactose-4-epimerase (galE) genes. Two specific O103 serotyping real-time PCR tests based on these two genes were successfully developed. CONCLUSIONS: These results confirm that the O-antigen gene cluster sequences of E. coli allow rapidly a specific O-antigen real-time PCR assay to be designed. SIGNIFICANCE AND IMPACT OF THE STUDY: These findings increase the number of real-time PCR-assays available to replace the classical O-serotyping among E. coli O-antigen.  相似文献   

11.
AIMS: The aim of this study was to isolate Escherichia coli O26, O103, O111 and O145 from 745 samples of bovine faeces using (i) immunomagnetic separation (IMS) beads coated with antibodies to lipopolysaccharide, and slide agglutination (SA) tests and (ii) PCR and DNA probes for the detection of the Verocytotoxin (VT) genes. METHODS AND RESULTS: IMS-SA tests detected 132 isolates of presumptive E. coli O26, 112 (85%) were confirmed as serogroup O26 and 102 had the VT genes. One hundred and twenty-two strains of presumptive E. coli O103 were isolated by IMS-SA, 45 (37%) were confirmed as serogroup O103 but only one of these strains was identified as Verocytotoxin-producing E. coli (VTEC). Using the PCR/DNA probe method, 40 strains of VTEC O26 and three strains of VTEC O103 were isolated. IMS-SA identified 21 strains of presumptive E. coli O145, of which only four (19%) were confirmed as serogroup O145. VTEC of this serogroup was not detected by either IMS-SA or PCR/DNA probes. E. coli O111 was not isolated by either method. CONCLUSION: IMS beads were 2.5 times more sensitive than PCR/DNA probe methods for the detection of VTEC O26 in bovine faeces. SIGNIFICANCE AND IMPACT OF THE STUDY: IMS-SA is a sensitive method for detecting specific E. coli serogroups. However, the specificity of this method would be enhanced by the introduction of selective media and the use of tube agglutination tests for confirmation of the preliminary SA results.  相似文献   

12.
AIMS: To provide information on detection of Shiga toxin-producing Escherichia coli (STEC) in retail-minced beef using an approach combining (i) PCR-based techniques and automated immunoassay for stx screening and detection of the five major serogroups associated with human infection, and (ii) immunomagnetic separation (IMS) and colony hybridization assays for bacterial strain isolation. METHODS AND RESULTS: Twenty-seven out of 164 minced beef samples were stx-positive by PCR-ELISA, nine of which were also positive by real-time PCR for at least one marker of the five main serogroups tested (O26, O103, O111, O145 and O157). Two E. coli O103 stx-negative strains were isolated from two out of 10 IMS and nine STEC strains that did not belong to the five main serogroups were isolated by colony hybridization. CONCLUSIONS: PCR techniques are applicable for rapid screening of samples containing both an stx gene and an O-group marker of the five main pathogenic STEC serogroups. Isolation of STEC strains belonging to the main non-O157 serogroups remains difficult. SIGNIFICANCE AND IMPACT OF THE STUDY: This study presents an evaluation of a multi-faceted approach for the detection of the most frequently reported human pathogenic STEC serogroups. The advantages and limits of this strategy are presented.  相似文献   

13.
By molecular cloning of chromosomal DNA of a human faecal Escherichia coli O6:non-motile strain, we identified a 1350-bp DNA segment which is commonly present in laboratory and wild-type E. coli strains but had no homology to DNA of Shiga-toxin producing E. coli O157, O145 and enteropathogens E. coli O55 strains. The nucleotide sequence of the 1350-bp segment cloned on plasmid pEO67 was determined (GenBank accession number AF087670) and a 97.2% sequence homology was found to a region of the E. coli hemB locus with an unknown gene function. The introduction of pEO67 into an STEC O157:H- strain had a stimulating effect on the growth of the recipient strain which was most expressed when bacteria were grown in iron depleted M9 medium with hemin added as the exogenous iron source. This growth effect was not observed with E. coli K-12 carrying pEO67. We suggest that the cloned gene is involved in iron uptake of E. coli and that the alteration in this part of the hemB locus is clonally inherited in genetically closely related STEC O157 and O55 strains.  相似文献   

14.
AIMS: This study was carried out to evaluate the presence of Shiga toxin-producing Escherichia coli (STEC) and E. coli O157:H7 in shellfish from French coastal environments. METHODS AND RESULTS: Shellfish were collected in six growing areas or natural beds (B category) and nonfarming areas (D category) from July 2002 to August 2004. PCR detection of stx genes was performed on homogenized whole shellfish and digestive gland tissues enrichments. STEC strains were detected by colony DNA hybridization using a stx-specific gene probe and E. coli O157 strains were additionally searched by immunomagnetic separation with O157-specific magnetic beads. Stx genes were detected in 40 of 144 (27.8%) sample enrichments from mussels, oysters or cockles, 32 of 130 enrichments (24.6%) were from B-category areas and eight of 14 (57.1%) from the D-category area. Five strains carrying stx(1) or stx(1d) genes and one stx negative, eae and ehxA positive E. coli O157:H7 were isolated from six of 40 stx-positive enrichments. No relation was found between the total E. coli counts in shellfish and the presence of STEC strains in the samples. CONCLUSIONS: The STEC strains of different serotypes and stx types are present in shellfish from French coastal environments. It is the first isolation of STEC stx1d strains in France. SIGNIFICANCE AND IMPACT OF THE STUDY: Shellfish collected in coastal environments can serve as a vehicle for STEC transmission.  相似文献   

15.
Direct PCR detection of Escherichia coli O157:H7   总被引:2,自引:0,他引:2  
AIMS: This paper reports a simple, rapid approach for the detection of Shiga toxin (Stx)-producing Escherichia coli (STEC). METHODS AND RESULTS: Direct PCR (DPCR) obviates the need for the recovery of cells from the sample or DNA extraction prior to PCR. Primers specific for Stx-encoding genes stx1 and stx2 were used in DPCR for the detection of E. coli O157:H7 added to environmental water samples and milk. CONCLUSIONS: PCR reactions containing one cell yielded a DPCR product. SIGNIFICANCE AND IMPACT OF THE STUDY: This should provide an improved method to assess contamination of environmental and other samples by STEC and other pathogens.  相似文献   

16.
A total of 50 isolates of Shiga toxin-producing Escherichia coli (STEC), including 29 O157:H7 and 21 non-O157 STEC strains, were analyzed for antimicrobial susceptibilities and the presence of class 1 integrons. Seventy-eight (n = 39) percent of the isolates exhibited resistance to two or more antimicrobial classes. Multiple resistance to streptomycin, sulfamethoxazole, and tetracycline was most often observed. Class 1 integrons were identified among nine STEC isolates, including serotypes O157:H7, O111:H11, O111:H8, O111:NM, O103:H2, O45:H2, O26:H11, and O5:NM. The majority of the amplified integron fragments were 1 kb in size with the exception of one E. coli O111:H8 isolate which possessed a 2-kb amplicon. DNA sequence analysis revealed that the integrons identified within the O111:H11, O111:NM, O45:H2, and O26:H11 isolates contained the aadA gene encoding resistance to streptomycin and spectinomycin. Integrons identified among the O157:H7 and O103:H2 isolates also possessed a similar aadA gene. However, DNA sequencing revealed only 86 and 88% homology, respectively. The 2-kb integron of the E. coli O111:H8 isolate contained three genes, dfrXII, aadA2, and a gene of unknown function, orfF, which were 86, 100, and 100% homologous, respectively, to previously reported gene cassettes identified in integrons found in Citrobacter freundii and Klebsiella pneumoniae. Furthermore, integrons identified among the O157:H7 and O111:NM strains were transferable via conjugation to another strain of E. coli O157:H7 and to several strains of Hafnia alvei. To our knowledge, this is the first report of integrons and antibiotic resistance gene cassettes in STEC, in particular E. coli O157:H7.  相似文献   

17.
Shiga toxin (Stx)-producing Escherichia coli (STEC) strains are a diverse group of food-borne pathogens with various levels of virulence for humans. In this study, we describe the use of a combination of multiple real-time PCR assays for the screening of 400 raw-milk cheeses for the five main pathogenic STEC serotypes (O26:H11, O103:H2, O111:H8, O145:H28, and O157:H7). The prevalences of samples positive for stx, intimin-encoding gene (eae), and at least one of the five O group genetic markers were 29.8%, 37.3%, and 55.3%, respectively. The H2, H7, H8, H11, and H28 fliC alleles were highly prevalent and could not be used as reliable targets for screening. Combinations of stx, eae variants, and O genetic markers, which are typical of the five targeted STEC serotypes, were detected by real-time PCR in 6.5% of the cheeses (26 samples) and included stx-wzx(O26)-eae-β1 (4.8%; 19 samples), stx-wzx(O103)-eae-ε (1.3%; five samples), stx-ihp1(O145)-eae-γ1 (0.8%; three samples), and stx-rfbE(O157)-eae-γ1 (0.3%; one sample). Twenty-eight immunomagnetic separation (IMS) assays performed on samples positive for these combinations allowed the recovery of seven eaeβ1-positive STEC O26:H11 isolates, whereas no STEC O103:H2, O145:H28, or O157:H7 strains could be isolated. Three stx-negative and eaeβ1-positive E. coli O26:[H11] strains were also isolated from cheeses by IMS. Colony hybridization allowed us to recover STEC from stx-positive samples for 15 out of 45 assays performed, highlighting the difficulties encountered in STEC isolation from dairy products. The STEC O26:H11 isolates shared the same virulence genetic profile as enterohemorrhagic E. coli (EHEC) O26:H11, i.e., they carried the virulence-associated genes EHEC-hlyA, katP, and espP, as well as genomic O islands 71 and 122. Except for one strain, they all contained the stx1 variant only, which was reported to be less frequently associated with human cases than stx2. Pulsed-field gel electrophoresis (PFGE) analysis showed that they displayed high genetic diversity; none of them had patterns identical to those of human O26:H11 strains investigated here.  相似文献   

18.
AIMS: To study the incidence of Shiga-toxigenic Escherichia coli (STEC) in seafoods from India. METHODS AND RESULTS: Escherichia coli isolated from various seafoods such as fresh fish, clams and water were screened for the presence of stx, hlyA and rfbO157 genes by PCR; 5% of clams and 3% of fresh fish samples were positive for non-O157 STEC. CONCLUSIONS: STEC is prevalent in seafoods in India, and non-O157 serotype is more common. SIGNIFICANCE AND IMPACT OF THE STUDY: Seafood could be a vehicle for transmission of STEC even in tropical countries.  相似文献   

19.
AIMS: The aim of the study was to monitor the shedding and transmission of generic and Shiga toxin-producing Escherichia coli (STEC) in a consignment of cattle during lot feeding. METHODS AND RESULTS: Faecal and environmental samples were tested for total E. coli and screened with PCR specific for Shiga toxin and O157 rfb. STEC were isolated using colony hybridization and characterized by serology and genotyping. STEC prevalence initially decreased after the diet shift from pasture to grain, although there were intermittent peaks in numbers of cattle shedding STEC and E. coli O157. Water troughs and soil were intermittently contaminated. Common genotypes and serotypes were isolated from animals, water and soil in the feedlot, with additional types introduced at slaughter. CONCLUSION: STEC and E. coli O157 are endemic in cattle and intermittent peaks in shedding occur. Prevention of these peaks and/or reduction in transmission is required to reduce the risk of carcass contamination during slaughter. SIGNIFICANCE AND IMPACT OF THE STUDY: These findings contribute to the understanding of the ecology of STEC and suggest control points for reducing STEC contamination in feedlot cattle production.  相似文献   

20.
Cattle are a major reservoir for Shiga toxin-producing Escherichia coli O157 (STEC O157) and harbor multiple genetic subtypes that do not all associate with human disease. STEC O157 evolved from an E. coli O55:H7 progenitor; however, a lack of genome sequence has hindered investigations on the divergence of human- and/or cattle-associated subtypes. Our goals were to 1) identify nucleotide polymorphisms for STEC O157 genetic subtype detection, 2) determine the phylogeny of STEC O157 genetic subtypes using polymorphism-derived genotypes and a phage insertion typing system, and 3) compare polymorphism-derived genotypes identified in this study with pulsed field gel electrophoresis (PFGE), the current gold standard for evaluating STEC O157 diversity. Using 762 nucleotide polymorphisms that were originally identified through whole-genome sequencing of 189 STEC O157 human- and cattle-isolated strains, we genotyped a collection of 426 STEC O157 strains. Concatenated polymorphism alleles defined 175 genotypes that were tagged by a minimal set of 138 polymorphisms. Eight major lineages of STEC O157 were identified, of which cattle are a reservoir for seven. Two lineages regularly harbored by cattle accounted for the majority of human disease in this study, whereas another was rarely represented in humans and may have evolved toward reduced human virulence. Notably, cattle are not a known reservoir for E. coli O55:H7 or STEC O157:H(-) (the first lineage to diverge within the STEC O157 serogroup), which both cause human disease. This result calls into question how cattle may have originally acquired STEC O157. The polymorphism-derived genotypes identified in this study did not surpass PFGE diversity assessed by BlnI and XbaI digestions in a subset of 93 strains. However, our results show that they are highly effective in assessing the evolutionary relatedness of epidemiologically unrelated STEC O157 genetic subtypes, including those associated with the cattle reservoir and human disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号