首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The life history, reproduction and development of Desmarestia menziesii J. Agardh from Antarctica is described. Unilocular sporangia occur singly or in small groups in the outermost cortical layer of the sporophyte. They are formed by periclinal division of cortex cells into a stalk cell and the sporangium initial. Meiospores germinate into dioecious microscopic filamentous gametophytes. As in other perennial Antarctic species of the Desmarestiales, gametangia are formed in culture under short-day conditions or in darkness. In nature, juvenile sporophytes should therefore be formed in winter. They develop only attached to the oogonium. At first they are uniseriate and elongate by means of an intercalary meristem located in their middle part. Laterals are formed predominantly in this region, and they subsequently give rise to secondary laterals. The branching pattern is opposite to alternate in both young and adult plants. Cortication of the main axis is initiated by filaments growing out from the lowermost cells of the primary laterals. In sporophytes of this developmental stage the meristem of the main axis is confined to a small region where cortication starts and above. Lateral branches elongate and become corticated in the same way as the main axis. In mature plants, cells of the inner cortex can become meristematic again and form a meristoderm which contributes to axis thickness by periclinal and anticlinal divisions. The observations are discussed in relation to possible evolutionary relationships in the genus Desmarestia and in the order Desmarestiales.  相似文献   

2.
Development of the intercalary meristem in the terete laminarialean species Chorda filum (L.) Stackhouse was studied in culture using light and transmission electron microscopy as well as by tracing elongation and cell divisions in various parts of the sporophyte. Growth of C. filum sporophytes could be classified into three developmental stages: (i) diffuse growth; (ii) basal meristematic growth; and (iii) intercalary meristematic growth. In the diffuse growth stage, elongation and cell division frequency were almost the same in each cell. In the basal meristematic growth stage, elongation and division of cells became localized in the tissues derived from the meristematic initial cell. Cells of the basal meristematic region contained smaller chloroplasts and many small opaque vesicles. In the intercalary meristematic growth stage, there was further elongation and differentiation of cells originating from the meristematic region, and this became more active in adjacent regions below the meristem than in regions above the meristem, causing the relative position of the intercalary meristem to shift towards the tip of the sporophyte. Meristematic cells of C. filum contained well-developed Golgi vesicles around the nucleus (perinuclear Golgi), many secretion vesicles and many small disk-shaped chloroplasts whose thylakoids were not well developed. Sporophytes of three other terete members of Laminariales, Chorda tomentosa Lyngbye, Pseudochorda nagaii (Tokida) Kawai et Kurogi, and Pseudochorda gracilis Kawai et Nabata, show diffuse growth and basal meristematic growth, but no intercalary meristematic growth. This suggests that the common ancestor of the Pseudochordaceae and Chordaceae had basal meristematic growth, and intercalary meristematic growth evolved more recently in C. filum.  相似文献   

3.
We report six complete 18S ribosomal DNA (rDNA) sequences representing five brown algal orders: Sporochnus comosus C. A. Agardh (Sporochnales), Chorda tomentosa Lyngbye (Chordaceae, Laminariales), Saccorhiza polyschides (Lightfoot) Batters (Phyllariaceae, Laminariales), Desmarestia ligulata (Lightfoot) Lamouroux (Desmarestiales), Ectocarpus siliculosus (Dillwyn) Lyngbye (Ectocarpales), and Scytosiphon lomentaria (Lyngbye) J. G. Agardh (Scytosiphonales). These sequences were compared with published laminarialean (Alaria marginata Postel et Ruprecht [Alariaceae] and Macrocystis integrifolia Bory [Lessoniaceae]) and fucalean (Fucus gardneri Silva) rDNA sequences for phylogeny inference using both the distance-matrix and parsimony methods. The inferred 18S phylogenies clustered Sporochnus, Desmarestia, Chorda, Saccorhiza, Alaria, and Macrocystis in an assemblage. This Sporochnales–Desmarestiales–Laminariales (S-D-L) complex was consistently separated from the Ectocarpales, Scytosiphonales, and Fucales by bootstrap analyses. The inferred phylogenies are consistent with several possible evolutionary processes leading to this S-D-L complex. Members in this assemblage lack eyespots in their sperm, and their sperm have the atypical brown algal flagellation: shorter anterior and longer posterior flagella. In addition, they are oogamous with a heteromorphic alternation of generations between a microscopic gametophyte and a macroscopic sporophyte. Members of the S-D-L complex can be separated into different phylogenetic lines based on the presence/absence of eyespots in their meiospores. Our findings support the contention that the Sporochnales, Desmarestiales, and Laminariales are closely related. In addition, our rDNA tree suggests that the Laminariales is paraphyletic.  相似文献   

4.
The life history in culture of Akkesiphycus lubricus Yamada et Tanaka, an alga which has been placed in the Coilodesmaceae or the Punclariaceae, Dictysiphonales, was studied. In culture the species alternates between a microscopic filamentous gametophyte and a macroscopic polystichous sporophyte, a pattern common to the Dictyasiphonales and Laminariales. However, it has a unique anisogamous dioecious gametophyte. Fusions between mac-ro-gametes and micro-gametes were not observed, Macro-gametes or zygotes germinated, mostly developing into sporophytes that formed unilocular sporangia and the rest developed into reduced gametophytic flaments again. The gametophyte matures in 50C short-day conditions, corresponding to winter in Hokkaido. The sporophyte develops normally and matures only in low-temperature conditions irrespective of daylength. In regard to iits systematic position, Akkesiphycus lubricus is considered to have a closer relationship with the Laminariales than with the Dietyosiphonales in the following characters; lack of pyrenoids; early stages of parenchyma formation in the sporophyte; direct development of sporophytes from gametes or zygotes without forming a besal system zoospore becomes almost empty after germination by the migration of cell contents into a germ lube; formation of macro-gametangia by direct conversions of mother cells of mother cells of fertile branches; and micro-gametangia formed in clusters showing closeresemblance to the antheridia of Pseudochorda nagii (Tokida) Inagaki.  相似文献   

5.
The fertile branching system of Tetraxylopteris is composed of successive “nodes” bearing opposite and decussately arranged, upcurved sporangial complexes. By means of the transfer technique the morphology of the sporangial complex was revealed. It consists of a main stalk which dichotomizes twice producing four major branches. Each of the four branches is further subdivided three times, the subdivisions being arranged alternately and pinnately. The ultimate divisions bear the sporangia singly and terminally. The sporangial complexes decrease in size distally and are more tightly curved at the apex. The sporangia are oblong-oval with an acute apex. The spores are identical to the dispersed spore taxon Rhabdosporites langii, Richardson. They are spherical, trilete and pseudosaccate with a fine granular ornament on the pseudosaccus. They are 75–176 μ in diameter and show developmental stages from young tetrads to separated, fully mature spores depending on the age of the sporangium from which they were obtained. This is the first account of spores in sporangia of Tetraxylopteris. The diagnosis of the genus and species are emended to include the new information and the order Aneurophytales is redefined.  相似文献   

6.
With length of sporangia as a developmental index, the growth relationships of sporangia during differentiation were studied in strobili of Selaginella bigelovii. The strobili usually contain two rows of megasporangia and two rows of microsporangia with a mega- opposite a microsporangium at each node. Prior to the sporocyte stage a sporangium in a megasporangiate row is larger and elongates more rapidly than a sporangium opposite it at the same node in a microsporangiate row. The number of sporogenous cells is similar in sporangia of the same length from both rows until cell multiplication ceases in sporangia of the megasporangiate row, while it continues in sporangia of the same size in the microsporangiate row. The observed growth differences between sporangia of the micro- and megasporangiate rows are interpreted as events in the differentiation of two sporangial types.  相似文献   

7.
The sporophyte of Himantothallus develops according to a closed pattern in which the number and position of the blades is determined by the location of trichothallic meristems in a filamentous germling. Expansion of the miniature juvenile to the massive adult thallus is accomplished by diffuse secondary growth and involves a change from filamentous rhizoids to a hapteroid holdfast, flattening of the stipe, and enormous increases in length, breadth, and thickness of both stipe and blade. The axis usually bears 1–8 lateral blades, often paired, and terminates in a flattened stub. Phaeoglossum is interpreted as a growth form of Himantothallus in which a terminal blade develops to the exclusion of lateral blades, the latter being represented by a single spine. Phyllogigas clearly falls within the morphological spectrum of Himantothallus, the lack of twisting being related to physical factors in the environment. Sporangia, interspersed with an equal or somewhat larger number of two-celled paraphyses, are borne in slightly elevated sori scattered over both surfaces of the blade. Zoospore germination was not observed, nor were gametophytes, either in culture or in the field. Haptera apparently originate from the meristoderm in the lower part of the maturing stipe and lack a filamentous medulla. The mature stipe and the mature blade are anatomically similar, being composed of a superficial meristoderm, a cortex of parenchyma-like cells, and a filamentous medulla. The meristoderm is usually a single layer of plastid-containing cells that divide anticlinally to accommodate (or effect) expansion and periclinally to produce cortical tissue inward. Cortical cells are in radial files and increase in diameter towards the interior. They usually are densely packed with physodes. The medulla is uniquely distinguished by the presence of sheathed trumpet hyphae. Cells of the trumpet hyphae have perforate end walls with callose deposits and probably function in conduction as do the sieve filaments in Laminariales. Sheathing cells are filled with plastids. Sheathing filaments form connections among themselves and with nearby unsheathed filaments. The sheathed trumpet hyphae and their matrix of unsheathed filaments form a plexus, which in the mature blade is flattened and may be stripped intact from the other tissues. Development of the embryonic sporophyte is very similar to that in Desmarestia, as is the anatomy of the adult thallus and the sporangia. From these considerations, Himantothallus is assigned to the Desmarestiaceae (Desmarestiales).  相似文献   

8.
Goodwin , Donna C. (State U. Iowa, Iowa City.) Morphogenesis of the sporangium of Comatricha. Amer. Jour. Bot. 48(2): 148–154. IIlus. 1961.—Three species of the myxomycete genus, Comatricha, were studied: Comatricha nigra, C. fimbriata, and C. elegans. The sporangia developed on living bark of Ulmus americana in moist chamber. The hypothallus is formed under the homogeneous protoplasmic mass of the sporangial initial. The fibrous threads of the hypothallus bend upward, lengthening at the apices to become the fibers of the stalk and columella. The undifferentiated protoplasm is carried upward as the stalk elongates. When the columella has attained its mature height, threads bend out from the columella and grow toward the periphery of the sporangium. These threads form the capillitium. Simultaneous with the appearance of the capillitial initials, the peridium, a delicate membrane, forms. After the capillitium is mature, the protoplast cleaves into many cells, the future spores. The peridium evanesces early in the stage of spore maturation. Cellulose is present in the stalk, capillitium, and spore walls but is not found in the peridium or hypothallus. The capillitium of these species follows a developmental pattern designated as the “Comatricha-type” by Ross (1957) from a study of Comatricha typhoides. The taxonomic implications of the sporangial developmental pattern are discussed.  相似文献   

9.
Summary Zoosporogenesis in the oomycete,Pythium proliferum de Bary initially involves a condensation of cytoplasm at certain hyphal tips and the subsequent enlargement of these hyphal tips to form sporangia. Deposition of a septum at the base of the sporangium and initiation of an apical papilla are followed by cleavage of the sporangial cytoplasm. Packets of presumptive mastigonemes as well as flagella are recognized in the cytoplasm at this time. Subsequently, cleavage vesicles at the periphery of the sporogenic cytoplasm fuse with the plasmalemma thereby emptying their fibrous contents into the space between the sporogenic cytoplasm and the sporangial wall. It is felt that this fibrous material is instrumental in developing the internal pressure necessary within the sporangium to cause discharge of the sporogenic cytoplasm into an evanescent vesicle wherein delimitation of the zoospores is completed. The formation of the spore vesicle from the multilayered apical cap of the papilla is described here for the first time in the Oomycetes and a new term, vesiculogen, is suggested for this structure. Aspects of centriole replication within vegetative hyphae, papilla formation, and morphogenesis of various vesicular inclusions are also described in this study.  相似文献   

10.
In meiosis of basal land plants, meiotic division planes are typically predicted by quadri-lobing of the cytoplasm and/or quadri-partitioning of plastids prior to nuclear divisions. However, sporocytes of several marchantialean liverworts display no indication of premeiotic establishment of quadripolarity, as is observed in flowering plants. In these cases, the shape of sporocytes remains spherical or elliptical and numerous plastids are distributed randomly in the cytoplasm during meiosis. Through a survey of sporocyte morphology in marchantialean liverworts, we newly report the occurrence of apolar sporocytes in Sauteria japonica and Athalamia nana (Cleveaceae; Marchantiales). Molecular phylogenetic analyses revealed that the quadri-lobing of cytoplasm and quadri-partitioning of plastids were lost independently several times during the evolution of marchantialean liverworts. In addition, our phylogenetic analyses indicate that the simplified sporophytes of several marchantialean liverworts are not a primitive condition but rather represent the result of reductive evolution. The loss of the quadripolarity of sporocytes appears to correlate with the evolutionary trend of the sporophyte towards reductions. Through the evolution of the simplified sporophytes, suppression of mitotic divisions of sporogenous cells might had caused not only the modification of sporophyte ontogeny but also the drastic cytological change of sporocyte.  相似文献   

11.
New species of the obligately marine Thraustochytriaceae Sparrow were discovered in subantarctic and antarctic waters of the southeastern Indian Ocean, the southwestern Pacific Ocean, and the antarctic Ross Sea during two cruises of the research vessel USNS ELTANIN. The life cycles of four species of Thraustochytrium in seawater-pollen and/or seawater-brine shrimp larvae cultures are described. Thraustochytrium antarcticum sp. nov. develops sporangia that may proliferate from a single basal rudiment. Flagellated zoospores are liberated from the sporangium upon complete disintegration of the sporangial wall at maturity. Thraustochytrium rossii sp. nov. and T. kerguelensis sp. nov. are both similar in that they develop sporangia that may proliferate from more than one basal rudiment. The latter species releases flagellated zoospores upon complete disintegration of the sporangial wall, but the former species liberates a mass of individually immobile zoospores from the sporangium. These remain quiescent for several hours before they swim away one after another. The protoplast of Thraustochytrium amoeboidum sp. nov. leaves the sporangium through a pore as an amoeboid body which then gives rise to nonflagellated amoebospores by successive bipartitioning. Laterally biflagellate thraustochytrioid zoospores were also observed, but the way in which they are formed remains to be determined. Zoosporic and aplanosporic phycomycetes were recovered from water samples collected in the Subtropical, Subantarctic, and Antarctic Zones of the Southern Ocean. Highest numbers of phycomycete propagules were found in antarctic waters near the Antarctic Convergence during ELTANIN's Cruise 51. In the Subtropical and Subantarctic (but not in the Antarctic) Zones fungal population densities increased with proximity to continents or islands. At each station where phycomycetes were recovered, highest numbers of propagules were generally found in the surface layers (25–250 m) of the ocean below the photic zone (lower limit 30–60 m). This peculiar distribution may indicate that phycomycetes are engaged in decomposing substances derived from the photic zone.  相似文献   

12.
Sporophytes of Macrocystis pyrifera (L.) C. A. Agardh of various stages of growth were studied by light microscopy to determine the initiation and ontogeny of secretory cells and the accompanying duct system. Secretory cells are initiated by asymmetric, periclinal divisions of meristoderm cells; subsequent mitoses increase the number of secretory cells associated with each duct. Duct formation occurs by schizogeny of anticlinal cell walls adjacent to the site of secretory cell initiation. Differences in distribution and structure of the duct system occur in various parts of the sporophyte. The duct system does not have openings directly to the sporophyte surface. Histochemical techniques showed that the duct contents are mostly sulfated polysaccharides with perhaps some lipid.  相似文献   

13.

Background

Land plants (embryophytes) are monophyletic and encompass four major clades: liverworts, mosses, hornworts and polysporangiophytes. The liverworts are resolved as the earliest divergent lineage and the mosses as sister to a crown clade formed by the hornworts and polysporangiophytes (lycophytes, monilophytes and seed plants). Alternative topologies resolving the hornworts as sister to mosses plus polysporangiophytes are less well supported. Sporophyte development in liverworts depends only on embryonic formative cell divisions. A transient basal meristem contributes part of the sporophyte in mosses. The sporophyte body in hornworts and polysporangiophytes develops predominantly by post-embryonic meristematic activity.

Scope

This paper explores the origin of the sporophyte shoot in terms of changes in embryo organization. Pressure towards amplification of the sporangium-associated photosynthetic apparatus was a major driver of sporophyte evolution. Starting from a putative ancestral condition in which a transient basal meristem produced a sporangium-supporting seta, we postulate that in the hornwort–polysporangiophyte lineage the basal meristem acquired indeterminate meristematic activity and ectopically expressed the sporangium morphogenetic programme. The resulting sporophyte body plan remained substantially unaltered in hornworts, whereas in polysporangiophytes the persistent meristem shifted from a mid-embryo to a superficial position and was converted into an ancestral shoot apical meristem with the evolution of sequential vegetative and reproductive growth.

Conclusions

The sporophyte shoot is interpreted as a sterilized sporangial axis interpolated between the embryo and the fertile sporangium. With reference to the putatively ancestral condition found in mosses, the sporophyte body plans in hornworts and polysporangiophytes are viewed as the product of opposite heterochronic events, i.e. an anticipation and a delay, respectively, in the development of the sporangium. In either case the result was a pedomorphic sporophyte permanently retaining juvenile characters.  相似文献   

14.
Field-collected nodules of Comptonia peregrina (L.) Coult. and Myrica gale L. (Myricaceae), infected by the nitrogen-fixing actinomycete Frankia sp., were of two types: those that lacked sporangia entirely, designated spore(-), and those that showed extensive sporangial development, designated spore(+). In spore(+) nodules of C. peregrina, sporangia began to develop after the differentiation of endophytic vesicles and the concomitant onset of nitrogenase activity. At the onset of sporangial differentiation, infected host cells appeared healthy. However, endophytic vesicles and host cell cytoplasm and nuclei began to senesce rapidly as sporangia developed. Staining of sectioned material with the fluorescent stain Calcofluor White suggested that vesicles, hyphae and young sporangia were enclosed within a host-derived encapsulation layer, but mature sporangia were no longer encapsulated. In both C. peregrina and M. gale, vesicles were more short-lived in spore(+) than in spore(-) nodules. Field-collected spore(+) M. gale nodules exhibited a pronounced seasonality of sporangial formation. Sporangia began to differentiate in June, after the formation of vesicles and became more prominent in late summer. Inter- and intraspecific cross-inoculations suggest that the ability to form sporangia in the symbiotic state is controlled by endophytic strain type rather than host genotype or host/endophyte combination. The host may, however, influence the number and seasonal appearance of sporangia formed.  相似文献   

15.
SYNOPSIS. The mycetozoan genus Echinosteliopsis, resembling the myxomycete Echinostelium in some of its features, is described. The single species, E. oligospora Reinhardt & Olive, forms small sporocarps which consist of a basal disk, stalk and a sporangium with only 1–8 spores. Spores form progressively, not simultaneously, by segmentation. The spores germinate to release non-flagellate amebae which, in liquid, assume a characteristic broad, fan shape. Each ameba has one or more nuclei. The nucleus is distinctive because of refractile, globular to elongate peripheral bodies which cytochemical tests indicate to be primarily RNA. At the time of nuclear division the characteristic RNA bodies disappear and, as observed with the phase microscope and in stained preparations, optically dense material accumulates in the middle area of the nucleus. Threads, either a spindle or actual chromatin, can be seen attached to the nuclear membrane. The threads separate to opposite poles as the nucleus elongates. During this division process the nuclear membrane apparently remains intact. Synchronous binucleate divisions, as well as a tripolar nuclear division, have been observed. Uninucleate and synchronous binucleate divisions may or may not be followed by cytokinesis. The absence of cell division after nuclear division leads to the production of cells with varying numbers of nuclei. Nuclear divisions in early sporangial stages and in spores have not been observed. The spores are uni- to multinucleate. In 8-spored sporangia and in most 4-spored sporangia there is a characteristic small “stalk spore” at the apex of the stalk. The stalk spore germinates slowly, if at all, but the larger spores germinate readily. No evidence of a sexual process has been found.  相似文献   

16.
Numerous sporangia of Horneophyton lignieri from the Rhynie Chert locality in Scotland have been studied. The sporangia are branched, with two to four columellate lobes of varying length, and a continuous sporogenous zone or cavity occurs among the lobes. Unbranched sporangia, generally thought to be the typical form for the plant have not been found, and their presence is not established. Although not definitely proven, evidence suggests that the sporangia opened by means of a small apical pore or stoma. An area of thick-walled cells at the apex of each sporangial lobe probably played some role in this opening. Radial, trilete, azonate spores ranging from 39–49 μm in diam, with curvaturae perfectae are produced most commonly in tetrahedral tetrads and occasionally in isobilateral tetrads. Matters of spore preservation and possible ornamentation are discussed. The branched sporangia of this genus are unique among bryophytes and vascular plants and provide some evidence that certain synangia may have arisen from a single sporangium rather than from multiple sporangia borne singly at the tips of ultimate branches.  相似文献   

17.
Dispersal is a key process in plant population dynamics. In ferns, two successive vectors are needed: the sporangium catapulting mechanism, and wind or gravity. However, some rock ferns have a growth habit that suggests a kind of autochory by placing spores on the rock surface. Moreover, some ferns show modifications of the sporangial dehiscence. To determine the role of growth habit in spore dispersal, we checked the sporangial opening mechanism and explored the spatial distribution of plants on the walls. The presence of spores of Asplenium celtibericum, a rupicolous fern, in the rock surface was checked. In addition, its sporangial dehiscence, plant size and position in the wall were analysed. Spores and indehiscent sporangia were present on walls at each sampling moment. Their highest number was found close to the plants. There was a positive correlation between crack width and plant size. However, most plants occupy the upper half of the cliffs. The growth habit of A. celtibericum is instrumental to deposit the spores over the neighbouring rock surface, thus enhancing the probability of spores to find suitable crevices for germination. Furthermore, dispersal of indehiscent sporangia might promote intergametophytic mating, and the modified sporangial opening mechanism extends the dispersive period.  相似文献   

18.
L. Lange  L. W. Olson 《Protoplasma》1980,102(3-4):323-342
Summary The structural and developmental characteristics of the resting sporangium in uniflagellate phycomycetes, together with the type of zoospore, are of high taxonomic value. Among these fungi, however, only a few electron microscopic investigations have been published on this topic, mainly due to technical problems. In the present study ofPhysoderma maydis (Blastocladiales) these problems were overcome as the resting sporangia in this species are formed synchronously, in large numbers, the germination is readily induced and the impermeability of the resting sporangium wall can be circumvented by shaking the prefixed sporangia with glass beads.The germination of the resting sporangia ofP. maydis is described by correlative light and electron microscopic studies and discussed in relation to related investigations on sporogenesis: The germination process starts by a breakdown of large electron-dense accretions found in the resting stage. Simultaneously, the peripheral location of the lipid bodies is lost. The large operculum is pushed open by a protrusion of the inner sporangial wall; an additional wall layer is formed during this process. Synaptonemal complexes are found in the nuclei at this stage, as are nuclear division figures which suggests anEuallomyces type of life cycle for this fungus. Cleavage vesicles, formed from dictyosomes or endoplasmic reticulum, ultimately separate the sporangial content into meiospores. The sequential assembly of organelles into the side body complex is described. Sequestering of the ribosomes into a nuclear cap is interpreted as taking place immediately prior to zoospore discharge.  相似文献   

19.
Lingappa , Yamuna . (U. Michigan, Ann Arbor.) The development and cytology of the epibiotic phase of Physoderma pulposum. Amer. Jour. Bot. 46(3) : 145-150. Illus. 1959.—Physoderma pulposum, a chytrid parasite on Chenopodium album L. and Atriplex patula L., has a zoosporangial epibiotic phase. The latter consists of extramatrical sporangia and intramatrical bushy rhizoids, both enclosed in large protruding galls. The sporangia are subspherical, up to 350μ in diameter, and may produce hundreds of planospores. If planospores settle on the host surface, they develop narrow germ tubes which penetrate the epidermal cells and develop into rhizoids. The planospore body, however, remains on the host surface and develops into a mature epibiotic sporangium in about 20-25 days at 16°C., 12-15 days at 20-25°C., or 6-8 days at 30°C. During development, its nucleus and daughter nuclei divide mitotically with intranuclear spindles until the sporangium contains several hundred nuclei. This is followed by progressive cleavage which delimits the planospore rudiments. When mature sporangia are placed in fresh water, the planospores are quickly formed within 1 hr. at 25°C. and begin to swarm within the sporangia. They escape in large numbers through an opening formed by the deliquescence of a papillum in the sporangial wall. The planospores are subspherical or elongate, 3-5 × 4-6 μ, and each has an eccentric orange-yellow refractive globule and a flagellum 18-22 μ in length. The electron micrographs of the flagella indicate that the flagella are absorbed from tip backward during encystment of the planospores. By periodic inoculation of the host plants with planospores from epibiotic sporangia, as well as from germinating resting sporangia, generation after generation of epibiotic sporangia have been obtained for 4 years. This proves the existence of a eucarpic, epibiotic, ephemeral zoosporangial phase in P. pulposum. Field observations on the duration and sequence of development of the fungus indicate that the endobiotic resting sporangial phase always follows the epibiotic phase. The results of infection experiments also indicate that the epi- and endobiotic phases belong to one and the same fungus, P. pulposum.  相似文献   

20.
Material described by Graham as Cyathotrachus bulbaceus is believed to represent a new genus that is a common constituent of Upper Pennsylvanian coal balls. The sessile synangia of Acaulangium gen. n. are borne in a row on either side of the pinnule midrib and are composed of four to six short, tapering, laterally appressed sporangia. The sporangia have extended tips which curve over the inside of the synangium distally and delimit a small open area inside the synangium. The outer facing walls of the sporangia are two to three cells thick throughout while the inner facing walls are uniseriate. During dehiscence the sporangia separate laterally and spore release results from the rupture of a row of elongate cells along the inner sporangium midline. Among species of Scolecopteris the new genus resembles S. illinoensis and S. minor var. parvifolia but differs in its sessile synangial attachment. The additional parenchyma present between sporangial cavities in the synangia of Acaulangium, and the tendency toward bilateral symmetry suggests an early stage in the evolution of a bivalve synangium such as is present in Marattia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号