首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
Light- and electron-microscopic studies of the growing blades and their meristematic tips in Caulerpa prolifera have been correlated with time-lapse photographic studies. The growing blade may be divided into three zones based on the level of maturation. A “meristemplasm” is present at the tip of the growing blade and at sites of wounding. The cytoplasm of these growing regions has an abundant endoplasmic reticulum, Golgi bodies, amyloplasts, and nuclei, but lacks chloroplasts and a central vacuole. An intermediate zone lies between the white meristemplasm and the green, mature basal zone. The basal zone contains a parietal cytoplasm with organelles typical of the Chlorophyta and a dominant central vacuole. Two distinct systems of cytoplasmic streams occur in the basal zone and both contain packets of microtubules orientated parallel to the axis of the streams. As the blade matures and growth ceases, the dominant central vacuole forms up to the tip. In developing blades the tips become white in the absence of light as a result of basipetal movement of the chloroplasts. In plants kept on a 12-hr L: 12-hr D cycle, blade growth and chloroplast migration at the blade tip are rhythmic, and the peak occurs about 2-4 hr after initiation of the dark phase. Experiments are reported using continuous light or darkness after three 24-hr periods of 12-hr L: 12-hr D phasing.  相似文献   

2.
Stentor niger collected in the suburbs of Hiroshima contained in its cytoplasm several hundreds of endosymbiotic algae and innumerable brownish pigment granules. The body of the ciliate was dark due to a mixture of the green endosymbiotic algae and brown pigment granules. The algae belonged to the genus Chlorella; each was enclosed in a perialgal vacuole and dispersed uniformly in the host cytoplasm from the myoneme layer inward to the center of the ciliate. The cell wall and plasma membrane of the alga enclosed a nucleus, chloroplast, mitochondrion, Golgi complex, accumulation bodies, myelinated vesicles, and many ribosomes. The chloroplast occupied more than half of the volume of the alga and contained a conspicuous pyrenoid. Algal multiplication occurred by two successive divisions of an alga, leading to four autospores within a perialgal vacuole; the walls of the vacuole invaginated to separate the autospores each into its own vacuole. Three types of pigment granules were scattered uniformly throughout the cytoplasm of the ciliate. The ultrastructure of the membranellar region, somatic cortex, and macro- and micronucleus of the ciliate are also described.  相似文献   

3.
The vacuolar apparatus of various plant cells consists of two distinct features: the large central vacuole and peripheral vacuoles which are derived from invaginations of the plasma membrane. Peripheral vacuoles are conspicuous structures in both living and fixed hair or filament cells of Tradescantia virginiana. They occur as spherical structures along the inner boundary of the peripheral cytoplasm and can be recognized as projections into the central vacuole. These structures are variable in size and number within a cell and can represent a significant proportion of the volume of the vacuole. Peripheral vacuoles most frequently are observed in motion with the streaming cytoplasm although their velocity is usually somewhat slower that that of the cytoplasmic organelles. Ultrastructural studies show two closely approximated membranes, one for each vacuole, in areas where a peripheral vacuole projects into the central vacuole. These are separated by an intermembrane zone continuous with the peripheral cytoplasm. The movement of organelles over the perimeter of the peripheral vacuole is presumed to occur along this intermembrane zone. The internal area of the peripheral vacuoles may appear empty although some contain a vesicular content of unknown origin and function.  相似文献   

4.
SYNOPSIS. Filamentous cyanobacteria are ingested through the cytopharynx of the ciliate Pseudomicrothorax dubius. The cytopharynx is a complex of microtubules and microfilaments located in a highly vesiculated cytoplasm, the phagoplasm. Two types of membrane-bounded phagoplasmic vesicles can be distinguished by their differences in size, fine structure, and acid phosphatase (AcPase) content. One type has a homogeneous, electron-dense interior which is AcPase-positive. These vesicles are present in fed cells and in unfed cells devoid of food vacuoles, and thus appear to be primary lysosomes. During phagocytosis, exocytosis within the cytopharynx of the primary lysosomes results in the elaboration of a food vacuole. The vacuole grows by incorporation of lysosomal membrane; lysosomal hydrolases are liberated into the vacuole. Within less than 1 second of AcPase's entry into the food vacuole, it is detectable within the cyanobacterial cytoplasm, and within 5 seconds, destruction of the cyanobacterial filament is observed. It is hypothesized that the rapidity of hydrolase penetration of the cyanobacterial cell wall is the result of the action of molecules analogous to the “killing agents” of neutrophil leukocytes, which rapidly render bacterial envelopes permeable. AcPase, and presumably other hydrolases, are present in the cyanobacterial filament when filament destruction occurs; they thus appear implicated in this process. Hydrolases may activate an autodestruction mechanism in the cyanobacterium. Firm adherence of the food vacuole membrane to the cyanobacterial filament is demonstrated, and its role in phagocytosis is discussed.  相似文献   

5.
Elementary bodies are formed on the cell surface and inside the cell body in all cell types characteristic of L-form cultures, i. e. spherical cells, large bodies and filament structures. The following ways of elementary body formation are described: by budding on the cell surface, appearance immediately in the cytoplasm, in the vacuole, as a result of cytoplasmic fragmentation accompanied by the lysis of the cell, as well as in cases of the separation of cytoplasmic areas surrounded by the membrane or the myelin-like structure. The release of elementary bodies from the cell occurs as a result of the lysis or death of the mother cell, the thinning of the vacuole wall, and possibly due to small transient defects in the membrane, not accompanied by the death of the mother cell. The scheme of the formation and release of elementary bodies from the cell is presented.  相似文献   

6.
The root hairs of plants are tubular projections of root epidermal cells and are suitable for investigating the control of cellular morphogenesis. In wild-typeArabidopsis thaliana (L.) Heynh, growing root hairs were found to exhibit cellular expansion limited to the apical end of the cell, a polarized distribution of organelles in the cytoplasm, and vesicles of several types located near the growing tip. Therhd3 mutant produces short and wavy root hairs with an average volume less than one-third of the wild-type hairs, indicating abnormal cell expansion. The mutant hairs display a striking reduction in vacuole size and a corresponding increase in the relative proportion of cytoplasm throughout hair development. Bead-labeling experiments and ultrastructural analyses indicate that the wavy-hair phenotype of the mutant is caused by asymmetric tip growth, possibly due to abnormally distributed vesicles in cortical areas flanking the hair tips. It is suggested that a major effect of therhd3 mutation is to inhibit vacuole enlargement which normally accompanies root hair cell expansion.  相似文献   

7.
8.
M. Braun 《Protoplasma》1996,191(1-2):1-8
Summary Myosin-related proteins have been localized immunocytochemically in gravity-sensing rhizoids of the green algaChara globularis using a monoclonal antibody against the heavy chain of myosin from mouse 3T3 cells and a polyclonal antibody to bovine skeletal and smooth muscle myosin. In the basal zone of the rhizoids which contain a large vacuole, streaming endoplasm and stationary cortical cytoplasm, the monoclonal antibody stained myosin-related proteins as diffusely fluorescing endoplasmic strands. This pattern is similar to the arrangement of subcortical actin filament bundles. In the apical zone which contains an aggregation of ER membranes and secretory vesicles for tip growth, diffuse immunofluorescence was detected; the intensity of the signal increasing towards the apical cell wall. The most prominent myosin-staining was associated with the surface of statoliths in the apical zone. The polyclonal antibody produced a punctate staining pattern in the basal zone, caused by myosin-related proteins associated with the surface of drganelles in the streaming endoplasm and the periphery of the nucleus. In the apical zone, this antibody revealed myosin-immunofluorescence on the surface of statoliths in methacrylate-embedded rhizoids. Neither antibody revealed myosin-immunofluorescence on the surface of organelles and vesicles in the relatively stationary cytoplasm of the subapical zone. These results indicate (i) that different classes of myosin are involved in the various transport processes inChara rhizoids; (ii) that cytoplasmic streaming in rhizoids is driven by actomyosin, corresponding to the findings onChara internodal cells; (iii) that actindependent control of statolith position and active movement is mediated by myosin-related proteins associated with the statolith surfaces; and (iv) that myosin-related proteins are involved in the process of tip growth.  相似文献   

9.
Spherical, golden bodies, 0.5 to 25 μm in diameter, were noted in outer bundle sheath and mesophyll of cells of fresh sections of Spartina alterniflora leaves. Attempts to further characterize these structures with light and electron microscope (EM) techniques after dehydration failed initially because these bodies were soluble in organic solvents such as alcohol. Subsequently, it was found that certain heavy metals would stabilize the structure so that dehydration techniques could be used. The resultant stabilized bodies as viewed with EM were found to reside in the cell vacuole. Two major structural components were recognized: (1) a granular matrix and (2) a non-electron dense internal vesicle. Internal vesicles were not always present. No membranes were visible with this technique. These vacuolar bodies also were found to occur in parenchyma cells of roots, peduncles, glumes, and rhizomes of S. alterniflora. The material which forms the vacuolar body matrix is probably produced in the cytoplasm and gradually accumulates in the vacuole, forming larger and more numerous vacuolar bodies during the growing season. The matrix material remains in the leaf cells following their senescence.  相似文献   

10.
SYNOPSIS. Schizonts of E. nieschulzi lie in a vacuole within the host cell. After nuclear division the cell membrane invaginates forming merozoites. Differentiation of the pellicle and other organelles occurs while merozoites are still attached to the schizont cytoplasm. Merozoites have a pellicle thickened at the anterior end to form a polar ring. Radiating posteriorly from the ring, directly beneath the pellicle, are about 25 microtubules. Within the polar ring is a dense conoid. Extending posteriorly from within the conoid is a paired organelle. The paired organelle varies in size and shape in each generation of merozoites. Numerous toxonemes occupy the anterior half of the merozoites. Two paranuclear bodies are present in 1st generation merozoites. One or 2 granular bodies were seen in the anterior end of 2nd generation merozoites. In 3rd generation merozoites 6 or more granular bodies were seen anterior to the nucleus. Each merozoite has a single nucleus containing diffuse chromatin material. Elongate mitochondria and glycogen granules are present. The vacuole surrounding mature merozoites contains residual cytoplasm of the schizont and some granular material. Microvilli project into the vacuole from the host cell membrane.  相似文献   

11.
Summary This paper reports on the structure of rat primary oocytes, as observed with the electron microscope. Four main components are described in the cytoplasm: Golgi apparatus, centrioles, mitochondria and multivesicular bodies.The components of the Golgi apparatus are forming a single mass confined to a limited region of the cytoplasm and the centrioles were found located in a clear zone sited in the middle of this mass. Mitochondria are scattered at random in the cytoplasm. Multivesicular bodies are elements integrated by an enveloping membrane containing a varied number of tiny vesicles. They are generally found associated with a short number of small free vesicles. Only one two groups of this kind are found per oocyte. This contrast with what has been observed previously in full-grown rat oocytes, where the groups are numerous and constituted by many units.Two components were described for the oocyte nucleus: nucleoli and chromosomes. Nucleoli are constituted by a tangled thread whose elemental component is a fine fibrous material of high electron density.At the age studied on this paper, primary oocytes are undergoing meiotic prophase, chromosomes have at this time the same components observed by different authors in primary spermatocytes. These are two thick ribbon-like threads helically twisted around a thinner medial filament. Each tripartite group is attached by one end to the nuclear membrane. It was actually seen tripartite groups incompletely organized; the images recorded of such groups suggest that the medial filament is the first to appear in the nucleoplasm. The possible significance of these filaments in respect to the meiotic phase called chromosome pairing is discussed.  相似文献   

12.
Summary The different mechanisms of vacuole formation in embryonic tissues of Pelargonium are described. Some vacuoles are formed by mechanisms widely reported in a variety of plant species and plant tissues, but other vacuoles are initiated as differentiated zones of the cytoplasm around which the tonoplast is gradually built up form vesicles and small cisternae.  相似文献   

13.
Summary The cytological organization of the apices of sporangiophores and hyphae ofPhycomyces Blakesleeanus was studied by means of light- and electron microscopy. The sporangiophore apex in growth stage I contains a mass of cytoplasm in which is embedded a cluster of lipid globules. Within the plug several zones are differentiated by the grouping of organelles. These zones are not separated by membranes. The most apical zone is low in nuclei and vesicles but rich in mitochondria and dense bodies. Below this zone lies a compact group containing up to several hundred nuclei. Along the midline of the cell, below these nuclei, lies an ovoid region from which vesicles, nuclei and mitochondria are excluded. In this ovoid exclusion zone lies the cluster of lipid globules mentioned above. Lateral to the exclusion zone (i.e. in the peripheral region of the cell) the cytoplasm is rich in nuclei, mitochondria, dense bodies, and especially in developing autophagic vesicles. Of these vesicles, the most mature are found farthest from the cell apex. The region between the exclusion zone and the upper end of the cell's large central vacuole is occupied largely by mature, swollen autophagic vesicles. In addition to the zonal organization described above, microtubules are found to run along the cylindrical cell's axis at a distance from the cell wall, and extend to the extreme apex of the cell. Similar tubules occur in growing hyphae, together with dense bodies, and the hyphal apex contains non-autophagic vesicles that increase in size with distance from the hyphal tip. The hyphae lack the zonation shown by sporangiophore apices. Perinuclear masses of cisternae are described and related to the dictyosomes of higher plants. The findings are discussed in relation to the function of the apices in tip growth and sporulation.This work was supported in part by a National Science Foundation Graduate Fellowship to the author, and in part by grant No. GB 3241 from the National Science Foundation to ProfessorKenneth V.Thimann.  相似文献   

14.
The endodermis in the needles of Pinus pinaster was examined with light and electron microscopy. The endodermis is composed of very long, radially flattened cells, filled with a large central vacuole, which contains spherical dense bodies whose concentration decreases from the ends of the cell to the middle part. They are individually surrounded by a fine granular matrix. The central vacuole is bounded by a thick tonoplast. Other small, clear vacuoles are limited by a thin tonoplast. The parietal cytoplasm contains relatively few ribosomes, long slender chloroplasts, and lipid bodies. The smooth endoplasmic reticulum is highly developed along the tangential walls and frequently connected, or apposed, to the plasma membrane. Numerous primary pit fields are seen in the radial walls which are lignified and in the tangential walls; the latter exhibit a characteristic loosening of the outer layer of the wall. The lipid bodies are connected to endoplasmic reticulum tubules. The role of the endodermis in the active transport of water inside the needle is discussed in reference to previous physiological studies. The chemical composition of the vacuolar dense bodies is as yet unknown.  相似文献   

15.
Effect of cyanide on the plasmalemma potential of mnium   总被引:2,自引:1,他引:1       下载免费PDF全文
By centrifuging Mnium cuspidatum leaf cells, the cytoplasm can be distinguished from the vacuole and a microelectrode tip can be located unambiguously in the cytoplasm. The site of the electrogenic pump is clearly demonstrated to reside in the plasmalemma as shown by depolarization of the cell electropotential induced by CN.  相似文献   

16.
Transmitting tissue in Ornithogalum is divided into three regions corresponding to classical divisions of the gynoecium: stigma, style, and ovary. The stigma differentiates from epidermal cells of the stylar apex. These cells form the stigmal papillae and have dense cytoplasm with abundant ER and lipid bodies. Papillae have walls with small transfer-ingrowths. At floral receptivity, papillae secrete a small amount of surface exudate. Epidermal cells of the style contain numerous spherosomes and have thin filaments of cytoplasm traversing the central vacuole. The stylar cortex is composed of 3-6 layers of parenchyma cells which contain numerous spherosomes and often have secondary vacuoles. Vascular tissue in the style consists of one collateral bundle in each lobe. Cells of the epidermal layer lining the stylar canal are secretory. They are initially vacuolate but fill progressively with dense cytoplasm as their secretory activity increases. Secretory activity occurs in three phases, each characterized by a particular organelle population and secretory product. At anthesis, the canal is filled with an exudate consisting of carbohydrate, protein, and lipid. In the ovary, the obturator differentiates from cells at the base of the funiculus and the tip of the carpel margins. It forms a pad of tissue which covers most of the former placenta. The obturator is secretory and produces a surface exudate. We believe our observations on Ornithogalum support the hypothesis that all transmitting tissue is of the same morphological origin and that it provides nutritive and chemotropic factors for pollen tube growth.  相似文献   

17.
Comparative ultrastructural observations reveal that cytoplasmic deletion during spermatogenesis in Sphagnum and other mosses (Bryopsida) has two distinct phases. In young spermatids, Golgi-derived vesicles produce the mucopolysaccharide sheaths in which the gametes are liberated. Golgi bodies, however, play no part in removal of cytoplasm during gamete maturation. Rounding off of the cells during this process results in a 50% reduction in volume. Mid-spermatid stages in Sphagnum are characterised by the sequential loss of Golgi bodies and endoplasmic reticulum (ER) but no further diminution of the cytoplasm. The final stages of nuclear metamorphosis and chromatin condensation, in late spermatids, are marked by the sudden appearance, in the otherwise featureless central cytoplasm, of a membrane vesicle complex (MVC) comprising cisternae, tubules, and smooth and coated vesicles. Following repositioning of the MVC beneath the plasma membrane, rapid shrinkage of the cytoplasm is associated with the presence of vesicle fusion profiles at the cell surface. The MVC is considered to be intimately involved in cytoplasmic breakdown and loss. Acid phosphatase activity can be detected throughout spermatogenesis. Spermatogenous cells and young spermatids possess relatively low levels of the enzyme, restricted to the ER and perinuclear space, but particularly high levels occur in the MVC region of late spermatids of Sphagnum. The deletion process in Bryopsida is much more gradual than that of Sphagnum. Mid-spermatids contain sheets of ER, Golgi with small vesicles, and irregular cisternae associated with coated vesicles. Vacuoles derived either from dilation of the ER or the coated vesicle complexes gradually increase in size and number at the expense of the cytoplasm. During the early stages of chromatin condensation, a large central vacuole opens onto the anterior face of the gametes. Further discharge of vesicles continues throughout gamete maturation. A comparative survey of spermatogenesis in land plants indicates that cytoplasmic deletion is achieved in different ways in different groups. We speculate that the spermatozoids of the common ancestor of archegoniate plants probably possessed large amounts of cytoplasm. The deletion mechanisms may have originated from a contractile vacuole apparatus.  相似文献   

18.
Summary

Among the Arthropoda the Xiphosura are the only group whose spermatozoa resemble the so-called ‘primitive type’, although even here there are some differences. The spermatozoa of Tachypleus consist of a sperm head, a middle piece, and a long flagellum. Though principally quite similar to the spermatozoa of Limulus polyphemus some characteristics are noticeably different: the axonemal pattern (9 × 2 + 0), the shape of the acrosomal vacuole, the different position of the acrosomal filament, and the distribution of mitochondria throughout the cytoplasm. In contrast to what is known from Limulus the nuclear envelope is apparently dissolved over wide areas. Consequences for the interpretation of the acrosomal reaction are discussed. Structural conditions are compared with those in other Chelicerata.  相似文献   

19.
Blood collected from rats infected with Plasmodium berghei was centrifuged and the pellet was fixed for 1 hour in 1 per cent buffered OsO4 with 4.9 per cent sucrose. The material was embedded in n-butyl methacrylate and the resulting blocks sectioned for electron microscopy. The parasites were found to contain, in almost all sections, oval bodies of the same density and structure as the host cytoplasm. Continuity between these bodies and the host cytoplasm was found in a number of electron micrographs, showing that the bodies are formed by invagination of the double plasma membrane of the parasite. In this way the host cell is incorporated by phagotrophy into food vacuoles within the parasite. Hematin, the residue of hemoglobin digestion, was never observed inside the food vacuole but in small vesicles lying around it and sometimes connected with it. The vesicles are pinched off from the food vacuole proper and are the site of hemoglobin digestion. The active double limiting membrane is responsible not only for the formation of food vacuoles but also for the presence of two new structures. One is composed of two to six concentric double wavy membranes originating from the plasma membrane. Since no typical mitochondria were found in P. berghei, it is assumed that the concentric structure performs mitochondrial functions. The other structure appears as a sausage-shaped vacuole surrounded by two membranes of the same thickness, density, and spacing as the limiting membrane of the body. The cytoplasm of the parasite is rich in vesicles of endoplasmic reticulum and Palade's small particles. Its nucleus is of low density and encased in a double membrane. The host cells (reticulocytes) have mitochondria with numerous cristae mitochondriales. In many infected and intact reticulocytes ferritin was found in vacuoles, mitochondria, canaliculi, or scattered in the cytoplasm.  相似文献   

20.
Summary The dense bodies appearing in the cytoplasm of spermatids during early spermiogenesis of the grasshopper, Acrida lata, correspond to the chromatoid bodies of light microscopy, since they are composed of RNP. So far as the present material is concerned, the chromatoid bodies contribute to the formation of the centriole adjunct, because both structures consist of similar components and the former appear attached closely to the latter until the latter is completely formed. It has been tentatively suggested that the function of the centriole adjunct is to provide nutritive materials for the developing axial tail filament bundle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号