首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The murine urokinase-type plasminogen activator gene   总被引:8,自引:0,他引:8  
S J Degen  J L Heckel  E Reich  J L Degen 《Biochemistry》1987,26(25):8270-8279
  相似文献   

2.
Cell-binding experiments have indicated that murine cells on their surface have specific binding sites for mouse urokinase-type plasminogen activator (u-PA). In contrast to the human system, chemical cross-linking studies with an iodinated ligand did not yield any covalent adducts in the murine system, but in ligand-blotting analysis, two mouse u-PA-binding proteins could be visualized. To confirm that these proteins are the murine counterpart of the human u-PA receptor (u-PAR), a peptide was derived from the murine cDNA clone assigned to represent the murine u-PAR due to cross-hybridization and pronounced sequence similarity with human u-PAR cDNA [Kristensen, P., Eriksen, J., Blasi, F. & Dan?, K. (1991) J. Cell Biol. 115, 1763-1771]. A rabbit antiserum raised against this peptide specifically recognized two polypeptide bands with electrophoretic mobilities identical to those identified by ligand-blotting analysis. Binding of mouse u-PA to its receptor showed species specificity in ligand-blotting analysis, since mouse u-PA did not bind to human u-PAR and human u-PA did not bind to mouse u-PAR. The apparent M(r) of mouse u-PAR varied between different mouse cell lines and ranged over M(r) 45,000-60,000. In four of the cell lines, mouse u-PA bound to two mouse u-PAR variant proteins, whereas in the other two cell lines studied, there was only one mouse u-PA-binding protein. In the monocyte macrophage cell line P388D.1, trypsin-treatment of intact cells could remove only the large mouse u-PAR variant (M(r) 60,000) indicating that only this type was a cell-surface-exposed molecule. The smaller mouse u-PAR variant (M(r) 45,000), was deglycosylated by the enzyme endo-beta-N-acetylglucosaminidase H and is probably an intracellular precursor form carrying only high-mannose carbohydrate. Deglycosylation of this variant yielded a polypeptide with an apparent M(r) of about 30,000, which corresponds to the Mr calculated from the cDNA derived protein sequence of mouse u-PAR. Receptor-bound mouse u-PA could be released by phosphatidylinositol-specific phospholipase C treatment, indicating that mouse u-PAR is attached to the cell surface by glycosylphosphatidylinositol. Purification of the two mouse u-PAR variant proteins by diisopropylfluorophosphate-inactivated mouse u-PA-Sepharose affinity chromatography yielded two silver-stained bands when analysed by SDS/PAGE, corresponding in electrophoretic mobility to those seen by ligand-blotting analysis.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
The hypothesis of this study was the urokinase-type plasminogen activator receptor (uPAR) is required for accumulation of inflammatory cells in injured skeletal muscle and for efficient muscle regeneration. Expression of uPAR was elevated at 1 and 3 days after cardiotoxin-induced muscle injury in wild-type mice before returning to baseline levels. Neutrophil accumulation peaked 1 day postinjury in muscle from both wild-type (WT) and uPAR null mice, while macrophage accumulation peaked between 3 and 5 days postinjury, with no differences between strains. Histological analyses confirmed efficient muscle regeneration in both wild-type and uPAR null mice, with no difference between strains in the formation or growth of regenerating fibers, or recovery of normal morphology. Furthermore, in vitro experiments demonstrated that chemotaxis is not different between WT and uPAR null macrophages. Finally, fusion of cultured satellite cells into multinucleated myotubes was not different between cells isolated from WT and uPAR null mice. These results demonstrate that uPAR is not required for the accumulation of inflammatory cells or the regeneration of skeletal muscle following injury, suggesting uPA can act independently of uPAR to regulate events critical for muscle regeneration.  相似文献   

4.
The purified urokinase plasminogen activator receptor (u-PAR) was cleaved into two fragments by mild chymotrypsin treatment. The smaller fragment (apparent Mr 16,000) possessed the ligand-binding capability, as shown by chemical cross-linking analysis. This fragment constituted the NH2-terminal part of the intact receptor, probably including the whole sequence 1-87, and contained N-linked carbohydrate. After detergent phase separation in the Triton X-114 system, the fragment was present in the water phase where its binding activity could be demonstrated in the absence of the rest of the protein. An analysis of internal homology in the amino acid sequence of u-PAR revealed the presence of three repeats of approximately 90 residues each. The ligand-binding fragment corresponds to the first repeat, supporting that this unit is a structurally autonomous domain. Domains homologous with the internal repeats of u-PAR constitute the extracellular part of Ly-6 antigens and of the squid glycoprotein Sgp-2. Like u-PAR, these proteins are attached to the membrane by a glycosyl-phosphatidylinositol anchor. The hydrophilic, ligand-binding u-PAR domain identified in the present study has potential applications in interfering with cell-surface plasmin-mediated proteolysis.  相似文献   

5.
The urokinase plasminogen activator receptor (uPAR), a glycosylphosphatidylinositol-linked glycoprotein, plays a central role in the regulation of pericellular proteolysis and participates in events leading to cell activation. Here, we demonstrate that uPAR, on a human melanoma cell line, is localized in caveolae, flask-shaped microinvaginations of the plasma membrane found in a variety of cell types. Indirect immunofluorescence with anti-uPAR antibodies on the melanoma cells showed a punctated staining pattern that accumulated to stretches along sides of cell-cell contact and membrane ruffles. uPAR colocalized with caveolin, a characteristic protein in the coat of caveolae, as demonstrated by double staining with specific antibodies. Further, uPAR could be directly localized in caveolae by in vivo immunoelectron microscopy. Both uPAR and its ligand, uPA, were present in caveolae enriched low density Triton X-100 insoluble complexes, as shown by immunoblotting. From such complexes, caveolin could be coprecipitated with uPAR-specific antibodies suggesting a close spatial association between uPAR and caveolin that might have implications for the signal transduction mediated by uPAR. Further, functional studies indicated that the localization of uPAR and its ligand in caveolae enhances pericellular plasminogen activation, since treatment of the cells with drugs that interfere with the structural integrity of caveolae, such as nystatin, markedly reduced cell surface plasmin generation. Thus, caveolae promote efficient cell surface plasminogen activation by clustering uPAR, uPA, and possibly other protease receptors in one membrane compartment.  相似文献   

6.
The interaction between urokinase plasminogen activator (uPA) and its cellular receptor (uPAR) is a key event in cell surface-associated plasminogen activation, relevant for cell migration and invasion. In order to define receptor recognition sites for uPA, we have expressed uPAR fragments as fusion products with the minor coat protein on the surface of M13 bacteriophages. Sequence analysis of cDNA fragments encoding uPA-binding peptides indicated the existence of a composite uPA-binding structure including all three uPAR domains. This finding was confirmed by experiments using an overlapping 15-mer peptide array covering the entire uPAR molecule. Four regions within the uPAR sequence were found to directly bind to uPA: two distinct regions containing amino acids 13--20 and amino acids 74--84 of the uPAR domain I, and regions in the putative loop 3 of the domains II and III. All the uPA-binding fragments from the three domains were shown to have an agonistic effect on uPA binding to immobilized uPAR. Furthermore, uPAR-(154--176) increased uPAR-transfected BAF3-cell adhesion on vitronectin in the presence of uPA, whereas uPAR-(247--276) stimulated the cell adhesion both in the absence or presence of uPA. The latter fragment was also able to augment the binding of vitronectin to uPAR in a purified system, thereby mimicking the effect of uPA on this interaction. These results indicate that uPA binding can take place to particular part(s) on several uPAR molecules and that direct uPAR-uPAR contacts may contribute to receptor activation and ligand binding.  相似文献   

7.
The urokinase-type plasminogen activator receptor (uPAR) has been implicated in tumor growth and metastasis. The crystal structure of uPAR revealed that the external surface is largely free to interact with a number of proteins. Additionally, due to absence of an intracellular cytoplasmic protein domain, many of the biological functions of uPAR necessitate interactions with other proteins. Here, we used yeast two-hybrid screening of breast cancer cDNA library to identify hSpry1 and HAX1 proteins as putative candidate proteins that interact with uPAR bait constructs. Interaction between these two candidates and uPAR was confirmed by GST-pull down, co-immunoprecipitation assays and confocal microscopy. These novel interactions that have been identified may also provide further evidence that uPAR can interact with a number of other proteins which may influence a range of biological functions.  相似文献   

8.
The urokinase-type plasminogen activator (uPA) receptor (uPAR) functions in concert with co-receptors, including integrins, FPR-like receptor-1/lipoxin A4 receptor, and the epidermal growth factor receptor (EGFR), to initiate cell signaling. uPAR co-receptors may be dynamically organized into a multiprotein signaling receptor complex. In Chinese hamster ovary-K1 (CHO-K1) cells, uPA-binding to uPAR activates ERK/MAP kinase, even though these cells do not express the EGFR; however, when CHO-K1 cells are transfected to express the EGFR, ERK activation becomes EGFR-dependent. In this study, we demonstrate that ERK activation in response to uPA follows equivalent biphasic kinetics in EGFR-expressing and -deficient CHO-K1 cells. In both cell types, the response is pertussis toxin-sensitive; however, uPA promotes cell proliferation exclusively in the EGFR-expressing cells. uPA-induced mitogenic activity requires activation of both STAT5b and ERK. STAT5b was tyrosine-phosphorylated, in response to uPA, only in EGFR-expressing cells. uPA-induced cell proliferation was blocked by dominant-negative MEK1, dominant-negative STAT5b, and by expression of an EGFR that is mutated at Tyr-845, which is essential for STAT5b activation. In two cell culture models of uPA-stimulated breast cancer growth, MDA-MB 468 cells treated with uPA and MCF-7 cells treated with uPA-plasminogen activator inhibitor-1 complex, proliferation was completely inhibited when EGFR expression or activity was blocked. We conclude that expression and assembly of uPAR co-receptors in a specific cell type determines the response to uPA. The EGFR selectively cooperates with uPAR to mediate mitogenesis.  相似文献   

9.
10.
Tissue plasminogen activator mRNA in murine tissues   总被引:7,自引:0,他引:7  
The urokinase-type and tissue-type plasminogen activators are the two enzymes found in mammals, which specifically convert the zymogen plasminogen to plasmin. Using cDNA probes, we have assayed for the presence of the two types of plasminogen activator mRNAs in murine tissues. We demonstrate that tissue-type plasminogen activator mRNA can be detected in a wide variety of tissues. In contrast, the accumulation of urokinase-type plasminogen activator mRNA is observed in only a few of the tissues analyzed. Using an S1 nuclease assay, we demonstrate that the tPA mRNA detected contains the complete sequences encoding the non-protease finger, growth-factor and kringle domains.  相似文献   

11.
Urokinase-type plasminogen activator (uPA) regulates the remodeling of extracellular matrix and controls reparative processes such as wound healing and liver regeneration. Here we show inducible uPA expression is controlled by MEKK1, a MAPK kinase kinase that regulates the ERK1/2 and JNK pathways. MEKK1 is activated in response to growth factors and cytoskeletal changes. We have found MEKK1 to be necessary for uPA up-regulation in response to treatment with phorbol 12-myristate 13-acetate or basic fibroblast growth factor. We demonstrate that growth factor-treated MEKK1-deficient fibroblasts display greatly reduced uPA expression and activity compared with control fibroblasts. Further, we show that growth factor-induced uPA expression requires MEKK1-dependent MKK1 and JNK activity and that transfection of MEKK1 into knockout cells restores inducible uPA expression and activity. Importantly, disrupted expression of MEKK2, a related MAPK kinase kinase, had no effect on uPA activity. Therefore, we conclude that MEKK1 expression is required for PMA- or FGF-2-induced signals to control uPA expression and function.  相似文献   

12.
Previous studies have indicated that the receptor for urokinase-type plasminogen activator, uPAR, can form functional complexes with integrin receptors thereby modulating integrin activity. In the present study, the role of uPAR in the regulation of alpha5beta1-dependent polymerization of the fibronectin matrix was investigated. Incubation of fibroblast monolayers with the P-25 peptide, a uPAR ligand, resulted in a 12-15-fold increase in the accumulation of exogenous fibronectin in the cell layer. The exogenous fibronectin co-localized in the extracellular matrix with endogenous cell-derived fibronectin, and its deposition into the matrix was inhibited by blocking antibodies against the beta1 integrin receptor. The P-25-dependent increase in fibronectin assembly was associated with a 7-8-fold increase in the expression of matrix assembly sites as well as a 37-fold increase in the rate of transfer of cell surface-bound fibronectin into a detergent-insoluble matrix. The effects of P-25 on the matrix assembly were attenuated by incubating cells with either phospholipase C or with antibodies against uPAR, confirming a role for uPAR in the P-25-dependent increase in matrix assembly. P-25-treated cells exhibited a 10-fold increase in the binding of the 120-kDa cell-binding fragment of fibronectin suggesting an increase in alpha5beta1 affinity for fibronectin. Consistent with this, treatment of cells with P-25 also resulted in a 6-10-fold increase in the binding of two different monoclonal antibodies that recognize the active conformation of the beta1 integrin. These results indicate that P-25 increases matrix assembly by altering the activation state of the alpha5beta1 integrin receptor and suggest that changes in integrin activation affect both the number of matrix assembly sites as well as the rate of transfer of cell-bound fibronectin into a detergent-insoluble matrix. These data provide direct evidence that uPAR and integrin receptors synergistically regulate the levels of fibronectin in the extracellular matrix.  相似文献   

13.
The serine proteinase urokinase-type plasminogen activator (uPA) is widely recognized as a potential target for anticancer therapy. Its association with cell surfaces through the uPA receptor (uPAR) is central to its function and plays an important role in cancer invasion and metastasis. In the current study, we used systematic evolution of ligands by exponential enrichment (SELEX) to select serum-stable 2'-fluoro-pyrimidine-modified RNA aptamers specifically targeting human uPA and blocking the interaction to its receptor at low nanomolar concentrations. In agreement with the inhibitory function of the aptamers, binding was found to be dependent on the presence of the growth factor domain of uPA, which mediates uPAR binding. One of the most potent uPA aptamers, upanap-12, was analyzed in more detail and could be reduced significantly in size without severe loss of its inhibitory activity. Finally, we show that the uPA-scavenging effect of the aptamers can reduce uPAR-dependent endocytosis of the uPA-PAI-1 complex and cell-surface associated plasminogen activation in cell culture experiments. uPA-scavenging 2'-fluoro-pyrimidine-modified RNA aptamers represent a novel promising principle for interfering with the pathological functions of the uPA system.  相似文献   

14.
The type of plasminogen activator (PA) secreted by bovine embryos was identified. Day 12-14 embryos were collected from estrus-synchronized, superovulated, and naturally mated crossbred beef cows. Embryos were left intact (E) or microdissected into component embryonic discs (ED) and trophoblastic vesicles (TV). Intact embryos, ED, and TV were pre-cultured for 2 days in Minimum Essential Medium Alpha (MEM alpha) with 10% heat-inactivated fetal calf serum, washed in serum-free MEM alpha, and cultured individually for 5 days in 50 microliters microdrops of MEM alpha with 15 mg/ml bovine serum albumin. At 24 hr intervals, E, ED, and TV were observed for tissue morphology and transferred to fresh microdrops, and medium was recovered and frozen at -20 degrees C. At the end of culture, blastocoelic fluid (BF) and embryonic tissues were recovered and frozen at -20 degrees C. Plasminogen activator concentrations in medium, tissues, and BF were determined by using a caseinolytic assay. Antibodies to urokinase-type PA (anti-uPA) and tissue-type PA (anti-tPA), and the urokinase inhibitor, amiloride (AMR), were used to identify the type of PA produced by bovine embryonic tissues. Intact embryos and TV released more PA (P less than 0.05) than ED, and tissues exhibiting expanded blastocoels released less PA (P less than 0.05) than tissues with collapsed blastocoels. Blastocoelic fluid from TV exhibited more PA (P less than 0.05) activity than from ED. Treatment with anti-uPA decreased PA activity (P less than 0.05) in pooled medium and tissues from E compared to treatment with nonspecific immunoglobulins and anti-tPA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Plasminogen activator inhibitor-1 (PAI-1), together with its physiological target urokinase-type plasminogen activator (uPA), plays a pivotal role in fibrinolysis, cell migration, and tissue remodeling and is currently recognized as being among the most extensively validated biological prognostic factors in several cancer types. PAI-1 specifically and rapidly inhibits uPA and tissue-type PA (tPA). Despite extensive structural/functional studies on these two reactions, the underlying structural mechanism has remained unknown due to the technical difficulties of obtaining the relevant structures. Here, we report a strategy to generate a PAI-1·uPA(S195A) Michaelis complex and present its crystal structure at 2.3-Å resolution. In this structure, the PAI-1 reactive center loop serves as a bait to attract uPA onto the top of the PAI-1 molecule. The P4–P3′ residues of the reactive center loop interact extensively with the uPA catalytic site, accounting for about two-thirds of the total contact area. Besides the active site, almost all uPA exosite loops, including the 37-, 60-, 97-, 147-, and 217-loops, are involved in the interaction with PAI-1. The uPA 37-loop makes an extensive interaction with PAI-1 β-sheet B, and the 147-loop directly contacts PAI-1 β-sheet C. Both loops are important for initial Michaelis complex formation. This study lays down a foundation for understanding the specificity of PAI-1 for uPA and tPA and provides a structural basis for further functional studies.  相似文献   

16.
Recent studies indicate that binding of the urokinase-type plasminogen activator (uPA) to its high-affinity receptor (uPAR) orchestrates uPAR interactions with other cellular components that play a pivotal role in diverse (patho-)physiological processes, including wound healing, angiogenesis, inflammation, and cancer metastasis. However, notwithstanding the wealth of biochemical data available describing the activities of uPAR, little is known about the exact mode of uPAR/uPA interactions or the presumed conformational changes that accompany uPA/uPAR engagement. Here, we report the crystal structure of soluble urokinase plasminogen activator receptor (suPAR), which contains the three domains of the wild-type receptor but lacks the cell-surface anchoring sequence, in complex with the amino-terminal fragment of urokinase-type plasminogen activator (ATF), at the resolution of 2.8 A. We report the 1.9 A crystal structure of free ATF. Our results provide a structural basis, represented by conformational changes induced in uPAR, for several published biochemical observations describing the nature of uPAR/uPA interactions and provide insight into mechanisms that may be responsible for the cellular responses induced by uPA binding.  相似文献   

17.
Summary The cDNA probe puPAR-2 detects two PstI polymorphisms in the urokinase-type plasminogen activator receptor gene (PLAUR). This probe and the polymorphic system are described.  相似文献   

18.
Mutagenesis throughout the single-chain urokinase-type plasminogen activator (scu-PA) cDNA molecule, followed by expression of the mutant genes and secretion of the resulting mutant proteins from yeast, has been used to determine the amino acid residues important for activity of scu-PA molecules. Twelve out of 13 colonies secreting variant scu-PA molecules with decreased ability to form a zone of fibrinolysis had mutant genes with a single codon alteration in the serine protease encoding domain (B-chain). Many of these changes are of highly conserved residues in the serine proteases and are consequently of considerable interest. A model three-dimensional structure of the protease domain of urokinase was used to explain the basis for the effects of these down mutations. The model showed that the strongest down mutations result from either interference of the mutated side chain with substrate binding at the active site or the introduction of bulky or charged groups at structurally sensitive internal positions in the molecule. Attempts to find second site revertants of five down mutants, altered either at the plasmin activation site or near the serine at the active site, only resulted in same-site revertants, with the original or closely related amino acids restored.  相似文献   

19.
S S Husain 《Biochemistry》1991,30(23):5797-5805
The question whether single-chain urokinase-type plasminogen activator (Sc-uPA) possesses an enzymatic activity has been a subject of intense investigation for a number of years but still remains unresolved. Recent studies from several laboratories suggest that Sc-uPA or its plasmin-resistant mutants obtained by site-directed mutagenesis possess significant, albeit low, amidolytic and plasminogen activator activities, ranging from 0.1% to 1% of that observed for two-chain urokinase (Tc-uPA). In an effort to characterize these putative intrinsic activities, Sc-uPA was repeatedly treated with dansyl-Glu-Gly-Arg chloromethyl ketone (dansyl-EGRck) or diisopropyl fluorophosphate (DFP) (0.1-0.25 mM added thrice over a period of 24 h at 0 degrees C). This treatment exhaustively inactivated the Tc-uPA contaminant but did not affect Sc-uPA, as evidenced by the lack of significant incorporation of radiolabeled inhibitor in Sc-uPA and full activation of the inhibitor-treated Sc-uPA by plasmin. Assayed in the presence of excess DFP or dansyl-EGRck to ensure trapping of any Tc-uPA generated in the assay mixture, Sc-uPA (84 micrograms/mL, 10,500 latent units/mL) did not elicit any detectable cleavage of the chromogenic substrate S-2444 (detection limit 0.1 unit of Tc-uPA/mL). However, if the Tc-uPA inhibitors were removed prior to assay, a trace amount of amidolytic activity invariably reappeared in the Sc-uPA preparation. Incorporation experiments with [3H]DFP suggested that the appearance of this amidolytic activity was due to formation of Tc-uPA. Plasminogen activator assay of DFP- and dansyl-EGRck-treated Sc-uPA (0.45-2.25 microM), performed in the presence of these inhibitors and Trasylol (10 microM) to ensure entrapment of any Tc-uPA or plasmin generated in the reaction mixture, showed no significant cleavage of 125I-labeled plasminogen (detection limit 0.1 nM). However, if dansyl-EGRck and DFP were removed from the inhibitor-treated Sc-uPA and the assay was performed in the presence of Trasylol alone, there was significant cleavage of 125I-plasminogen due to contamination by Tc-uPA. Fibrin, a positive effector of plasminogen activation by Tc-uPA or Sc-uPA preparations in the absence of DFP and dansyl-EGRck, did not promote cleavage of plasminogen or S-2444 by Sc-uPA in the presence of the Tc-uPA inhibitors.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Spontaneous intestinal and intra-abdominal bleeding was observed in a high percentage of newborn transgenic mice carrying the murine urokinase-type plasminogen activator (uPA) gene linked to the albumin enhancer/promoter. These hemorrhagic events were directly related to transgene expression in the liver and the development of high plasma uPA levels. Two lines were established from surviving founder mice that displayed multigenerational transmission of the bleeding phenotype. Fatal hemorrhaging developed between 3 and 84 hr after birth in about half of the transgenic offspring of these lines; transgenic pups that did not bleed nevertheless passed the phenotype to their young. The phenotypic variability could not be explained by differences in transgene expression. All transgenic neonates were severely hypofibrinogenemic and displayed loss of clotting function that extended beyond the risk period for bleeding. These mice provide a means of studying the pathophysiology of plasminogen hyperactivation and evaluating therapeutic protocols designed to prevent bleeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号