首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yamagishiella, based on Pandorina unicocca Rayburn et Starr, is distinguished from Eudorina by its isogamous sexual reproduction, whereas Platydorina exhibits anisogamous sexual reproduction. In the present study, we sequenced the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (rbcL) genes from five Japanese and North American strains of Y. unicocca (Rayburn et Starr) Nozaki, two Platydorina caudata Kofoid strains, and two strains of Eudorina unicocca G. M. Smith, as well as eight related colonial and unicellular species. Phylogenetic trees were constructed based on these sequence data and on previously published rbcL gene sequences from 23 volvocalean species in order to deduce phylogenetic relationships within the colonial Volvocales, with particular regard to the phylogenetic positions and status of the genera Yamagishiella and Platydorina. Two robust monophyletic groups of the anisogamous/oogamous volvocacean species were resolved in the maximum-parsimony tree as well as in the neighbor-joining distance tree. One of the two groups comprises three species of Volvox section Volvox, whereas the other is composed of other sections of Volvox as well as of all the species of Eudorina and Pleodorina. Platydorina, however, was positioned outside these two monopliyletic groups. Therefore, derivation of the Platydorina lineage may be earlier than that of such anisogamous/oogamous groups, or orgin of “anisogamy with sperm packets” in Platydorina may be independent of sperm packet evolution in Eudorina, Pleodorina, and Volvox. It was also resolved with high bootstrap values that all of the Y. unicocca strains form a monophyletic group positioned outside the large monophyletic group including Eudorina and Pleodorina. These reject the possibility of the reverse evolution of isogamy from anisogamy to give rise to Yamagishiella within the lineage of Eudorina.  相似文献   

2.
1. Growth rates of seven species of planktonic algae were determined in culture over a range of temperature from 2 to 35 °C. Additional observations on growth and viability were made for 13 species in the temperature range 20–35 °C. 2. There was a wide range of growth rates between species at their optimal temperatures, from 1.7 divisions day?1 (Asterionella formosa) to 0.3 divisions day?1 (Ceratium furcoides). 3. There were considerable differences between species for growth at low and high temperature. Certain algae, including the diatom A. formosa and the flagellates Cryptomonas marssonii, Dinobryon divergens and Eudorina unicocca var. unicocca, had growth rates of 0.4 divisions day?1 or more at 5 °C. The cyanophyte Tychonema (formerly Oscillatoria) bourrellyi, the xanthophyte Tribonema sp., the desmid Staurastrum cingulum and the large dinoflagellate C. furcoides grew poorly or not at all at this temperature. All 21 species tested could grow at 25 °C, but many – including most of the diatoms, some cyanophytes, and all the flagellates – failed to grow persistently at 30 °C. Only Aphanizomenon flosaquae survived with moderate increase at 35 °C, a lethal temperature for the other species. 4. The applicability was considered of proposed quantitative formulations of the rate‐temperature relationship. Simple exponential relationships applied only to very limited lower ranges of temperature. The relationship proposed by B?lehrádek was a better fit over a wider temperature range, but still excluded rate‐decline at high temperature. 5. The interspecific differences found are of potential significance for restrictions in natural distributions associated with season, altitude (especially above 500 m) and latitude.  相似文献   

3.
Growth of most Rhizobium strains is inhibited by mimosine, a toxin found in large quantities in the seeds, foliage and roots of plants of the genera Leucaena and Mimosa. Some Leucaena-nodulating strains of Rhizobium can degrade mimosine (Mid+) and are less inhibited by mimosine in the growth medium than the mimosine-nondegrading (Mid-) strains. Ten Mid+ strains were identified that did not degrade 3-hydroxy-4-pyridone (HP), a toxic intermediate of mimosine degradation. However, mimosine was completely degraded by these strains and HP was not accumulated in the cells when these strains were grown in a medium containing mimosine as the sole source of carbon and nitrogen. The mimosine-degrading ability of rhizobia is not essential for nodulation of Leucaena species, but it provides growth advantages to Rhizobium strains that can utilize mimosine, and it suppresses the growth of other strains that are sensitive to this toxin.  相似文献   

4.
The effect of citrate on the growth of Lactococcus lactis subsp. lactis var. diacetylactis in milk has been investigated. Five strains of Lactococcus lactis subsp. lactis var. diacetylactis were compared to their citrate-negative variants, which lack the plasmid coding for citrate permease. In most cases, acidification kinetics and the final bacterial concentration of pure cultures of parental and variant strains did not differ significantly. Co-cultures of parental and variant strains, however, systematically tended towards the predominance of parental strains. Citrate metabolism is responsible for this change, since the predominance of citrate-positive strains was not observed in the absence of citrate. Continuous culture in milk enabled the difference in growth rates between the parental strain Lactococcus lactis subsp. lactis var. diacetylactis CDI1 and its citrate-negative variant to be quantified by following changes in the populations of the two co-cultured strains. At 26 °C, the growth rate of the parental strain was 7% higher than that of its citrate-negative variant. These results show that citrate metabolism slightly stimulates the growth of lactococci in milk. Received: 18 February 1997 / Received revision: 2 May 1997 / Accepted: 4 May 1997  相似文献   

5.
Variation in long-continued cultures of Haplopappus gracilis and Daucus carota has been investigated. A strain of carrot tissue was isolated that grew with a compact habit, in contrast to the highly friable habit of the parent strain. Its dividing cells were arranged quite differently than in the parent strain. Earlier work had shown that Haplopappus cultures could be reversibly altered in their pigmentation and form, by changing the culture medium. This was confirmed, and it was further shown that pronounced changes in nitrogenous compounds also occurred in response to factors in the medium. However, strains of Haplopappus were isolated which differed persistently from the parent strain, even when they were maintained under the same conditions. The variant strains, grown in the same medium, showed differences in their content of nitrogenous compounds. Stock cultures also changed spontaneously with time with respect to their content of nitrogenous substances. Acriflavine, at low concentration, inhibited the growth and formation of colonics by cells plated on nutrient agar, but, by prolonged exposure to sublethal amounts of the drug, resistant strains were isolated. Certain of the spontaneous variant strains were found to differ from each other and from the parent strain in their chromosome complements in ways that are described and to which the observed changes in morphology and metabolism of the cultures may be attributed. The variations that may occur in the free cells in culture are contrasted with the greater uniformity of the cells as they exist in the plant body.  相似文献   

6.
Toxic Microcystis blooms frequently occur in eutrophic water bodies and exist in the form of colonial and unicellular cells. In order to understand the mechanism of Microcystis dominance in freshwater bodies, the physiological and biochemical responses of unicellular (4 strains) and colonial (4 strains) Microcystis strains to phosphorus (P) were comparatively studied. The two phenotype strains exhibit physiological differences mainly in terms of their response to low P concentrations. The growth of four unicellular and one small colonial Microcystis strain was significantly inhibited at a P concentration of 0.2 mg l−1; however, that of the large colonial Microcystis strains was not inhibited. The results of phosphate uptake experiments conducted using P-starved cells indicated that the colonial strains had a higher affinity for low levels of P. The unicellular strains consumed more P than the colonial strains. Alkaline phosphatase activity in the unicellular strains was significantly induced by low P concentrations. Under P-limited conditions, the oxygen evolution rate, F v/F m, and ETR max were lower in unicellular strains than in colonial strains. These findings may shed light on the mechanism by which colonial Microcystis strains have an advantage with regard to dominance and persistence in fluctuating P conditions. Handling editor: L. Naselli-Flores  相似文献   

7.
Three strains were isolated from hydrocarbon-polluted alpine habitats and were representatives of Cryptococcus terreus (strain PB4) and Rhodotorula creatinivora (strains PB7, PB12). All three strains synthesized and accumulated glycogen (both acid- and alkali-soluble) and trehalose during growth in complex medium containing glucose as carbon source and in minimal salt medium (MSM) with phenol as sole carbon and energy source. C. terreus strain PB4 showed a lower total accumulation level of storage compounds and a lower extracellular polysaccharides (EPS) production than the two R. creatinivora strains, PB7 and PB12. Biofilm formation and phenol degradation by yeast strains attached to solid carriers of zeolite or filter sand were studied at 10°C. Phenol degradation by immobilized yeast strains was always higher on zeolite compared with filter sand under normal osmotic growth conditions. The transfer of cells immobilized on both solid supports to a high osmotic environment decreased phenol degradation activity by all strains. However, both R. creatinivora PB7 and PB12 strains maintained higher ability to degrade phenol compared with C. terreus strain PB4, which almost completely lost its phenol degradation activity. Moreover, R. creatinivora strain PB7 showed the highest ability to form biofilm on both carriers under high osmotic conditions of cultivation.  相似文献   

8.
Eight representative strains of Alcaligenes eutrophus, two strains of Alcaligenes hydrogenophilus and three strains of Paracoccus denitrificans were examined for their ability to use different alcohols and acetoin as a carbon source for growth. A. eutrophus strains N9A, H16 and derivative strains were unable to grow on ethanol or on 2,3-butanediol. Alcohol-utilizing mutants derived from these strains, isolated in this study, can be categorized into two major groups: Type I-mutants represented by strain AS1 occurred even spontaneously and were able to grow on 2,3-butanediol (t d=2.7–6.4 h) and on ethanol (t d=15–50 h). The fermentative alcohol dehydrogenase was present on all substrates tested, indicating that this enzyme in vivo is able to oxidize 2,3-butanediol to acetoin which is a good substrate for wild type strains. Type II-mutants represented by strain AS4 utilize ethanol as a carbon source for growth (t d=3–9 h) but do not grow on butanediol. In these mutants the fermentative alcohol dehydrogenase is only present in cells cultivated under conditions of restricted oxygen supply, but a different NAD-dependent alcohol dehydrogenase is present in ethanol grown cells. Cells grown on ethanol, acetoin or 2,3-butanediol synthesized in addition two proteins exhibiting NAD-dependent acetaldehyde dehydrogenase activity and acetate thiokinase. An acylating acetaldehyde dehydrogenase (EC 1.2.1.10) was not detectable. Applying the colistin- and pin point-technique for mutant selection to strain AS1, mutants, which lack the fermentative alcohol dehydrogenase even if cultivated under conditions of restricted oxygen supply, were isolated; the growth pattern served as a readily identifiable phenotypic marker for the presence or absence of this enzyme.  相似文献   

9.
The cytopathogenicity of Naegleria fowleri strain LEE (ATCC-30894) for cultured rat neuroblastoma cells (B-103) has been investigated. Both live N. fowleri amoebae and Naegleria lysates added to 51Cr-labeled B-103 cells caused release of radiolabel, which was dependent upon the ratio of amoebae to target cells or to the lysate concentration. Lysates of N. fowleri strains LEE, NF-66, NF-69, and HB-4 were equally injurious to B-103 target cells whereas lysates of strains 6088 and KUL were less cytotoxic. Highly pathogenic mouse-passaged strain LEE were less cytotoxic than axenically grown amoebae. Maximum cytotoxicity was observed in lysates from amoebae in late exponential or early stationary phase of growth. Cytopathogenicity of lysates was reduced after heating at 44°C for 60 min or at 60°C for 30 min. Cytotoxicity was stable during storage at 4°C or at ?20°C for 26 h. Neither live amoebae nor lysates injured B-103 target cells at 4°C. Live amoebae and lysates injured B-103 by a time, temperature, and concentration dependent process.  相似文献   

10.
Summary Plasmolysed cells of Escherichia coli N212 (uvrA recA) acquired ultraviolet resistance when the cells were exposed to high concentrations of T4 endonuclease V. With increasing concentrations of T4 enzyme, survivals of plasmolysed cells after ultraviolet irradiation increased while colony-forming ability of unirradiated plasmolysed cells was not significantly affected by the enzyme treatment. Under appropriate conditions more than 200 fold increase in survivals was observed. When plasmolysed cells were treated with a pre-heated enzyme preparation or enzyme fractions derived from T4v 1(endonuclease V-deficient mutant)-infected cells, only little or no reactivation took place.Permeabilization of cells prior to the enzyme treatment was essential for the effective reactivation. Treatment of intact cells with the T4 enzyme did not cause any reactivation. Cells treated with 20 mM EGTA or 50 mM CaCl2 in cold were reactivated to certain extents by the enzyme, but the extents of the reactivation were far less compared to those of plasmolysed cells.Plasmolysed cells of strains carrying a mutation in one of uvrA, uvrB and uvrC genes were reactivated by introduction of T4 endonuclease V, as was the uvrA recA double mutant. UvrD mutants were also reactivated, but rather slightly. However, wild type strain as well as strains having a mutation in recA or polA gene were not reactivated. From these results it was suggested that T4 endonuclease V, taken up into permeable cells, can function in vivo to replace defective functions, which are controlled by the uvr genes. The conditions established in the present study may be used for introduction of other proteins into viable bacterial cells.  相似文献   

11.
When angiosperm cells are cultured in a liquid medium they may grow in the form of free, single cells and form small to large groups of cells. This has been shown in earlier papers. This paper deals with the growth of strains of cells (Daucus carota and Haplopappus gracilis cells were used), washed and filtered free from the larger groups, on nutrient agar media in Petri dishes, thus simulating familiar microbiological technique. Each discrete member of a suspension is referred to as a “unit.” On the order of 1–10% of the separate units of a suspension may be induced to grow into viable colonies, depending on the strain and the conditions employed. Whereas at least 30% of the free single carrot cells were shown to be capable of division, only up to about 4% continued their growth to form macroscopically visible colonies when they were widely dispersed. Coconut milk promotes the growth of carrot cells into colonies. Both coconut milk and napthaleneacetic acid, which interact synergistically, arc required for the growth of Haplopappus cells. Various techniques which affect viability (the frequency with which units grow into colonies) were investigated. The viability of carrot units was found (1) to increase with their density on the plates; (2) to decrease upon washing the suspensions prior to plating; (3) to increase with increasing initial size; and (4) to decrease to a vanishingly low value in rigorously filtered suspensions which consist principally of single cells, although the single cells were found to grow with appreciable frequency when the larger units were also present; and (5) to increase dramatically (100-fold) when a rigorously filtered suspension was plated on a medium upon which pieces of growing cultured tissue were placed. Thus, the induction of growth in free cells is enhanced, even in an environment nutritionally optimal for the growth of the larger cell masses, by as yet unknown factors which are contributed by the cells themselves, or by adjacent cells or groups of cells. It is suggested that within a group of cells growing in culture, and perhaps also in the organized growing regions of intact plants, the dividing cells are nourished or stimulated by adjacent but less frequently dividing cells. The implications of these results are discussed.  相似文献   

12.
Two strains of Rhizobia isolated from nodules of Vicia faba var. major and one strain isolated from nodules of Cicer arietinum L. were characterized for salt resistance. The presence of 1 mM glycine betaine or choline in a minimal medium with added NaCl had a beneficial role on the growth of the three strains. Both molecules were found to be taken up by cells obtained at low osmolarity, and whereas glycine betaine uptake activity was stimulated significantly in cells grown in the presence of 0.15 M NaCl, choline uptake activity was strongly inhibited by salt in all tested strains. However, in cells grown with exogenous choline, the uptake inhibition exerted by salt was relieved, mainly in the strain isolated from nodules of C. arietinum L. On the basis of kinetics determinations, in control cells as well as in salt-stressed cells, only high-affinity activities were observed for glycine betaine and choline (apparent K m s between 3 and 18 μM). Periplasmic proteins that bound glycine betaine or choline were identified. In nondenaturing conditions, these proteins extracted from the various strains showed different electrophoretic mobility with always a less negative entire charge than the analogous proteins from Rhizobium meliloti. Received: 29 July 1996 / Accepted: 10 September 1996  相似文献   

13.
The ability of several Bacillus thuringiensis strains to colonize plant surfaces was assessed and compared with that of more common epiphytic bacteria. While all B. thuringiensis strains multiplied to some extent after inoculation on bean plants, their maximum epiphytic population sizes of 106 cfu/g of leaf were always much less than that achieved by other resident epiphytic bacteria or an epiphytically fit Pseudomonas fluorescens strain, which attained population sizes of about 107 cfu/g of leaf. However B. thuringiensis strains exhibited much less decline in culturable populations upon imposition of desiccation stress than did other resident bacteria or an inoculated P. fluorescens strain, and most cells were in a spore form soon after inoculation onto plants. B. thuringiensis strains produced commercially for insect control were not less epiphytically fit than strains recently isolated from leaf surfaces. The growth of B. thuringiensis was not affected by the presence of Pseudomonas syringae when co-inoculated, and vice versa. B. thuringiensis strains harboring a green fluorescent protein marker gene did not form large cell aggregates, were not associated with other epiphytic bacteria, and were not found associated with leaf structures, such as stomata, trichomes, or veins when directly observed on bean leaves by epifluorescent microscopy. Thus, B. thuringiensis appears unable to grow extensively on leaves and its common isolation from plants may reflect immigration from more abundant reservoirs elsewhere.  相似文献   

14.
Aims: The present work was aimed at identifying strains of lactic acid bacteria (LAB) from kimchi, with properties suitable for use as starter cultures in yogurt fermentation. Methods and Results: A total of 2344 LAB strains were obtained from two different sources, one group consisted of commercial LAB strains from kimchi, and the second group consisted of those strains isolated from various types of kimchi. The LAB strains from both groups were screened for resistance to biological barriers (acid and bile salts), and the four most promising strains were selected. Further analysis revealed that KFRI342 of the four selected strains displayed the greatest ability to reduce the growth of the cancer cells, SNU‐C4. The in vivo efficacy of strains in quinone reductase induction assay was evaluated, and the extent of DNA strand breakage in individual cells was investigated using the comet assay. Strain KFRI342 was identified as Lactobacillus acidophilus by 16S rRNA sequence analysis, showed protection against tumour initiation and imparted immunostimulation as well as protection against DNA damage. Conclusions: Strain KFRI342, which showed probiotic characteristics reducing cancer cell growth, could be a suitable starter culture for yogurt fermentation because of its strong acid production and high acid tolerance. Significance and Impact of the Study: This is the first report to describe a bacterium, isolated from kimchi, Lact. acidophilus KFRI342 which has the probiotic characteristics and the acid tolerance needed for its use as a starter culture in yogurt fermentation.  相似文献   

15.
The objective of this study was to evaluate the effect of extracellular H2 on organic acid utilization by two lactate-utilizing strains of Selenomonas ruminantium (HD4, H18). Both strains were able to grow (optical density at 600 nm ≥ after 9 h) on either aspartate, fumarate, or malate in the presence of 1 atmosphere (atm) of H2. Succinate was the major end product produced in these fermentations. When cells were incubated with lactate plus 1 atm H2, growth was minimal and little lactate was fermented. The electron transport inhibitor, acriflavine, was a strong inhibitor of growth when either strain was incubated in the presence of organic acid plus H2. Compared with glucose- or lactate-grown cells, cellular carbohydrate levels were lower for both strains in cells grown on either organic acid plus H2. These results suggest that electron transport plays a role in organic acid utilization by S. ruminantium.  相似文献   

16.
Two Rhodococcus strains, R. opacus strain AS2 and R. erythropolis strain AS3, that were able to use 4-nitroanisole as the sole source of carbon and energy, were isolated from environmental samples. The first step of the degradation involved the O-demethylation of 4-nitroanisole to 4-nitrophenol which accumulated transiently in the medium during growth. Oxygen uptake experiments indicated the transformation of 4-nitrophenol to 4-nitrocatechol and 1,2,4-trihydroxybenzene prior to ring cleavage and then subsequent mineralization. The nitro group was removed as nitrite, which accumulated in the medium in stoichiometric amounts. In R. opacus strain AS2 small amounts of hydroquinone were produced by a side reaction, but were not further degraded.  相似文献   

17.
Zhang Y  Wu JF  Zeyer J  Meng B  Liu L  Jiang CY  Liu SQ  Liu SJ 《Biodegradation》2009,20(1):55-66
Comamonas sp. strain CNB-1 can utilize 4-chloronitrobenzene (4CNB) as sole carbon and nitrogen source for growth. Previous studies were focused on 4CNB degradative pathway and have showed that CNB-1 contained a plasmid pCNB1 harboring the genes (cnbABCaCbDEFGH, cnbZ) for the enzymes involving in 4CNB degradation, but only three gene products (CnbCa, CnbCb, and CnbZ) were identified in CNB-1 cells. Comamonas strain CNB-2 that lost pCNB1 was not able to grow on 4CNB. In this study, physiological adaptation to 4CNB by CNB-1 was investigated with proteomic and molecular tools. Comparative proteomes of strains CNB-1 and CNB-2 grown on 4CNB and/or succinate revealed that adaptation to 4CNB by CNB-1 included specific degradative pathway and general physiological responses: (1) Seven gene products (CnbA, CnbCa, CnbCb, CnbD, CnbE, CnbF, and CnbZ) for 4CNB degradation were identified in 4CNB-grown cells, and they were constitutively synthesized in CNB-1. Two genes cnbE and cnbF were cloned and simultaneously expressed in E. coli. The CnbE and CnbF together catalyzed the conversion of 2-oxohex-4-ene-5-chloro-1,6-dioate into 2-oxo-4-hydroxy-5-chloro-valeric acid; (2) Enzymes involving in glycolysis, tricarboxylic acid cycle, and synthesis of glutamate increased their abundances in 4CNB-grown cells.  相似文献   

18.
Summary Streptomycin-independent revertants were selected from streptomycin-dependent mutants. Twenty-five out of 150 such revertants were temperature sensitive. Ribosomal proteins from 18 temperature-sensitive and 10 temperature-insensitive revertants were analysed by SDS-polyacrylamide gel electrophoresis. Seventeen of the former but none of the latter category showed an alteration of protein S4. The mutated rpsD allele of 6 temperature-sensitive revertants was transduced into a rpsL + strain. In all cases an increased suppressibility of T4 amber phages was observed. Such suppressibility was not observed in the original rpsD, rpsL strains. All 18 temperature-sensitive mutants were disturbed in the processing of 17s to 16s RNA at non-permissive temperature and the accumulated 17s RNA was degraded. Temperature-insensitive rpsD revertants could be isolated, which had gained a second alteration in S4. Such revertants, which had lost the temperature-sensitive property, were also unable to suppress growth of T4 amber phages.It is concluded that temperature-sensitive growth, inability to process 17s RNA and to assemble 30S ribosomes at non-permissive temperature as well as increased translational ambiguity are highly correlated properties in rpsD mutants.  相似文献   

19.
Species and varieties in the genus Eudorina Ehrenberg (Volvocaceae, Chlorophyta) were evaluated on the basis of phylogenetic analyses of the large subunit ofribulose-1,5-bis-phosphate carboxylase/oxygenase (rbcL) gene sequences from 14 strains of four Eudorina species, as well as from nine species of Pleodorina and Volvox. The sequence data suggested that 10 of the 14 Eudorina strains form three separate and robust monophyletic groups within the nonmonophyletic genus Eudorina. The first group comprises all three strains of E. unicocca G. M. Smith; the second group consists of one of the E. elegans Ehrenberg var. elegans strains, the E. cylindrica Korshikov strain, and both E. illinoisensis (Kofoid) Pascher strains; and the third group consists of two monoecious varieties of E. elegans [two strains of E. elegans var. synoica Goldstein and one strain of E. elegans var. carteri (G. M. Smith) Goldstein]. In addition, E. illinoisensis represents a poly- or paraphyletic species within the second group. The remaining four strains, all of which are assigned to E. elegans var. elegans, are nonmonophyletic. Although their position in the phylogenetic trees is more or less ambiguous, they are ancestral to other taxa in the large anisogamous/oogamous monophyletic group including Eudorina, Pleodorina, and Volvox (except for sect. Volvox). Thus, the four Eudorina groups resolved in the present molecular phylogeny do not correspond with the species concepts of Eudorina based on vegetative morphology, but they do reflect the results of the previous intercrossing experiments and modes of monoecious and dioecious sexual reproduction.  相似文献   

20.
Summary Diploid strains of Saccharomyces cerevisiae, each homozygous for one of the temperature sensitive mutations rna2, rna4, rna6 or rna8, are temperature sensitive for ribosome synthesis during vegetative growth, but are not inhibited for ribosomal synthesis at the restrictive temperature under sporulation conditions. The continued ribosome biosynthesis at the restrictive temperature (34° C) during sporulation includes de novo synthesis of both ribosomal RNA and ribosomal proteins. This lack of inhibition of ribosome biosynthesis is found even when cells committed to complete sporulation are returned to vegetative growth medium. The ribosomes synthesized at 34° C are apparently functional, as they are found in polyribosomes. Although the rna mutants do not regulate ribosome synthesis during sporulation, all of these diploid strains fail to complete sporulation at 34° C. The cells are arrested after the second meiotic nuclear division but before ascus formation. The failure to complete sporulation at the restrictive temperature and the inhibition of ribosome biosynthesis during growth are caused by the same mutation, because revertants selected for temperature independent growth were also able to sporulate at 34° C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号