首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.

Background  

Likelihood (ML)-based phylogenetic inference has become a popular method for estimating the evolutionary relationships among species based on genomic sequence data. This method is used in applications such as RAxML, GARLI, MrBayes, PAML, and PAUP. The Phylogenetic Likelihood Function (PLF) is an important kernel computation for this method. The PLF consists of a loop with no conditional behavior or dependencies between iterations. As such it contains a high potential for exploiting parallelism using micro-architectural techniques. In this paper, we describe a technique for mapping the PLF and supporting logic onto a Field Programmable Gate Array (FPGA)-based co-processor. By leveraging the FPGA's on-chip DSP modules and the high-bandwidth local memory attached to the FPGA, the resultant co-processor can accelerate ML-based methods and outperform state-of-the-art multi-core processors.  相似文献   

3.

Background  

Phylogenetic footprinting is the identification of functional regions of DNA by their evolutionary conservation. This is achieved by comparing orthologous regions from multiple species and identifying the DNA regions that have diverged less than neutral DNA. Vestige is a phylogenetic footprinting package built on the PyEvolve toolkit that uses probabilistic molecular evolutionary modelling to represent aspects of sequence evolution, including the conventional divergence measure employed by other footprinting approaches. In addition to measuring the divergence, Vestige allows the expansion of the definition of a phylogenetic footprint to include variation in the distribution of any molecular evolutionary processes. This is achieved by displaying the distribution of model parameters that represent partitions of molecular evolutionary substitutions. Examination of the spatial incidence of these effects across regions of the genome can identify DNA segments that differ in the nature of the evolutionary process.  相似文献   

4.
Algorithms for phylogenetic footprinting.   总被引:9,自引:0,他引:9  
Phylogenetic footprinting is a technique that identifies regulatory elements by finding unusually well conserved regions in a set of orthologous noncoding DNA sequences from multiple species. We introduce a new motif-finding problem, the Substring Parsimony Problem, which is a formalization of the ideas behind phylogenetic footprinting, and we present an exact dynamic programming algorithm to solve it. We then present a number of algorithmic optimizations that allow our program to run quickly on most biologically interesting datasets. We show how to handle data sets in which only an unknown subset of the sequences contains the regulatory element. Finally, we describe how to empirically assess the statistical significance of the motifs found. Each technique is implemented and successfully identifies a number of known binding sites, as well as several highly conserved but uncharacterized regions. The program is available at http://bio.cs.washington.edu/software.html.  相似文献   

5.
Phylogenetic footprinting is a method for the discovery of regulatory elements in a set of homologous regulatory regions, usually collected from multiple species. It does so by identifying the best conserved motifs in those homologous regions. This note describes web software that has been designed specifically for this purpose, making use of the phylogenetic relationships among the homologous sequences in order to make more accurate predictions. The software is called FootPrinter and is available at http://bio.cs.washington.edu/software.html.  相似文献   

6.
7.
8.
Polytomies and Bayesian phylogenetic inference   总被引:16,自引:0,他引:16  
Bayesian phylogenetic analyses are now very popular in systematics and molecular evolution because they allow the use of much more realistic models than currently possible with maximum likelihood methods. There are, however, a growing number of examples in which large Bayesian posterior clade probabilities are associated with very short branch lengths and low values for non-Bayesian measures of support such as nonparametric bootstrapping. For the four-taxon case when the true tree is the star phylogeny, Bayesian analyses become increasingly unpredictable in their preference for one of the three possible resolved tree topologies as data set size increases. This leads to the prediction that hard (or near-hard) polytomies in nature will cause unpredictable behavior in Bayesian analyses, with arbitrary resolutions of the polytomy receiving very high posterior probabilities in some cases. We present a simple solution to this problem involving a reversible-jump Markov chain Monte Carlo (MCMC) algorithm that allows exploration of all of tree space, including unresolved tree topologies with one or more polytomies. The reversible-jump MCMC approach allows prior distributions to place some weight on less-resolved tree topologies, which eliminates misleadingly high posteriors associated with arbitrary resolutions of hard polytomies. Fortunately, assigning some prior probability to polytomous tree topologies does not appear to come with a significant cost in terms of the ability to assess the level of support for edges that do exist in the true tree. Methods are discussed for applying arbitrary prior distributions to tree topologies of varying resolution, and an empirical example showing evidence of polytomies is analyzed and discussed.  相似文献   

9.
Linear mixed effects models have been widely used in analysis of data where responses are clustered around some random effects, so it is not reasonable to assume independence between observations in the same cluster. In most biological applications, it is assumed that the distributions of the random effects and of the residuals are Gaussian. This makes inferences vulnerable to the presence of outliers. Here, linear mixed effects models with normal/independent residual distributions for robust inferences are described. Specific distributions examined include univariate and multivariate versions of the Student‐ t, the slash and the contaminated normal. A Bayesian framework is adopted and Markov chain Monte Carlo is used to carry out the posterior analysis. The procedures are illustrated using birth weight data on rats in a toxicological experiment. Results from the Gaussian and robust models are contrasted, and it is shown how the implementation can be used for outlier detection. The thick‐tailed distributions provide an appealing robust alternative to the Gaussian process in linear mixed models, and they are easily implemented using data augmentation and MCMC techniques.  相似文献   

10.
MRBAYES: Bayesian inference of phylogenetic trees   总被引:108,自引:0,他引:108  
SUMMARY: The program MRBAYES performs Bayesian inference of phylogeny using a variant of Markov chain Monte Carlo. AVAILABILITY: MRBAYES, including the source code, documentation, sample data files, and an executable, is available at http://brahms.biology.rochester.edu/software.html.  相似文献   

11.
Phylogenies are often thought to be more dependent upon the specifics of the sequence alignment rather than on the method of reconstruction. Simulation of sequences containing insertion and deletion events was performed in order to determine the role that alignment accuracy plays during phylogenetic inference. Data sets were simulated for pectinate, balanced, and random tree shapes under different conditions (ultrametric equal branch length, ultrametric random branch length, nonultrametric random branch length). Comparisons between hypothesized alignments and true alignments enabled determination of two measures of alignment accuracy, that of the total data set and that of individual branches. In general, our results indicate that as alignment error increases, topological accuracy decreases. This trend was much more pronounced for data sets derived from more pectinate topologies. In contrast, for balanced, ultrametric, equal branch length tree shapes, alignment inaccuracy had little average effect on tree reconstruction. These conclusions are based on average trends of many analyses under different conditions, and any one specific analysis, independent of the alignment accuracy, may recover very accurate or inaccurate topologies. Maximum likelihood and Bayesian, in general, outperformed neighbor joining and maximum parsimony in terms of tree reconstruction accuracy. Results also indicated that as the length of the branch and of the neighboring branches increase, alignment accuracy decreases, and the length of the neighboring branches is the major factor in topological accuracy. Thus, multiple-sequence alignment can be an important factor in downstream effects on topological reconstruction.  相似文献   

12.
The MIKC MADS-box gene family has been shaped by extensive gene duplications giving rise to subfamilies of genes with distinct functions and expression patterns. However, within these subfamilies the functional assignment is not that clear-cut, and considerable functional redundancy exists. One way to investigate the diversity in regulation present in these subfamilies is promoter sequence analysis. With the advent of genome sequencing projects, we are now able to exert a comparative analysis of Arabidopsis and poplar promoters of MADS-box genes belonging to the same subfamily. Based on the principle of phylogenetic footprinting, sequences conserved between the promoters of homologous genes are thought to be functional. Here, we have investigated the evolution of MADS-box genes at the promoter level and show that many genes have diverged in their regulatory sequences after duplication and/or speciation. Furthermore, using phylogenetic footprinting, a distinction can be made between redundancy, neo/nonfunctionalization, and subfunctionalization.  相似文献   

13.
SUMMARY: BAli-Phy is a Bayesian posterior sampler that employs Markov chain Monte Carlo to explore the joint space of alignment and phylogeny given molecular sequence data. Simultaneous estimation eliminates bias toward inaccurate alignment guide-trees, employs more sophisticated substitution models during alignment and automatically utilizes information in shared insertion/deletions to help infer phylogenies. AVAILABILITY: Software is available for download at http://www.biomath.ucla.edu/msuchard/bali-phy.  相似文献   

14.
Multiple sequence alignment is discussed in light of homology assessments in phylogenetic research. Pairwise and multiple alignment methods are reviewed as exact and heuristic procedures. Since the object of alignment is to create the most efficient statement of initial homology, methods that minimize nonhomology are to be favored. Therefore, among all possible alignments, the one that satisfies the phylogenetic optimality criterion the best should be considered the best alignment. Since all homology statements are subject to testing and explanation this way, consistency of optimality criteria is desirable. This consistency is based on the treatment of alignment gaps as character information and the consistent use of a cost function (e.g., insertion-deletion, transversion, and transition) through analysis from alignment to phylogeny reconstruction. Cost functions are not subject to testing via inspection; hence the assumptions they make should be examined by varying the assumed values in a sensitivity analysis context to test for the robustness of results. Agreement among data may be used to choose an optimal solution set from all of those examined through parameter variation. This idea of consistency between assumption and analysis through alignment and cladogram reconstruction is not limited to parsimony analysis and could and should be applied to other forms of analysis such as maximum likelihood.  相似文献   

15.
A phylogenetic alignment differs from other forms of multiple sequence alignment because it must align homologous features. Therefore, the goal of the alignment procedure should be to identify the events associated with the homologies, so that the aligned sequences accurately reflect those events. That is, an alignment is a set of hypotheses about historical events rather than about residues, and any alignment algorithm must be designed to identify and align such events. Some events (e.g., substitution) involve single residues, and our current algorithms can successfully align those events when sequence similarity is great enough. However, the other common events (such as duplication, translocation, deletion, insertion and inversion) can create complex sequence patterns that defeat such algorithms. There is therefore currently no computerized algorithm that can successfully align molecular sequences for phylogenetic analysis, except under restricted circumstances. Manual re-alignment of a preliminary alignment is thus the only feasible contemporary methodology, although it should be possible to automate such a procedure.  相似文献   

16.
Methods for Bayesian inference of phylogeny using DNA sequences based on Markov chain Monte Carlo (MCMC) techniques allow the incorporation of arbitrarily complex models of the DNA substitution process, and other aspects of evolution. This has increased the realism of models, potentially improving the accuracy of the methods, and is largely responsible for their recent popularity. Another consequence of the increased complexity of models in Bayesian phylogenetics is that these models have, in several cases, become overparameterized. In such cases, some parameters of the model are not identifiable; different combinations of nonidentifiable parameters lead to the same likelihood, making it impossible to decide among the potential parameter values based on the data. Overparameterized models can also slow the rate of convergence of MCMC algorithms due to large negative correlations among parameters in the posterior probability distribution. Functions of parameters can sometimes be found, in overparameterized models, that are identifiable, and inferences based on these functions are legitimate. Examples are presented of overparameterized models that have been proposed in the context of several Bayesian methods for inferring the relative ages of nodes in a phylogeny when the substitution rate evolves over time.  相似文献   

17.
Reconstructing biological networks using high-throughput technologies has the potential to produce condition-specific interactomes. But are these reconstructed networks a reliable source of biological interactions? Do some network inference methods offer dramatically improved performance on certain types of networks? To facilitate the use of network inference methods in systems biology, we report a large-scale simulation study comparing the ability of Markov chain Monte Carlo (MCMC) samplers to reverse engineer Bayesian networks. The MCMC samplers we investigated included foundational and state-of-the-art Metropolis–Hastings and Gibbs sampling approaches, as well as novel samplers we have designed. To enable a comprehensive comparison, we simulated gene expression and genetics data from known network structures under a range of biologically plausible scenarios. We examine the overall quality of network inference via different methods, as well as how their performance is affected by network characteristics. Our simulations reveal that network size, edge density, and strength of gene-to-gene signaling are major parameters that differentiate the performance of various samplers. Specifically, more recent samplers including our novel methods outperform traditional samplers for highly interconnected large networks with strong gene-to-gene signaling. Our newly developed samplers show comparable or superior performance to the top existing methods. Moreover, this performance gain is strongest in networks with biologically oriented topology, which indicates that our novel samplers are suitable for inferring biological networks. The performance of MCMC samplers in this simulation framework can guide the choice of methods for network reconstruction using systems genetics data.  相似文献   

18.
BALSA: Bayesian algorithm for local sequence alignment   总被引:2,自引:1,他引:2       下载免费PDF全文
The Smith–Waterman algorithm yields a single alignment, which, albeit optimal, can be strongly affected by the choice of the scoring matrix and the gap penalties. Additionally, the scores obtained are dependent upon the lengths of the aligned sequences, requiring a post-analysis conversion. To overcome some of these shortcomings, we developed a Bayesian algorithm for local sequence alignment (BALSA), that takes into account the uncertainty associated with all unknown variables by incorporating in its forward sums a series of scoring matrices, gap parameters and all possible alignments. The algorithm can return both the joint and the marginal optimal alignments, samples of alignments drawn from the posterior distribution and the posterior probabilities of gap penalties and scoring matrices. Furthermore, it automatically adjusts for variations in sequence lengths. BALSA was compared with SSEARCH, to date the best performing dynamic programming algorithm in the detection of structural neighbors. Using the SCOP databases PDB40D-B and PDB90D-B, BALSA detected 19.8 and 41.3% of remote homologs whereas SSEARCH detected 18.4 and 38% at an error rate of 1% errors per query over the databases, respectively.  相似文献   

19.
Bayesian adaptive sequence alignment algorithms   总被引:2,自引:1,他引:2  
The selection of a scoring matrix and gap penalty parameters continues to be an important problem in sequence alignment. We describe here an algorithm, the 'Bayes block aligner, which bypasses this requirement. Instead of requiring a fixed set of parameter settings, this algorithm returns the Bayesian posterior probability for the number of gaps and for the scoring matrices in any series of interest. Furthermore, instead of returning the single best alignment for the chosen parameter settings, this algorithm returns the posterior distribution of all alignments considering the full range of gapping and scoring matrices selected, weighing each in proportion to its probability based on the data. We compared the Bayes aligner with the popular Smith-Waterman algorithm with parameter settings from the literature which had been optimized for the identification of structural neighbors, and found that the Bayes aligner correctly identified more structural neighbors. In a detailed examination of the alignment of a pair of kinase and a pair of GTPase sequences, we illustrate the algorithm's potential to identify subsequences that are conserved to different degrees. In addition, this example shows that the Bayes aligner returns an alignment-free assessment of the distance between a pair of sequences.   相似文献   

20.
We describe a novel model and algorithm for simultaneously estimating multiple molecular sequence alignments and the phylogenetic trees that relate the sequences. Unlike current techniques that base phylogeny estimates on a single estimate of the alignment, we take alignment uncertainty into account by considering all possible alignments. Furthermore, because the alignment and phylogeny are constructed simultaneously, a guide tree is not needed. This sidesteps the problem in which alignments created by progressive alignment are biased toward the guide tree used to generate them. Joint estimation also allows us to model rate variation between sites when estimating the alignment and to use the evidence in shared insertion/deletions (indels) to group sister taxa in the phylogeny. Our indel model makes use of affine gap penalties and considers indels of multiple letters. We make the simplifying assumption that the indel process is identical on all branches. As a result, the probability of a gap is independent of branch length. We use a Markov chain Monte Carlo (MCMC) method to sample from the posterior of the joint model, estimating the most probable alignment and tree and their support simultaneously. We describe a new MCMC transition kernel that improves our algorithm's mixing efficiency, allowing the MCMC chains to converge even when started from arbitrary alignments. Our software implementation can estimate alignment uncertainty and we describe a method for summarizing this uncertainty in a single plot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号