首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of mass transport resistances on two-substrate immobilized enzyme systems are investigated theoretically. It is shown that the effects of mass transport resistances on the overall reaction rate are related mainly to the transport of the limiting substrate. In the absence of external mass transport resistances, the limiting substrate can be identified by knowing only the ratio of the bulk substrate concentrations, the permeability of the support to the two substrates, and the stoichiometry of the reaction. However, a combination of internal and external mass transport resistances may result in the other substrate becoming limiting. These effects are most significant when the mass transport resistances are high. Applications in the design of enzyme electrodes and chemical reactors are discussed.  相似文献   

2.
1. Male guinea-pigs (400-500 g) and rats (225-275 g) were given a single dose of cadmium chloride (CdCl2) (2 mg Cd2+/kg i.p.) and 72 hr later the liver microsomal drug metabolizing enzyme activities and Cd levels of tissues and microsomes were determined. 2. No significant differences were noted between Cd treated and control animal tissue weights of microsomal protein contents in either guinea-pigs or rats. 3. Cd treatment exhibited significant inhibition of the activities of aniline 4-hydroxylase and ethylmorphine N-demethylase and on the levels of cytochrome P-450 and cytochrome b5 of liver of both species but the degree of inhibition were not the same in the species; they were 23, 34, 16 and 10% in guinea-pigs and 58, 57, 25 and 13% in rats, respectively. 4. No activity changes were observed in liver NADPH-cytochrome c reductase of the species by Cd treatment. 5. The duration of hexobarbital sleeping time was significantly prolonged in both species. However, the prolongation was 1.6 fold in guinea-pigs but 3.4 fold in rats. 6. No significant differences were found between either tissue or microsomal Cd levels of guinea-pigs and rats.  相似文献   

3.
4.
5.
1. Glutamate oxidation in brain and liver mitochondrial systems proceeds mainly through transamination with oxaloacetate followed by oxidation of the α-oxoglutarate formed. Both in the presence and absence of dinitrophenol in liver mitochondria this pathway accounted for almost 80% of the uptake of glutamate. In brain preparations the transamination pathway accounted for about 90% of the glutamate uptake. 2. The oxidation of [1-14C]- and [5-14C]-glutamate in brain preparations is compatible with utilization through the tricarboxylic acid cycle, either after the formation of α-oxoglutarate or after decarboxylation to form γ-aminobutyrate. There is no indication of γ-decarboxylation of glutamate. 3. The high respiratory control ratio obtained with glutamate as substrate in brain mitochondrial preparations is due to the low respiration rate in the absence of ADP: this results from the low rate of formation of oxaloacetate under these conditions. When oxaloacetate is made available by the addition of malate or of NAD+, the respiration rate is increased to the level obtained with other substrates. 4. When the transamination pathway of glutamate oxidation was blocked with malonate, the uptake of glutamate was inhibited in the presence of ADP or ADP plus dinitrophenol by about 70 and 80% respectively in brain mitochondrial systems, whereas the inhibition was only about 50% in dinitrophenol-stimulated liver preparations. In unstimulated liver mitochondria in the presence of malonate there was a sixfold increase in the oxidation of glutamate by the glutamate-dehydrogenase pathway. Thus the operating activity of glutamate dehydrogenase is much less than the `free' (non-latent) activity. 5. The following explanation is put forward for the control of glutamate metabolism in liver and brain mitochondrial preparations. The oxidation of glutamate by either pathway yields α-oxoglutarate, which is further metabolized. Since aspartate aminotransferase is present in great excess compared with the respiration rate, the oxaloacetate formed is continuously removed by the transamination reaction. Thus α-oxoglutarate is formed independently of glutamate dehydrogenation, and the question is how the dehydrogenation of glutamate is influenced by the continuous formation of α-oxoglutarate. The results indicate that a competition takes place between the α-oxoglutarate-dehydrogenase complex and glutamate dehydrogenase, probably for NAD+, resulting in preferential oxidation of α-oxoglutarate.  相似文献   

6.
The amino-acid enzymes (aspartate-, alanine- and tyrosine transaminases, serine dehydratase, glutamate dehydrogenase, glutamine synthetase, adenylate deaminase and arginase) activities in the liver and kidney of developing rats (days 19 and 21 after conception and 1, 5, 10, 20 and 30 after birth) compared with adults were determined in crude homogenates. Most enzymes attained the adult levels early after birth or at weaning, showing a marked trend towards amino-acid nitrogen conservation during late foetal and specially during the neonatal period, increasing their activity during lactation. It is postulated that these changes are closely related to availability of low grade protein in diet as well as to maturation of amino-acid homeostasis maintenance for growth.  相似文献   

7.
Pyruvate transport and carboxylation have been determined in mitochondria from liver and kidney cortex isolated from Wistar rats with acidosis produced by three different treatments: fasting, exercise and ingestion of ammonium chloride. Fasting for 48 h or swimming for 2 h resulted in an increased rate of CO2 fixation by mitochondria from both organs incubated with pyruvate. This increase was accompanied by a rise in the rate of pyruvate transport in all cases except in mitochondria derived from the kidney of the fasted animals. Acute acidosis produced by the ingestion of ammonium chloride resulted in increases in pyruvate transport and carboxylation in kidney mitochondria, but a drop in pyruvate carboxylation was observed in mitochondria from the liver. The results are discussed in terms of the differential regulation of the mitochondria steps for gluconeogenesis from three carbon precursors in liver and kidney, taking into consideration the hormonal status of the animals and the prevailing available substrates in each condition.  相似文献   

8.
The active state respiration of isolated rat kidney cortex mitochondria with 10 mM glutamate as single substrate is substantially increased by the addition of 10 mM glutamine. This increase in respiration was accompanied by a higher transamination rate and was found to be insensitive to the selective inhibition of either the transamination or the desamination pathway of glutamate oxidation. These data can be explained by an approximately 2-fold elevated intramitochondrial glutamate concentration observed in the additional presence of glutamine.  相似文献   

9.
10.
1. The metabolic fate of infused [1-14C]glutamate was studied in perfused rat liver. The 14C label taken up by the liver was recovered to 85 +/- 2% as 14CO2 and [14C]glutamine. Whereas 14CO2 production accounted for about 70% of the [1-14C]glutamate taken up under conditions of low endogenous rates of glutamine synthesis, stepwise stimulation of glutamine synthesis by NH4Cl increased 14C incorporation into glutamine at the expense of 14CO2 production. Extrapolation to maximal rates of hepatic glutamine synthesis yielded an about 100% utilization of vascular glutamate taken up by the liver for glutamine synthesis. This was observed in both, antegrade and retrograde perfusions and suggests an almost exclusive uptake of glutamate into perivenous glutamine-synthetase-containing hepatocytes. 2. Glutamate was simultaneously taken up and released from perfused rat liver. At a near-physiological influent glutamate concentration (0.1 mM), the rates of unidirectional glutamate influx and efflux were similar (about 100 and 120 nmol g-1 min-1, respectively). 3. During infusion of [1-14C]oxoglutarate (50 microM), addition of glutamate (2 mM) did not affect hepatic uptake of [1-14C]oxoglutarate. However, it increased labeled glutamate release from the liver about 10-fold (from 9 +/- 2 to 86 +/- 20 nmol g-1 min-1; n = 4), whereas 14CO2 production from labeled oxoglutarate decreased by about 40%. This suggests not only different mechanisms of oxoglutarate and glutamate transport across the plasma membrane, but also points to a glutamate/glutamate exchange. 4. Oxoglutarate was recently shown to be taken up almost exclusively by perivenous glutamine-synthetase-containing hepatocytes [Stoll, B & H?ussinger, D. (1989) Eur. J. Biochem. 181, 709-716] and [1-14C]oxoglutarate (9 microM) was used to label selectively the intracellular glutamate pool in this perivenous cell population. The specific radioactivity of this intracellular (perivenous) glutamate pool was assessed by measuring the specific radioactivity of newly synthesized glutamine which is continuously released from these cells into the perfusate. Comparison of the specific radioactivities of glutamine and glutamate released from perivenous cells indicates that about 60% of total glutamate release from the liver is derived from the perivenous glutamine-synthetase-containing cell population. Following addition of unlabeled glutamate (0.1 mM), unidirectional glutamate efflux from perivenous cells increased from about 30 to 80 nmol g-1 min-1, whereas glutamate efflux from non-perivenous (presumably periportal) hepatocytes remained largely unaltered (i.e. 20-30 nmol g-1 min-1). 5. It is concluded that, in the intact liver, vascular glutamate is almost exclusively taken up by the small perivenous hepatocyte population containing glutamine synthetase.  相似文献   

11.
Enzymes of glycerol metabolism in developing rat liver and kidney   总被引:2,自引:0,他引:2  
H B Burch  O H Lowry  L M Delaney 《Enzyme》1974,17(3):168-178
  相似文献   

12.
13.
14.
1. The metabolism of glutamate was followed by measurements of phosphoenolpyruvate production, aspartate synthesis and ammonia release, whereas the transport of glutamate across the inner membrane of kidney cortex mitochondria was studied using an oxygen electrode and the swelling technique.2. When added separately, avenaciolide and aminooxyacetate only partially inhibited both State 3 and uncoupled respiration of the mitochondria, as studied in the presence of glutamate as substrate. In contrast, the addition of both inhibitors to the reaction medium resulted in an almost complete inhibition of glutamate oxidation.3. Swelling of kidney mitochondria in an isosmotic solution of ammonium glutamate was accelerated by uncoupler and inhibited by avenaciolide, while the swelling of mitochondria in potassium glutamate was stimulated by valinomycin and inhibited by uncoupler.4. When glutamate was used as the sole substrate, inhibition of aspartate formation by aminooxyacetate resulted in a stimulation of both ammonia release and phosphoenolpyruvate production. In contrast, with glutamate plus malate as substrate an elevation of the rate of glutamate deamination on the addition of aminooxyacetate was accompanied by an inhibition of phosphoenolpyruvate synthesis in both State 3 and uncoupled conditions.5. In the presence of valinomycin to induce K+-permeability a marked enhancement of glutamate deamination was accompanied by a significant inhibition of glutamate transamination.6. Based on the presented results it was concluded that in rabbit renal mitochondria utilizing glutamate as substrate the rates of ammonia production, phosphoenolpyruvate formation and aspartate synthesis vary in response to different metabolic conditions, in which both the glutamate—H+ symport and the glutamate—aspartate exchange systems are functioning to different extents.  相似文献   

15.
Growth, dark transpiration rate (DTR) as well as water saturation deficit (WSD) of 30 single plants of 8 alfalfa genotypes growing in experimental field of 50 × 10 cm spacing, in four cuts at early bud stage, were studied. The growth and WSD of genotypes examined were significantly different, the differences in DTR were not significant. The growth of alfalfa plants was in negative correlation with both DTR which reflects non-effective water loss and WSD. Significant negative correlation established between plant growth and its variability shows that fodder productivity in alfalfa genotypes was dependent on growth variability of individual plants. Positive correlations established between WSD or DTR and the growth variability show some of the causes of growth variability.  相似文献   

16.
17.
18.
Summary Eight mungbean cultivars, selected from a cultivar collection on the basis of their grain yield, were grown in a replicated experiment. Morphological and physiological components contributing to grain yield were analysed. The principal yield limiting factor and the desirable yield component of each cultivar have been identified. The rate of dry matter accumulation was low in all cultivars. It is suggested that for a short duration crop like this, selection for rapid rate of dry matter increase would be advantageous. However, it should also be associated with a high partitioning efficiency (Harvest index). The top yielding cultivar had high biological yield and productive racemes.Abbreviations BY biological yield - GY grain yield - HI harvest index - DM dry matter - DW dry weight - LA leaf area - GPP grain protein percent - GW grain weight  相似文献   

19.
20.
1. Elevated levels of metallothionein (MT)-I and -II were identified in the liver and kidney of insulin-deficient diabetic rats. 2. The relative rate of MT synthesis and the turnover of cytoplasmic MT were both accelerated in the liver of diabetic rats. 3. The rate of synthesis of MT, but not its cytoplasmic turnover, was increased in diabetic kidney. 4. Maximal relative rates of MT synthesis in liver and kidney were first observed at 4 and 10 days, respectively, after inducing the diabetic condition. 5. The altered metabolism of hepatic MT in diabetic rats was attributed primarily to disturbances in endocrine status, while the altered metabolism of renal MT was largely due to accumulation of excessive dietary copper in the kidney.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号