首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The effect of dnaA protein and n' sites on the replication of plasmid ColE1   总被引:1,自引:0,他引:1  
The role of the dna A protein in the replication of plasmid ColE1 and its derivatives was examined. Wild-type and mutant ColE1 plasmids were compared as to their ability to replicate in an in vitro replication system supplemented with ammonium sulfate fractionated extracts from a dnaA-overproducing strain. Synthesis on plasmid templates containing the wild-type origin of replication was stimulated 1.3-fold by addition of the dnaA-overproducing extract. A larger effect was observed after deletion of the primosome assembly site, the n' site, on the leading strand. On the latter template, synthesis was only about one-half that observed with the wild-type templates, but synthesis could be restored to normal levels by addition of the dnaA-overproducing fractions. When the n' site on the lagging strand of pBR322 was deleted, synthesis in the in vitro replication system was reduced to less than 10% of levels seen with intact templates. dnaA-overproducing extract did not restore activity since the dnaA site was also deleted on these plasmids. To verify that the observed stimulation of wild-type and leading strand n' site mutants was due to the dnaA protein, dnaA protein was purified to greater than 50% homogeneity, and antiserum was prepared. The purified protein stimulated synthesis on the plasmid templates to the same extent as the overproducing extracts, and dnaA antiserum blocked stimulation both by extracts and by the purified protein. Thus, dnaA protein, and, by inference, the dnaA recognition site at the ColE1 origin of replication seem to be important for ColE1 replication. The effect of dnaA protein is enhanced when the n'site is defective, suggesting that the dnaA protein plays a role similar to that of the proteins i, n, n', and n' in directing primosome assembly, as proposed by Seufert, W., and Messer, W. ((1987) Cell 48, 73-78).  相似文献   

3.
The DnaA protein concentration in Escherichia coli was increased above the wild-type level by inducing a lacP-controlled dnaA gene located on a plasmid. In these cells with different DnaA protein levels, we measured several parameters: dnaA gene expression; cell size, amount of DNA per cell, and number of origins per cell by flow cytometry; and origin-to-terminus ratio and the frequencies of five other markers on the chromosome by Southern hybridization. The response of the cells to higher levels of DnaA protein could be divided into three states. From the normal level to a level 1.5-fold higher, DnaA protein had little effect on dnaA gene expression and the rate of DNA replication but led to nearly proportional increases in DNA and origin concentrations. Between 1.5- and 3-fold, the normal DnaA protein concentration, dnaA gene expression was gradually decreased. In this interval, the origin concentration increased significantly; however, the replication rate was severely affected, becoming slower--especially near the origin--the higher the DnaA protein concentration, and as a result, the DNA concentration was constant. Further increases in the DnaA protein concentration did not lead to an increased origin concentration. Thus, the initiation mass was set by the DnaA protein from the normal level to an at least twofold-increased level, but the increased initiation did not lead to a large increase in the amount of DNA per unit of mass because of the inhibition of replication fork velocity.  相似文献   

4.
Escherichia coli HB282 carries a dnaA46(Ts) allele on the chromosome, a wild-type dnaA allele under the control of the lacUV5 promoter on the multicopy plasmid pBC32, and an overproducing lac repressor allele on an F' factor. When the plasmid dnaA gene is repressed, the strain is thermosensitive. After a temporary deficiency in active dnaA protein at nonpermissive temperature, the addition of isopropyl-beta-D-thiogalactopyranoside to the culture was found to produce a burst of initiations within 5 to 10 min at 30% of the origins in 90% of the cells. Initiations then continued at a rate slightly faster than the mass-doubling time such that after 2 h the origin-to-mass ratio of the control culture was restored.  相似文献   

5.
Paired two-component regulatory systems consisting of a sensor kinase and a response regulator are the major means by which bacteria sense and respond to different stimuli. The role of essential response regulator, MtrA, in Mycobacterium tuberculosis proliferation is unknown. We showed that elevating the intracellular levels of MtrA prevented M. tuberculosis from multiplying in macrophages, mice lungs and spleens, but did not affect its growth in broth. Intracellular trafficking analysis revealed that a vast majority of MtrA overproducing merodiploids were associated with lysosomal associated membrane protein (LAMP-1) positive vacuoles, indicating that intracellular growth attenuation is, in part, due to an impaired ability to block phagosome-lysosome fusion. A merodiploid strain producing elevated levels of phosphorylation-defective MtrA (MtrA(D53N)) was partially replicative in macrophages, but was attenuated in mice. Quantitative real-time PCR analyses revealed that expression of dnaA, an essential replication gene, was sharply upregulated during intramacrophage growth in the MtrA overproducer in a phosphorylation-dependent manner. Chromatin immunoprecipitation using anti-MtrA antibodies provided direct evidence that MtrA regulator binds to dnaA promoter in vivo indicating that dnaA promoter is a MtrA target. Simultaneous overexpression of mtrA regulator and its cognate mtrB kinase neither inhibited growth nor sharply increased the expression levels of dnaA in macrophages. We propose that proliferation of M. tuberculosis in vivo depends, in part, on the optimal ratio of phosphorylated to non-phosphorylated MtrA response regulator.  相似文献   

6.
ATP binding to dnaA protein is essential for its action in initiating the replication of plasmids that bear the unique origin of the Escherichia coli chromosome (oriC). ADP bound to that site renders dnaA protein inactive for replication. Diphosphatidylglycerol (cardiolipin), a diacidic membrane phospholipid, displaces the bound nucleotide, and in the presence of components that reconstitute replication, fully reactivates the inert ADP form of dnaA protein. The monacidic phosphatidylglycerol is one-tenth as active as cardiolipin, whereas the neutral phosphatidylethanolamine, the principal E. coli phospholipid, is inactive. Fluphenazine, a tranquilizer drug, blocks cardiolipin activation of dnaA protein, in keeping with the inhibitory action of such agents on phospholipid-dependent enzymes. With the use of this drug to terminate cardiolipin action, dependence of the activation on time, elevated temperature, and high levels of ATP was demonstrated. Cardiolipin binding of nucleotide-free dnaA protein prevents binding of ATP and initiation of oriC replication. Removal of a fatty acid from cardiolipin by phospholipase A reverses this inhibitory effect. The strong and specific interaction of cardiolipin, a cell membrane component, with an essential nucleotide-binding site of dnaA protein, the protein essential for the initiation of chromosome replication, may be an important element in regulating the cell cycle.  相似文献   

7.
The HU protein is a small, basic, heat-stable DNA-binding protein that is well-conserved in prokaryotes and is associated with the bacterial nucleoid. In enterobacteria, including Escherichia coli, HU is a heterotypic dimer, HUalphabeta, composed of two closely related sub-units encoded by the hupA and hupB genes, respectively. HU was shown to participate in vitro in the initiation of DNA replication as an accessory factor to assist the action of DnaA protein in the unwinding of oriC DNA. To further elucidate the role of HU in the regulation of the DNA replication initiation process, we tested the synchrony phenotype in the absence of either one or both HU sub-units. The hupAB mutant exhibits an asynchronous initiation, the hupA mutant shows a similar reduced synchrony, whereas the hupB mutant shows a normal phenotype. Using a thermosensitive dnaA46 strain (dnaA46ts), an initiation mutant, we reveal a special role of HUbeta. The presence of a plasmid overproducing HUbeta in a dnaA46ts lacking HU (hupAB background) compensates for the thermosensitivity of this initiation mutant. Moreover, the overproduction of HUbeta confers to dnaA46ts a pattern of asynchrony similar to that of a dnaAcos, the intragenic suppressor of dnaA46ts. We show that the relative ratio of HUalpha versus HUbeta is greatly perturbed in dnaA46ts which accumulates little, if any, HUbeta. Therefore, the suppression of thermosensitivity in dnaA46hupAB by HUbeta may be caused by an unexpected absence of HUbeta in the dnaA46ts mutant. Visibly the HU composition is sensitive to the different states of DnaA, and may play a role during the regulation of the initiation process of the DNA replication by affecting subsequent events along the cell cycle.  相似文献   

8.
9.
In wild-type Escherichia coli cells, initiation of DNA replication is tightly coupled to cell growth. In slowly growing dnaA204 (Ts) mutant cells, the cell mass at initiation and its variability is increased two- to threefold relative to wild type. Here, we show that the DnaA protein concentration was two- to threefold lower in the dnaA204 mutant compared with the wild-type strain. The reason for the DnaA protein deficiency was found to be a rapid degradation of the mutant protein. Absence of SeqA protein stabilized the DnaA204 protein, increased the DnaA protein concentration and normalized the initiation mass in the dnaA204 mutant cells. During rapid growth, the dnaA204 mutant displayed cell cycle parameters similar to wild-type cells as well as a normal DnaA protein concentration, even though the DnaA204 protein was highly unstable. Apparently, the increased DnaA protein synthesis compensated for the protein degradation under these growth conditions, in which the doubling time was of the same order of magnitude as the half-life of the protein. Our results suggest that the DnaA204 protein has essentially wild-type activity at permissive temperature but, as a result of instability, the protein is present at lower concentration under certain growth conditions. The basis for the stabilization in the absence of SeqA is not known. We suggest that the formation of stable DnaA-DNA complexes is enhanced in the absence of SeqA, thereby protecting the DnaA protein from degradation.  相似文献   

10.
The mini-F plasmids pSC138, pKP1013, and pKV513 were unable to transform Escherichia coli cells with a dnaA-defective mutation under nonpermissive conditions. The dnaA defect was suppressed for host chromosome replication either by the simultaneous presence of the rnh-199 (amber) mutation or by prophage P2 sig5 integrated at the attP2II locus on the chromosome, both providing new origins for replication independent of dnaA function. The dnaA mutations tested were dnaA17, dnaA5, and dnaA46. dnaA5 and dnaA46 are missense mutations. dnaA17 is an amber mutation whose activity is controlled by the temperature-sensitive amber suppressor supF6. Under permissive conditions in which active DnaA protein was available, the mini-F plasmids efficiently transformed the cells. However, the transformants lost the plasmid as the cells multiplied under conditions in which DnaA protein was inactivated or its synthesis was arrested. As controls, plasmids pSC101 and pBR322 were examined along with mini-F; pSC101 behaved in the same manner as mini-F, showing complete dependence on dnaA for stable maintenance, whereas pBR322 was indifferent to the dnaA defect. Thus, ori-2-dependent mini-F plasmid replication seems to require active dnaA gene function. This notion was strengthened by the results of deletion analysis which revealed that integrity of at least one of the two DnaA boxes present as a tandem repeat in ori-2 was required for the origin activity of mini-F replication.  相似文献   

11.
The product of the dnaA gene is essential for the initiation of chromosomal DNA replication in Escherichia coli K-12. A cold-sensitive mutation, dnaA(Cs), was originally isolated as a putative intragenic suppressor of the temperature sensitivity of a dnaA46 mutant (G. Kellenberger-Gujer, A. J. Podhajska, and L. Caro, Mol. Gen. Genet. 162:9-16, 1978). The cold sensitivity of the dnaA(Cs) mutant was attributed to a loss of replication control resulting in overinitiation of DNA replication. We cloned and sequenced the dnaA gene from the dnaA(Cs) mutant and showed that it contains three point mutations in addition to the original dnaA46(Ts) mutation. The dnaA(Cs) mutation was dominant to the wild-type allele. Overproduction of the DnaA(Cs) protein blocked cell growth. In contrast, overproduction of wild-type DnaA protein reduced the growth rate of cells but did not stop cell growth. Thus, the effect of elevated levels of the DnaA(Cs) protein was quite different from that of the wild-type protein under the same conditions.  相似文献   

12.
Escherichia coli cells were constructed in which the dnaA gene was moved to a location opposite oriC on the circular chromosome. In these cells the dnaA gene was replicated with significant delay relative to the origin. Consequently, the period where the newly replicated and hemimethylated oriC was sequestered no longer coincided with the period where the dnaA gene promoter was sequestered. DnaA protein synthesis was therefore expected to continue during origin sequestration. Despite a normal length of the sequestration period in such cells, they had increased origin content and also displayed asynchrony of initiation. This indicated that reinitiation occasionally occurred at some origins within the same cell cycle. The extra initiations took place in spite of a reduction in total DnaA protein concentration to about half of the wild-type level. We propose that this more efficient utilization of DnaA protein results from an increased availability at the end of the origin sequestration period. Therefore, coordinated sequestration of oriC and dnaA is required for maintaining controlled once-per-cell-cycle initiation.  相似文献   

13.
Overproduction of single-stranded DNA-binding protein (SSB) in Escherichia coli led to a decrease in the basal level of repressor LexA. Expression of the LexA-controlled genes was increased differentially, depending on the affinity of the LexA repressor for each promoter: expression of the recA and sfiA genes was increased 5-fold and 1.5-fold, respectively. Despite only a slight effect on expression of sfiA, which codes for an inhibitor of cell division, bacteria overproducing SSB produced elongated cells. In fact, the effect on cell shape appeared to be essentially independent of the expression of the sfiA and recA genes. Bacteria overproducing SSB were therefore phenotypically similar to bacteria partially starved of thymine, in which filamentation results from both sfiA-dependent and sfiA-recA-independent pathways. These data indicate that excess SSB acts primarily by perturbing DNA replication, thereby favoring gratuitous activation of RecA protein to promote cleavage of LexA protein. When bacteria overproducing SSB were exposed to a DNA-damaging agent such as ultraviolet light or mitomycin C, the recA and sfiA genes were fully induced. Induction of the sfiA gene occurred, however, at higher doses in bacteria overproducing SSB protein than in bacteria with normal levels of SSB. Whereas the efficiency of excision repair was apparently increased by excess SSB, the efficiency of post-replication recombinational repair was reduced as judged by a decrease in the recombination proficiency between a prophage and ultraviolet-irradiated heteroimmune infecting phage. Following induction of ssb+ bacteria with mitomycin C, the cellular content of SSB was slightly increased. These results provide evidence that SSB modulates RecA protein-dependent activities in vivo. It is proposed that SSB favors the formation of short complexes of RecA protein and single-stranded DNA that mediate cleavage of the LexA and lambda repressors, while it delays the formation of long nucleoprotein filaments, thereby slowing down RecA-promoted recombinational events in uninduced as well as in induced bacteria.  相似文献   

14.
A priming mechanism requiring dnaA, dnaB, and dnaC proteins operates on a single-stranded DNA coated with single-stranded DNA-binding protein. This novel priming, referred to as "ABC-priming," requires a specific hairpin structure whose stem carries a dnaA protein recognition sequence (dnaA box). In conjunction with primase and DNA polymerase III holoenzyme, ABC-priming can efficiently convert single-stranded DNA into the duplex replicative form. dnaA protein specifically recognizes and binds the single-stranded hairpin and permits the loading of dnaB protein to form a prepriming protein complex containing dnaA and dnaB proteins which can be physically isolated. ABC-priming can replace phi X174 type priming on the lagging strand template of pBR322 in vitro, suggesting a possible function of ABC-priming for the lagging strand synthesis and duplex unwinding. Similar to the phi X174 type priming, a mobile nature of ABC-priming was indicated by helicase activity in the presence of ATP of a prepriming protein complex formed at the hairpin. The implications of this novel priming in initiation of replication at the chromosomal origin, oriC, and in its contribution to the replication fork are discussed.  相似文献   

15.
16.
H(2)O(2)-induced apoptosis was enhanced in the CHO cell line overproducing protein kinase C delta (PKCdelta) as judged by DNA fragmentation. In response to the H(2)O(2) treatment, PKCdelta was tyrosine phosphorylated and recovered as a constitutively active form, but its proteolytic fragment was not generated. In contrast, H(2)O(2)-induced apoptosis was suppressed in the CHO cell line overexpressing protein kinase B alpha (PKBalpha). Consistently, phosphorylation of BAD, a pro-apoptotic protein negatively regulated by PKBalpha, was sustained in the cells overproducing PKBalpha, but was not changed in the cells overexpressing PKCdelta. In the CHO cell line overproducing both PKCdelta and PKBalpha, H(2)O(2)-induced tyrosine phosphorylation of PKCdelta was suppressed, and DNA fragmentation was diminished concomitantly. These results suggest that PKCdelta contributes to H(2)O(2)-induced apoptosis by a mechanism independent of BAD and that PKCdelta is a target of PKB for the regulation of cell survival.  相似文献   

17.
18.
Growth of bacteriophage Mu in Escherichia coli dnaA mutants.   总被引:3,自引:1,他引:2       下载免费PDF全文
In one-step growth experiments we found that bacteriophage Mu grew less efficiently in nonreplicating dnaA mutants than in dnaA+ strains of Escherichia coli. Phage development in dnaA hosts was characterized by latent periods that were 15 to 30 min longer and an average burst size that was reduced by 1.5- to 4-fold. The differences in phage Mu development in dnaA and dnaA+ strains were most pronounced in cells infected at a low multiplicity and became less pronounced in cells infected at a high multiplicity. Many of these differences could be eliminated by allowing the arrested dnaA cells to restart chromosome replication just before infection. In continuous labeling experiments we found that infected dnaA strains incorporated 5 to 40 times more [methyl-3H]thymidine than did uninfected cells, depending on the multiplicity of infection. DNA-DNA hybridization assays showed that greater than 90% of this label was contained in phage Mu DNA sequences and that only small amounts of the label appeared in E. coli sequences. In contrast, substantial amounts of label were incorporated into both host and viral DNA sequences in infected dnaA+ cells. Although our results indicated that phage Mu development is not absolutely dependent on concurrent host chromosomal DNA replication, they did strongly suggest that host replication is necessary for optimal growth of this phage.  相似文献   

19.
20.
PsiB, an anti-SOS protein, shown previously to prevent activation of RecA protein, was purified from the crude extract of PsiB overproducing cells. PsiB is probably a tetrameric protein, whose subunit has a sequence-deduced molecular mass of 15741 daltons. Using an immuno-assay with anti-PsiB antibodies, we have monitored PsiB cell concentrations produced by F and R6-5 plasmids: the latter type produces a detectable level of PsiB protein while the former does not. The discrepancy can be assigned to a Tn10 out-going promoter located upstream of psiB. When we inserted a Tn10 promoter upstream of F psiB, the F PsiB protein concentration reached the level of R6-5 PsiB. We describe here the physiological role that PsiB protein may have in the cell and how it causes an anti-SOS function. We observed that PsiB protein was transiently expressed by a wild-type F sex factor during its transmission to an Escherichia coli K-12 recipient. In an F+ x F- cross, PsiB concentration increased at least 10-fold in F- recipient bacteria after 90 minutes and declined thereafter; the psiB gene may be repressed when F plasmid replicates vegetatively. PsiB protein may be induced zygotically so as to protect F single-stranded DNA transferred upon conjugation. PsiB protein, when overproduced, may interfere with RecA protein at chromosomal single-stranded DNA sites generated by discontinuous DNA replication, thus causing an SOS inhibitory phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号