首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In rats unilaterally nephrectomized 2 days before and sham operated controls, an acute fenal failure (ARF) has been induced by subcutaneous HgCl2 injection. The uninephrectomized animals showed a more severe ARF than the sham operated, 60% of the former and 10% of the controls became anuric 48 hours after ARF induction. The increased diuresis and natriuresis produced by acute saline overload did not improve the severity of the ARF. The marked difference in the evolution of this model of ARF with respect to the glycerol induced ARF, which is ameliorated by reduction of renal mass, emphasizes the different pathogenetic mechanism of these two experimental models.  相似文献   

2.
Lipid peroxidation--an initial event in experimental acute renal failure   总被引:2,自引:0,他引:2  
A method was developed to monitor the occurrence of lipid peroxidation (LPO) during ischemia and Na-maleate-induced acute renal failure (ARF) on male rats in vivo by measuring malondialdehyde (MDA) levels in arterial and renal venous blood and in urine. No signs of LPO could be detected under control conditions. In ischemic ARF produced by 45 min of renal artery clamping a steep increase of MDA was found in the renal venous effluent immediately after starting reperfusion. This effect was nearly abolished after 5 min of blood reflow while glomerular filtration remained at 5% of control value during a 90-min postischemic observation period. Intoxication with Na-maleate leads to enhanced LPO in combination with an impaired renal function 2 h after administration. These findings would well explain cellular damage and some aspects of renal dysfunction associated with the initiation phase of ARF.  相似文献   

3.
Kang DG  Oh H  Sohn EJ  Hur TY  Lee KC  Kim KJ  Kim TY  Lee HS 《Life sciences》2004,75(15):1801-1816
The present study was designed to examine whether lithospermic acid B (LSB) isolated from Salvia miltiorrhiza has an ameliorative effect on renal functional parameters in association with the expression of aquaporin 2 (AQP 2) and Na,K-ATPase in the ischemia-reperfusion induced acute renal failure (ARF) rats. LSB showed strong antioxidant activity against production of reactive oxygen species (ROS), ROS-induced hemolysis, and production of lipid peroxide in a dose-dependent manner. Polyuria caused by down-regulation of renal AQP 2 in the ischemia-reperfusion induced ARF rats was partially restored by administration of LSB (40 mg/kg, i.p.), restoring expression of AQP 2, in renal inner and outer medulla. The expression of Na,K-ATPase alpha1 subunit in outer medulla of the ARF rats was also restored in the ARF rats by administration of LSB, while beta1 subunit level was not altered. The renal functional parameters including creatinine clearance, urinary sodium excretion, urinary osmolality, and solute-free reabsorption were also partially restored in ischemia-ARF rats by administration of LSB. Histological study also showed that renal damages in the ARF rats were abrogated by administration of LSB. Taken together, these data indicate that LSB ameliorates renal defects in rats with ischemia-reperfusion induced ARF, most likely via scavenging of ROS.  相似文献   

4.
The present study investigated the impact of ifosfamide (IFO) on renal thioredoxin reductase (TrxR) activity. In mice treated with IFO for 6 h, TrxR activity significantly decreased in a dose-dependent manner. Subsequently, acute renal failure (ARF) occurred dose-dependently. Like IFO, the well-established TrxR-specific inhibitor auranofin suppresfssed renal TrxR activity and generated ARF too. TrxR was inactivated by IFO preferentially over other antioxidant parameters at 6 h; however, it recovered nearly to normal levels within 12 h. When auranofin was administered at 6 h after IFO treatment, the recovery at 12 h was sharply attenuated. Consequently, ARF was pronouncedly exacerbated. IFO within its maximum tolerated dose did not considerably deplete renal glutathione. However, escalating IFO dose strikingly attacked both the thioredoxin and the glutathione systems, resulting in lethality, which implies that glutathione depletion sensitizes IFO-induced nephrotoxicity and cosuppression of both systems causes more severe toxicological consequences than suppressing the thioredoxin system alone. Indeed, combining IFO with buthionine sulfoximine, an inhibitor of glutathione synthesis, induced much more severe ARF than IFO alone did. Taken together, inhibition of renal TrxR activity can be considered as a pivotal mechanism of IFO-induced ARF, and individuals with lower levels of renal glutathione are at high risk of incurring ARF after IFO treatment.  相似文献   

5.
In addition to the long-term renal complications, previous studies suggested that after acute renal failure (ARF), rats manifest an increased pressor response to an overnight infusion of ANG II. The present study tested whether recovery from ARF results in alterations in sensitivity to the peripheral vasculature. ARF was induced in Sprague-Dawley rats by 45 min of bilateral renal ischemia and reperfusion. Animals were allowed to recover renal structure and function for 5-8 wk, after which the acute pressor responses to ANG II were evaluated either in vivo in in situ skeletal muscle arterioles or in isolated gracilis muscle arteries in vitro. Baseline arterial pressure was not different in ARF rats vs. sham-operated controls, although ARF rats exhibited an enhanced pressor response to bolus ANG II infusion compared with control rats. Steady-state plasma ANG II concentration and plasma renin activity were similar between ARF and control rats. Constrictor reactivity of in situ cremasteric arterioles from ARF rats was enhanced in response to increasing concentrations of ANG II; however, no difference was observed in arteriolar responses to elevated PO2, norepinephrine, acetylcholine, or sodium nitroprusside. Isolated gracilis muscle arteries from ARF rats also showed increased vasoconstriction in response to ANG II but not norepinephrine. In conclusion, recovery from ischemic ARF is not associated with hypertension but is associated with increased arteriolar constrictor reactivity to ANG II. Although the mechanisms of this altered responsiveness are unclear, such changes may relate, in part, to cardiovascular complications in patients with ARF and/or after renal transplant.  相似文献   

6.
Role of Toll-like receptor 4 in endotoxin-induced acute renal failure   总被引:18,自引:0,他引:18  
Toll-like receptor 4 (TLR4) is present on monocytes and other cell types, and mediates inflammatory events such as the release of TNF after exposure to LPS. C3H/HeJ mice are resistant to LPS-induced mortality, due to a naturally occurring mutation in TLR4. We therefore hypothesized that LPS-induced acute renal failure (ARF) requires systemic TNF release triggered by LPS acting on extrarenal TLR4. We injected C3H/HeJ mice and C3H/HeOuJ controls with 0.25 mg of LPS, and sacrificed them 6 h later for analysis of blood urea nitrogen (BUN) and kidney tissue (n = 8 per group). In contrast to C3H/HeOuJ controls, C3H/HeJ mice were completely resistant to LPS-induced ARF (6-h BUN of 32.3 +/- 1.1 vs 61.7 +/- 5.6 mg/dl). C3H/HeJ mice released no TNF into the circulation at 2 h (0.00 vs 1.24 +/- 0.16 ng/ml), had less renal neutrophil infiltration (6.4 +/- 1.0 vs 11.4 +/- 1.3 neutrophils per high power field), and less renal apoptosis, as assessed by DNA laddering. Transplant studies showed that C3H/HeJ recipients of wild-type kidneys (n = 9) were protected from LPS-induced ARF, while wild-type recipients of C3H/HeJ kidneys (n = 11) developed severe LPS-induced ARF (24-h BUN 44.0 +/- 4.1 vs 112.1 +/- 20.0 mg/dl). These experiments support our hypothesis that LPS acts on extrarenal TLR4, thereby leading to systemic TNF release and subsequent ARF. Renal neutrophil infiltration and renal cell apoptosis are potential mechanisms by which endotoxemia leads to functional ARF.  相似文献   

7.
Acute renal failure (ARF) is a relatively frequent complication associated with heart transplantation. It develops in the first few days postoperatively and is characterized by oliguria with laboratory and urinary indices typical of pre-renal azotemia. Cyclosporine, especially with higher doses, is one of the many factors which play an integral part in the nephrotoxicity following cardiac transplant. Poor preoperative renal function and perioperative hemodynamic compromise may also contribute to ARF. The actual incidence of ARF now encountered by transplant centers may be lower than previously reported, the result of lower cyclosporine doses. Currently, management is entirely supportive, but novel therapeutic approaches with atrial natriuretic peptide-like substances are being explored. A case illustrating the typical clinical presentation of ARF after heart transplant will be presented and the clinical features will be reviewed.  相似文献   

8.
Reactive oxygen species (ROS) are likely candidates for involvement in ischemia/reperfusion-induced acute renal failure (ARF). In this study, the issue of whether superoxide dismutase (SOD1)-deficiency exacerbates the ischemia/reperfusion-induced ARF was examined. At two weeks after a right nephrectomy of mice, the left renal vessels were clipped to induce renal ischemia and were then released after 45 min. The severe renal damage observed at one day was partially recovered at seven days after the induction of ischemia. SOD1- / -  mice suffer from severe ARF compared with SOD1+/ -  and SOD1+/+ mice. The damage was more evident in aged animals (24-28 week old) than younger ones (10-12 week old). The expression of major antioxidative and redox enzymes, except for CuZnSOD, were substantially unchanged. Thus, the increased ARF in SOD1- / -  mice appears to be mainly attributable to a deficiency in CuZnSOD. These data support the view that ROS are exacerbating factors in ischemia/reperfusion-induced ARF.  相似文献   

9.
Bacterial endotoxin (LPS) is responsible for much of the widespread inflammatory response seen in sepsis, a condition often accompanied by acute renal failure (ARF). In this work we report that mice deficient in TNFR1 (TNFR1(-/-)) were resistant to LPS-induced renal failure. Compared with TNFR1(+/+) controls, TNFR1(-/-) mice had less apoptosis in renal cells and fewer neutrophils infiltrating the kidney following LPS administration, supporting these as mediators of ARF. TNFR1(+/+) kidneys transplanted into TNFR1(-/-) mice sustained severe ARF after LPS injection, which was not the case with TNFR1(-/-) kidneys transplanted into TNFR1(+/+) mice. Therefore, TNF is a key mediator of LPS-induced ARF, acting through its receptor TNFR1 in the kidney.  相似文献   

10.
Reactive oxygen species (ROS) are likely candidates for involvement in ischemia/reperfusion-induced acute renal failure (ARF). In this study, the issue of whether superoxide dismutase (SOD1)-deficiency exacerbates the ischemia/reperfusion-induced ARF was examined. At two weeks after a right nephrectomy of mice, the left renal vessels were clipped to induce renal ischemia and were then released after 45 min. The severe renal damage observed at one day was partially recovered at seven days after the induction of ischemia. SOD1? / ? mice suffer from severe ARF compared with SOD1+/ ? and SOD1+/+ mice. The damage was more evident in aged animals (24–28 week old) than younger ones (10–12 week old). The expression of major antioxidative and redox enzymes, except for CuZnSOD, were substantially unchanged. Thus, the increased ARF in SOD1? / ? mice appears to be mainly attributable to a deficiency in CuZnSOD. These data support the view that ROS are exacerbating factors in ischemia/reperfusion-induced ARF.  相似文献   

11.
Seventeen Sprague-Dawley rats had ischemic nonoliguric acute renal failure (ARF) induced by vascular clamping resulting in their preischemic blood urea nitrogen (BUN) and creatinine levels of 16 +/- 1 and 0.56 +/- 0.05 mg/dl to increase to 162 +/- 4 and 8.17 +/- 0.5 mg/dl, P < 0.001, respectively, at day 4 of postischemia. Vessel dilator, a 37-amino-acid cardiac peptide hormone (0.3 microg x kg(-1) x min(-1) ip), decreased the BUN and creatinine levels to 53 +/- 17 mg/dl and 0.98 +/- 0.12 mg/dl (P < 0.001) in another seven animals where ARF had been established for 2 days. Water excretion doubled with ARF and was further augmented by vessel dilator. Transthoracic echocardiography revealed left ventricular dilation as a probable cause of the increase in vessel dilator in the circulation with ARF, and vessel dilator infusion reversed this dilation. At day 6 of ARF, mortality decreased to 14% with vessel dilator from 88% without vessel dilator. Acute tubular necrosis was <5% in the vessel dilator-treated rats compared with 25% to >75% in the placebo-treated ARF animals. We conclude that vessel dilator improves acute tubular necrosis and renal function in established ARF.  相似文献   

12.
Myoglobinuric acute renal failure (ARF) is a uremic syndrome caused by traumatic or non-traumatic skeletal muscle breakdown and intracellular elements that are released into the bloodstream. We hypothesized that hyperbaric oxygen (HBO) therapy could be beneficial in the treatment of myoglobinuric ARF caused by rhabdomyolysis. A total of 32 rats were used in the study. The rats were divided into four groups: control, control+hyperbaric oxygen (control+HBO), ARF, and ARF+hyperbaric oxygen (ARF+HBO). Glycerol (8 ml/kg) was injected into the hind legs of each of the rats in ARF and ARF+HBO groups. 2.5 atmospheric absolute HBO was applied to the rats in the control+HBO and ARF+HBO groups for 90 min on two consecutive days. Plasma urea, creatinine, sodium, potassium, calcium, aspartate aminotransferase, alanine aminotransferase, lactic dehydrogenase, creatinine kinase and urine creatinine and sodium were examined. Creatinine clearance and fractional sodium excretion could then be calculated. Superoxide dismutase, catalase, glutathione and malondialdehyde (MDA) levels were assessed in renal tissue. Tissue samples were evaluated by Hematoxylin-eosin, PCNA and TUNEL staining histopathologically. MDA levels were found to be significantly decreased whereas SOD and CAT were twofold higher in the ARF+HBO group compared to the ARF group. Renal function tests were ameliorated by HBO therapy. Semiquantitative evaluation of histopathological findings indicated that necrosis and cast formation was decreased by HBO therapy and TUNEL staining showed that apoptosis was inhibited. PCNA staining showed that HBO therapy did not increase regeneration. Ultimately, we conclude that, in accordance with our hypothesis, HBO could be beneficial in the treatment of myoglobinuric ARF.  相似文献   

13.
Acute renal failure (ARF) in response to ischemia-reperfusion is thought to be associated with neutrophil infiltration. Neutrophil recruitment depends on adhesion molecules, including P-selectin. Our study sought to characterize the role of P-selectin in ischemia-reperfusion (I/R) -induced acute renal failure (ARF). In wild-type (wt) and P-selectin-deficient (P-/-) mice (both C57BL/6), ARF was induced by 32 min bilateral renal ischemia, followed by reperfusion (I/R). Wt showed a 12- and 20-fold increase in creatinine at 24 and 48 h after I/R, respectively. Similar changes were seen in blood urea nitrogen (BUN). By contrast, in P-/- creatinine and BUN increased only moderately (fourfold over sham). In wt, renal myeloperoxidase activity, indicating neutrophil infiltration, peaked after 24 h (19-fold over sham). This was significantly attenuated in P-/- (fivefold over sham). Western blot analysis revealed maximum P-selectin expression 12 h after I/R in wt. Immunostaining detected P-selectin in glomerular endothelium and in platelets adherent in glomerular and peritubular vessels. Postischemic injection of P-selectin antibody at 10 min after reperfusion, but not isotype control antibody, protected wt from ARF similar to the protection seen in P-/-. We conclude that blocking P-selectin even after onset of reperfusion protects mice from I/R-induced ARF, suggesting potential therapeutic strategies aimed at blocking P-selectin.  相似文献   

14.
Acute renal failure (ARF) is a major complication of gentamicin (GM) treatment, which is effective against gram-negative infections. Since experimental evidence suggests a role of reactive oxygen species (ROS) in GM-induced ARF, in this work we studied the effect of a garlic-derived compound, S-allylcysteine (SAC), which is a free radical scavenger, on GM-induced nephrotoxicity. In rats treated with GM (70 mg/kg/12 h/4 days/s.c.), ARF was evident by the: (i) decrease in creatinine clearance and increase in blood urea nitrogen, (ii) decrease in blood glutathione peroxidase (GPx) activity and increase in urinary excretion of N-acetyl-beta-D-glucosaminidase and total protein, and (iii) necrosis of proximal tubular cells. These alterations were prevented by SAC treatment (250 mg/kg/i.p. 24 h before the first dose of GM and 125 mg/kg/12 h/4 days along GM-treatment). Furthermore, SAC prevented the GM-induced oxidative stress (protein carbonyl groups) and the decrease in manganese superoxide dismutase (Mn-SOD), GPx, and glutathione reductase (GR) activities in renal cortex. In conclusion, SAC ameliorates the GM-induced ARF by a mechanism related, at least in part, to its ability to decrease oxidative stress and to preserve antioxidant enzymes activity in renal cortex.  相似文献   

15.
AIM: To investigate whether fetal kidney stem cells (fKSC) ameliorate cisplatin induced acute renal failure (ARF) in rats and promote renal angiogenesis.METHODS: The fKSC were isolated from rat fetuses of gestation day 16 and expanded in vitro up to 3rd passage. They were characterized for the expression of mesenchymal and renal progenitor markers by flow cytometry and immunocytochemistry, respectively. The in vitro differentiation of fKSC towards epithelial lineage was evaluated by the treatment with specific induction medium and their angiogenic potential by matrigel induced tube formation assay. To study the effect of fKSC in ARF, fKSC labeled with PKH26 were infused in rats with cisplatin induced ARF and, the blood and renal tissues of the rats were collected at different time points. Blood biochemical parameters were studied to evaluate renal function. Renal tissues were evaluated for renal architecture, renal cell proliferation and angiogenesis by immunohistochemistry, renal cell apoptosis by terminal deoxynucleotidyl transferase nick-end labeling assay and early expression of angiogenic molecules viz. vascular endothelial growth factor (VEGF), hypoxia-inducible factor (HIF)-1α and endothelial nitric oxide synthase (eNOS) by western blot.RESULTS: The fKSC expressed mesenchymal markers viz. CD29, CD44, CD73, CD90 and CD105 as well as renal progenitor markers viz. Wt1, Pax2 and Six2. They exhibited a potential to form CD31 and Von Willebrand factor expressing capillary-like structures and could be differentiated into cytokeratin (CK)18 and CK19 positive epithelial cells. Administration of fKSC in rats with ARF as compared to administration of saline alone, resulted in a significant improvement in renal function and histology on day 3 (2.33 ± 0.33 vs 3.50 ± 0.34, P < 0.05) and on day 7 (0.83 ± 0.16 vs 2.00 ± 0.25, P < 0.05). The infused PKH26 labeled fKSC were observed to engraft in damaged renal tubules and showed increased proliferation and reduced apoptosis (P < 0.05) of renal cells. The kidneys of fKSC as compared to saline treated rats had a higher capillary density on day 3 [13.30 ± 1.54 vs 7.10 ± 1.29, capillaries/high-power fields (HPF), P < 0.05], and on day 7 (21.10 ± 1.46 vs 15.00 ± 1.30, capillaries/HPF, P < 0.05). In addition, kidneys of fKSC treated rats had an up-regulation of angiogenic proteins hypoxia-inducible factor-1α, VEGF and eNOS on day 3 (P < 0.05).CONCLUSION: Our study shows that fKSC ameliorate cisplatin induced ARF in rats and promote renal angiogenesis, which may be an important therapeutic mechanism of these stem cells in the disease.  相似文献   

16.
Patients with pre-existing hypertension are at a particular risk of fatal outcome due to acute renal failure (ARF). We investigate the effects of angiotensin II type-1 receptor blocker (ARB) losartan, on haemodynamics and biochemical parameters in adult male spontaneously hypertensive rats (SHR) with ischemia/reperfusion ARF. SHR were randomly selected in three experimental groups: sham-operated group (SHAM), ARF group, and ARF+LOS group (losartan, 10 mg/kg/b.w. given by infusion during the period of three hours after reperfusion). Beside the improvement of systemic haemodynamics 24 h after reperfusion, losartan significantly increased renal blood flow (RBF: 19.33±3.29 ml/min/kg vs. 8.03±1.04 ml/min/kg, p<0.05) and decreased renal vascular resistance (RVR) compared to ARF (8.85±1.21 mmHg × min × kg/ml vs. 19.90±2.35 mmHg × min × kg/ml, p<0.001). Plasma creatinine (Pcr), urea (Pu) and phosphates (Pphos) were significantly reduced in ARF+LOS group compared to ARF group (Pcr: 99.11±14.56 μmol/l vs. 242.71±20.25 μmol/l, p<0.001; Pu: 33.72±4.69 mmol/l vs. 61.90±3.93 mmol/l, p<0.001; 2.7±0.42 mmol/l vs. 5.57±0.61 mmol/l, p<0.01). Our results demonstrate that losartan improves systemic and regional haemodynamic and biochemical parameters in hypertension with ARF.  相似文献   

17.
Rhabdomyolysis-induced myoglobinuric acute renal failure accounts for about 10-40% of all cases of acute renal failure (ARF). Nitric oxide and reactive oxygen intermediates play a crucial role in the pathogenesis of myoglobinuric acute renal failure (ARF). This study was designed to investigate the effect of molsidomine and L-arginine in glycerol induced ARF in rats. Six groups of rats were employed in this study, group I served as control, group II was given 50% glycerol (8 ml/kg, intramuscularly), groups III and IV were given glycerol plus molsidomine (5 mg/kg, and 10 mg/kg p.o. route respectively) 60 min prior to the glycerol injection, group V animals were given glycerol plus L-arginine (125 mg/kg, p.o.) 60 min prior to the glycerol injection, and group VI received L-NAME (10 mg/kg, i.p.) along with glycerol 30 min prior to glycerol administration. Renal injury was assessed by measuring plasma creatinine, blood urea nitrogen, creatinine and urea clearance. The oxidative stress was measured by renal malondialdehyde levels, reduced glutathione levels and by enzymatic activity of catalase, reduced glutathione and superoxide dismutase. Tissue and urine nitrite levels were measured as an index of total nitric oxide levels. Glycerol treatment resulted in a marked decrease in tissue and urine nitric oxide levels, renal oxidative stress and significantly deranged the renal functions along with deterioration of renal morphology. Pre-treatment of animals with molsidomine (10 mg/kg) and L-arginine 60 min prior to glycerol injection markedly attenuated fall in nitric oxide levels, renal dysfunction, morphological alterations, reduced elevated TBARS and restored the depleted renal antioxidant enzymes. The animals treated with L-NAME along with glycerol further worsened the renal damage observed with glycerol. As a result, our results indicate that molsidomine and L-arginine may have beneficial effects in myoglobinuric ARF.  相似文献   

18.
Acute renal failure (ARF) can be defined as a sudden loss of renal function and is a common and serious clinical problem. There are many causes of ARF but the most common cause results from injury to the renal tubular epi-thelial cells (RTECs). RTECs can be injured by schemia or by cytotoxic agents and, once injured, can die by necrosis or apotosis. In general, necrosis occurs in response to any severe injury, which leads to the biochemical collapse of the cell. Milder forms of the same types of injury cause apoptosis. At the cellular level there are fundamental differences between necrosis and apoptosis. Necrosis results from the additive effect of a number of independent biochemical events that are activated by severe depletion of cell energy stores. By contrast, apoptosis occurs via a coordinated, predictable and pre-determined pathway. These biochemical differences between apoptosis and necrosis have important therapeutic implications. Once a cell has been severely injured, necrosis is difficult to prevent. By contrast, the apoptotic pathway can potentially be modulated to maintain cell viability. The components of the apoptotic pathway that are potentially amenable to therapeutic modulation are discussed in detail in this review.  相似文献   

19.
Recovery from acute renal failure (ARF) requires the replacement of injured cells with new cells that restore tubule epithelial integrity. We described recently the expression of a wide range of nephrogenic proteins in tubular cells after ARF induced by ischemia-reperfusion (I/R) (Villanueva S, Cespedes C, and Vio CP. Am J Physiol Regul Integr Comp Physiol 290: R861-R870, 2006). These markers, namely, Vimentin, neural cell adhesion molecules (Ncam), basic fibroblast growth factor (bFGF), paired homeobox-2 (Pax-2), bone morphogene protein-7 (BMP-7), Noggin, Lim-1, Engrailed, Smad, phospho-Smad, hypoxia-induced factor-1alpha (HIF-1alpha), VEGF, and Tie-2, are expressed in a time frame similar to that observed in normal kidney development. bFGF participates in early kidney development as a morphogen involved in mesenchyme/epithelial transition, and it is reexpressed in the recovery phase of ARF. To test the hypothesis that bFGF can accelerate the regeneration after renal damage, we used recombinant bFGF and studied the expression pattern of the above described morphogens in ARF. Male Sprague-Dawley rats were subjected to 30 min of renal ischemic injury and were injected with bFGF 30 microg/kg followed by reperfusion. Rats were killed and the expression of nephrogenic proteins were analyzed by immunohistochemistry and Western blot analysis. In the animals subjected to I/R treated with bFGF, we observed a 12- to 24-h earlier and more abundant reexpression of the proteins Ncam, bFGF, Pax-2, BMP-7, Noggin, Lim-1, Engrailed, VEGF, and Tie-2 than the I/R untreated rats. In addition, we observed a reduction in renal damage markers ED-1 and alpha-smooth muscle actin. These results indicate that bFGF can participate in the regeneration process and suggest that the treatment with bFGF can induce an earlier regeneration process after ischemic acute renal failure.  相似文献   

20.
Acute renal failure (ARF) was produced by the single intraperitoneal injection of 3 mg/kg mercuric chloride (HgCl2) in male Wistar rats. Immediately after, and in the 1st, 3rd, 6th, 24th and 48th hour after HgCl2 administration the following variables were monitored: plasma renin concentration (PRC), renal renin concentration (RRC) blood-urea nitrogen (BUN), plasma sodium (PNa), plasma creatinine (PCr) concentrations and haematocrit (Ht). Haematocrit and PNa increased during the first hour and returned to the control value in the 3rd hour. Thereafter, their level remained unchanged. Plasma renin concentration increased threefold during the first six hours after the HgCl2 injection, however, by the 48th hour it returned to the control value. In the first 24 hours of ARF, RRC remained unchanged. However, by the 48th hour its level increased four times the control value. After mercury injection BUN and PCr increased progressively. We were not able to establish any significant correlation between the changes of PRC and BUN. A gradual increase of RRC was observed in the course of ARF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号