首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of abscisic acid on K+ channels in Vicia faba guard cell protoplasts   总被引:11,自引:0,他引:11  
Potassium channels were resolved in Vicia faba guard cell protoplasts by patch voltage-clamp. Whole-cell currents and single K+ channels had linear instantaneous current-voltage relations, reversing at the calculated Nernst potential for K+. Whole cell K+ currents activated exponentially during step depolarizations, with half-activation times of 400-450 msec at +80 mV and 90-110 msec at +150 mV. Single K+ channel conductance was 65 +/- 5 pS with a mean open time of 1.25 +/- 0.30 msec at 150 mV. Potassium channels were blocked by internal Cs+ and by external TEA+, but they were insensitive to external 4-aminopyridine. Application of 10 microM abscisic acid increased mean open time and caused long-lasting bursts of channel openings. Since internal and external composition can be controlled, patch-clamped protoplasts are ideal systems for studying the role of ion channels in plant physiology.  相似文献   

2.
Levels of abscisis acid (ABA) were determined in isolated guard cell (GCP) and mesophyll cell (MCP) protoplasts of Vicia faba L. in relation to water stress. Incubation of GCP and MCP in 0.4 M or 0.8 M mannitol resulted in an average increase in the level of free abscisic acid (ABA) in the cells of 34% (GCP) and 38% (MCP) within 15–60 min. It is concluded that guard cell protoplasts form ABA in response to osmotic stress.Abbreviations ABA abscisic acid - BHT butylated hydroxytoluene - GCP guard cell protoplasts - MCP mesophyll cell protoplasts - MES [2-(N-morpholino)-ethanesulfonic acid] - TLC thin layer chromatography Part 20 in the series, Use of Immunoassay in Plant Science  相似文献   

3.
After a pretreatment of 2 h exposure to a solution containing 2 × 10−4 M ABA, reopening of stomata occurred in epidermal strips of Vicia faba L. cv. Cavalier on an ABA-free incubation solution. After pretreatment with exogenous ABA stomatal apertures were greater when higher levels of KCl were incorporated into the solution used for reopening. Prolonged exposure to exogenous ABA (14 h) did not prevent stomatal reopening upon transfer to ABA-free solutions. However, for both ABA and ABA-free pretreatments, prolonged incubation (1 day after removal of epidermis) resulted in enhanced stomatal apertures when the epidermal strips were exposed to light. This effect was lost 2 days after removal of the epidermis and opening did not occur after 3 days. Epidermal strips containing endogenous ABA were obtained from wilted leaves. Reopening was greatly reduced by the endogenous ABA treatment, and variation of KCl concentration in the incubation solution had little effect on stomatal aperture. It is postulated that during wilting endogenous ABA becomes reversibly bound without loss of activity for a longer period than is obtained using exogenous ABA. The presence of other unidentified compounds may be involved in this process.  相似文献   

4.
Guard cell protoplasts of Vicia faba were immobilized in cross-linked Ca-alginate. No visible morphological changes were detected under the light microscope over a period of 14 days. The entrapped cells reacted normally to changes of the external osmolarity by shrinking and swelling. Addition of the calcium complexing agent, citrate, led to dissolution of the matrix. After reequilibration with Ca ions the released cells regained their ability to swell and shrink in response to external stress. The released protoplasts could be stained with the vital dye, neutral which was accumulated in the vacuoles. It should also be noted that the protoplasts can be transported when immobilized.  相似文献   

5.
Trafficking of K+ inward (Kin+) rectifying channels was analyzed in guard cells of Vicia faba transfected with the Kin+ rectifier from Arabidopsis thaliana KAT1 fused to the green fluorescent protein (GFP). Confocal images and whole-cell patch-clamp measurements confirmed the incorporation of active KAT1 channels into the plasma membrane of transfected guard cell protoplasts. The Kin+ rectifier current density of the plasma membrane was much larger in transfected protoplasts than in wild-type (wt) protoplasts. This shows a coupling between K+ channel synthesis and incorporation of the channel into the plasma membrane. Pressure-driven increase and decrease in surface area led to the incorporation and removal of vesicular membrane carrying active Kin+ rectifier in wt and transfected protoplasts. These vesicular membranes revealed a higher channel density than the plasma membrane, suggesting that Kin+ rectifier remains in clusters during trafficking to and from the plasma membrane. The observed results can be explained by a model illustrating that vesicles of a pre-plasma membrane pool carry K+ channels preferentially in clusters during constitutive and pressure-driven exo- and endocytosis.  相似文献   

6.
Guard cells of the lower epidermis of leaflets of Vicia faba L. cv. Weißkernige Hangdown contain several kaempferol 3,7-O-glycosides. This was demonstrated for the first time by the use of isolated, highly purified guard cell protoplasts for flavonol estimation and quantitation. From a total of ca 12 kaempferol glycosides, three were identified by comparative thin layer chromatography and high performance liquid chromatography as kaempferol 3-O-glucoside 7-O-rhamnoside (major component), 3-O-rhamnogalactoside 7-O-rhamnoside and 3,7-O-bisglucoside (minor components). On average, the total flavonol content was estimated to be 85 fmol protoplast−1. From comparative investigations including alkaline-induced (green) fluorescence characteristics of flavonols and UV-microscopical studies we suggest that kaempferol glycosides are present in guard cells and epidermal cells in similar quantities, and that these compounds are in the vacuole.
By contrast, mesophyll protoplasts have a low flavonol content (one sixth that of guard cells). In spite of the different total flavonol contents, individual components of each cell-type are the same. However, they show differences in their quantitative distribution.  相似文献   

7.
Summary Abscisic acid (ABA) at a concentration of 100 m reduced the mean stomatal aperture on isolated epidermis of Commelina communis from 9.5 to 3.1 m. This closure resulted from a fall in osmotic pressure of the guard cells from 14.1 to 9.8 bars; the osmotic pressure of the subsidiary cells did not change significantly. Histochemical tests showed that the potassium concentration in guard cells was reduced by ABA-treatment, while the starch content of the chloroplasts increased. ABA was found to exert a significant effect on Rb86 uptake into leaf discs, but this was relatively small in magnitude. It is concluded that ABA has a greater effect on ion uptake into guard cells than into the leaf tissues as a whole.Recent hypotheses of the stomatal mechanism are discussed in relation to these new observations, and the rejection by some writers of any major role for starch hydrolysis is challenged. Evidence from several sources suggests that starch disappearance occurs simultaneously with K+ entry into guard cells. Breakdown of starch may lead to formation of organic anions, with which K+ uptake may be associated. In this case starch breakdown would contribute as much to the increased osmotic pressure as does K+ uptake.  相似文献   

8.
Previous studies reveal that the pH of the apoplastic solution in the guard cell walls may vary between 7.2 and 5.1 in closed and open stomata, respectively. During these aperture and pH changes, massive K+ fluxes cross the cellular plasma membrane driving the osmotic turgor and volume changes of guard cells. Therefore, we examined the effect of extracellular pH on the depolarization-activated K channels (KD channels), which constitute the K+ efflux pathway, in the plasma membrane of Vicia faba guard cell protoplasts. We used patch clamp, both in whole cells as well as in excised outside-out membrane patches. Approximately 500 KD channels, at least, could be activated by depolarization in one protoplast (density: approximately 0.6 micron-2). Acidification from ph 8.1 to 4.4 decreased markedly the whole-cell conductance, GK, of the KD channels, shifted its voltage dependence, GK- EM, to the right on the voltage axis, slowed the rate of activation and increased the rate of deactivation, whereas the single channel conductance was not affected significantly. Based on the GK-EM shifts, the estimated average negative surface charge spacing near the KD channel is 39 A. To quantify the effects of protons on the rates of transitions between the hypothesized conformational states of the channels, we fitted the experimental macroscopic steady state conductance-voltage relationship and the voltage dependence of time constants of activation and deactivation, simultaneously, with a sequential three-state model CCO. In terms of this model, protonation affects the voltage-dependent properties via a decrease in localized, rather than homogeneous, surface charge sensed by the gating moieties. In terms of either the CO or CCO model, the protonation of a site with a pKa of 4.8 decreases the voltage-independent number of channels, N, that are available for activation by depolarization.  相似文献   

9.
Michael R. Blatt 《Planta》1990,180(3):445-455
Evidence of a role for abscisic acid (ABA) in signalling conditions of water stress and promoting stomatal closure is convincing, but past studies have left few clues as to its molecular mechanism(s) of action; arguments centred on changes in H+-pump activity and membrane potential, especially, remain ambiguous without the fundamental support of a rigorous electrophysiological analysis. The present study explores the response to ABA of K+ channels at the membrane of intact guard cells ofVicia faba L. Membrane potentials were recorded before and during exposures to ABA, and whole-cell currents were measured at intervals throughout to quantitate the steady-state and time-dependent characteristics of the K+ channels. On adding 10 M ABA in the presence of 0.1, 3 or 10 mM extracellular K+, the free-running membrane potential (V m) shifted negative-going (–)4–7 mV in the first 5 min of exposure, with no consistent effect thereafter. Voltage-clamp measurements, however, revealed that the K+-channel current rose to between 1.84- and 3.41-fold of the controls in the steady-state with a mean halftime of 1.1 ± 0.1 min. Comparable changes in current return via the leak were also evident and accounted for the minimal response inV m. Calculated atV m, the K+ currents translated to an average 2.65-fold rise in K+ efflux with ABA. Abscisic acid was not observed to alter either K+-current activation or deactivation.These results are consistent with an ABA-evoked mobilization of K+ channels or channel conductance, rather than a direct effect of the phytohormone on K+-channel gating. The data discount notions that large swings in membrane voltage are a prerequisite to controlling guard-cell K+ flux. Instead, thev highlight a rise in membranecapacity for K+ flux, dependent on concerted modulations of K+-channel and leak currents, and sufficiently rapid to account generally for the onset of K+ loss from guard cells and stomatal closure in ABA.  相似文献   

10.
Accumulation of malate in guard cells of Vicia faba during stomatal opening   总被引:1,自引:3,他引:1  
W. G. Allaway 《Planta》1973,110(1):63-70
Summary The level of malate in the epidermis from illuminated leaves of Vicia faba was greater than in that from dark-treated leaves. A difference in the malate level was still detected after the epidermis had been treated by rolling so that only the guard cells remained alive. The results suggest that malate may accumulate in guard cells on illumination. In subsequent experiments, stomatal apertures were measured, and potassium as well as malate was analysed in extracts of epidermis. In illuminated leaves, the potassium content of rolled epidermis increased from about 90 to about 335 picoequivalents mm-2 of epidermis whele malate increased from about zero to about 71 pmoles mm-2 and the stomata opened; in dark-treated leaves, the potassium content of rolled epidermis decreased slightly, the malate level remained about zero, and the stomata showed very slight further closure. The measured increase in potassium is likely to represent an increase in potassium concentration in the guard cells of about 0.4 Eq l-1 with stomatal opening; the increase in malate could correspond to 0.23 Eq l-1 (with respect to potassium) in the guard cells. Thus, malate accumulating in guard cells could balance about half of the potassium taken up by guard cells when stomata open in the light.  相似文献   

11.
H. Schnabl  J. Vienken  U. Zimmermann 《Planta》1980,148(3):231-237
Freeze fractures of the plasmalemma membranes of guard-cell and mesophyll protoplasts of Vicia faba demonstrate that the inner monolayer of the plasmalemma is compartmentalized into areas with distinct, highly organized structures. Between areas of intramembranous particles dispersed randomly on a relatively smooth fracture face, membrane domains showing an extremely regular planar, hexagonal array of particles are interspersed. The dimensions of these hexagonal lattices are about 0.5 m in diameter, the center-to-center spacing is about 22 nm, and the particle size is about 9 nm. The particle in the hexagonal arrays are accompanied by complementary pits in the opposite monolayer fracture of the plasmalemma membrane.The freeze-fracture preparation was performed by using an improved Leybold Bioetch device which provides a sufficiently high cooling rate and allows the omission of cryoprotectants, like glycerol.Presented by H. Schnabl on the Workshop on Plant Membrane Transport, Toronto, Canada, July 1979  相似文献   

12.
Recent evidence suggests that nitric oxide (NO) acts as an intermediate of ABA signal transduction for stomatal closure. However, NO's effect on stomatal opening is poorly understood even though both opening and closing activities determine stomatal aperture. Here we show that NO inhibits stomatal opening specific to blue light, thereby stimulating stomatal closure. NO inhibited blue light-specific stomatal opening but not red light-induced opening. NO inhibited both blue light-induced H(+) pumping and H(+)-ATPase phosphorylation. The NO scavenger 2-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO) restored all these inhibitory effects. ABA and hydrogen peroxide (H(2)O(2)) inhibited all of these blue light-specific responses in a manner similar to NO. c-PTIO partially restored the ABA-induced inhibition of all of these opening responses but did not restore inhibition of the responses by H(2)O(2). ABA, H(2)O(2) and NO had slight inhibitory effects on the phosphorylation of phototropins, which are blue light receptors in guard cells. NO inhibited neither fusicoccin-induced H(+) pumping in guard cells nor H(+) transport by H(+)-ATPase in the isolated membranes. From these results, we conclude that both NO and H(2)O(2) inhibit blue light-induced activation of H(+)-ATPase by inhibiting the component(s) between phototropins and H(+)-ATPase in guard cells and stimulate stomatal closure by ABA.  相似文献   

13.
Summary A quantitative analysis of the time and voltage dependence of outward-rectifying K+ currents ( ) in guard cells fromVicia faba is described using the whole-cell patch-clamp technique. After step depolarizations from –75 mV to potentials positive to –40 mV, time-dependent outward currents were produced, which have recently been identified as K+ channel currents. This K+ current was characterized according to its time dependence and its steady-state activation. could be described in terms of a Hodgkin-Huxley type conductance. Activation of the current in time was sigmoid and was well fitted by raising the activation variable to the second power. Deactivating tail currents were single exponentials, which suggests that only one conductance underlies this slow outward K+ current. Rates of channel closing were strongly dependent on the membrane potential, while rates of channel opening showed only limited voltage dependence leading to a highly asymmetric voltage dependence for channel closing and opening. The presented analysis provides a quantitative basis for the understanding of channel gating and channel functions in plant cells.  相似文献   

14.
Guard cell protoplasts from starch-containing Vicia faba and starch-deficient Allium cepa stomata were isolated, stabilized and recovered with an efficiency — in relation to the potential yield — of approx. 62% and 77%, respectively. In vitro, guard cell protoplasts (GCP) respond to abscisic acid and fusicoccin by respectively contracting and swelling, that is, decreasing or increasing in diameter by about 15% and more in comparison to the control. This in vitro response correlates with, but is more than 4 times as rapid as, the in vivo response of the stomata. Among the advantages presented by working with isolated GCPs are: greater sensitivity in response; freedom from influences of cuticular ridges, cell walls, subsidiary cells, and epidermal cells; and direct and parallel comparisons of starch-containing and starch-deficient GCP systems.Abbrecviations ABA abscisic acid - FC fusicoccin - ECP, MCP, and GCP epidermal, mesophyll, and guard cell protoplasts, respectively - PPV packed protoplast volume  相似文献   

15.
16.
An abscisic acid (ABA)-insensitive Vicia faba mutant, fia (fava bean impaired in ABA-induced stomatal closure) had previously been isolated. In this study, it was investigated how FIA functions in ABA signalling in guard cells of Vicia faba. Unlike ABA, methyl jasmonate (MeJA), H(2)O(2), and nitric oxide (NO) induced stomatal closure in the fia mutant. ABA did not induce production of either reactive oxygen species or NO in the mutant. Moreover, ABA did not suppress inward-rectifying K(+) (K(in)) currents or activate ABA-activated protein kinase (AAPK) in mutant guard cells. These results suggest that FIA functions as an early signal component upstream of AAPK activation in ABA signalling but does not function in MeJA signalling in guard cells of Vicia faba.  相似文献   

17.
There is evidence for a role of increased cytoplasmic Ca2+ in the stomatal closure induced by abscisic acid (ABA), but two points of controversy remain the subject of vigorous debate—the universality of Ca2+ as a component of the signaling chain, and the source of the increased Ca2+, whether influx across the plasmalemma, or release from internal stores. We have addressed these questions by patch-clamp studies on guard cell protoplasts of Vicia faba, assessing the effects of ABA in the presence and absence of external Ca2+, and of internal Ca2+ buffers to control levels of cytoplasmic Ca2+. We show that ABA-induced reduction of the K+ inward rectifier can occur in the absence of external Ca2+, but is abolished when Ca2+ buffers are present inside the cell. Thus, some minimum level of cytoplasmic Ca2+ is a necessary component of the signaling chain by which ABA decreases the K+ inward rectifier in stomatal guard cells, thus preventing stomatal opening. Release of Ca2+ from internal stores is capable of mediating the response, in the absence of any Ca2+ influx from the extracellular medium. The work also shows that enhancement of the K+ outward rectifier by ABA is Ca2+ independent, and that other signaling mechanisms must be involved. A role for internal pH, as suggested by H.R. Irving, C.A. Gehring and R.W. Parish (Proc. Natl. Acad. Sci. USA 89:1790–1794, 1990) and M.R. Blatt (J. Gen. Physiol. 99:615–644, 1992), is an attractive working hypothesis.  相似文献   

18.
The inward rectified potassium current of Vicia faba guard cell protoplasts treated with acetylcholine (ACh) or the antagonists of its receptors were recorded by employing the patch clamp technique. The results show that ACh at lower concentrations increases the inward K current, in contrast, ACh at higher concentrations inhibits it. Treated with d-Tubocurarine (d-Tub), an antagonist of the nicotine ACh receptor (nAChR) inhibits the inward K current by 30%. Treated with atropine (Atr), an antagonist of the muscarine (Mus) ACh receptor (mAChR) also inhibits it by 36%. However, if guard cell protoplasts are treated with d-Tub and Atr together, the inward K current is inhibited by 60%-75%. Tetraethylammonium chloride (TEA), a strong inhibitor of K channels has no effect on the inward K current regulated by ACh, suggesting that there are inward K channels modulated by AChRs on the membrane of the guard cell protoplasts. These data demonstrate an ACh-regulated mechanism for stomatal movement.  相似文献   

19.
H. Schnabl 《Planta》1978,144(1):95-100
Chloride ions are necessary to compensate for the positively charged potassium ions imported into guard cells of Allium cepa L. during stomatal opening. Therefore an external Cl- supply of intact Allium plants is important. But high levels of chloride have been found to reduce the sensitivity of the starch-lacking stomata and isolated guard cell protoplasts (GCPs) from Allium to potassium ions, fusicoccin and abscisic acid. Furthermore, with high levels of chloride, malate anions disappear from the guard cells of Allium, a finding which contrasts with situation in Vicia where the stomatal sensitivity to K+ ions, fusicoccin and ABA is not influenced by Cl- ions and malate levels are unaffected. It is suggested that the absence of malate as a proton yielding primer inhibits the mechanism of H+/K+ exchange in Allium.Abbreviations ABA abscisic acid - FC fusicoccin - GCPs guard cell protoplasts  相似文献   

20.
The inward rectified potassium current of Vicia faba guard cell protoplasts treated with acetylcholine (ACh) or the antagonists of its receptors were recorded by employing the patch clamp technique. The results show that ACh at lower concentrations increases the inward K+ current, in contrast, ACh at higher concentrations inhibits it. Treated with d-Tubocurarine (d-Tub), an antagonist of the nicotine ACh receptor (nAChR) inhibits the inward K+ current by 30%. Treated with atropine (Atr), an antagonist of the muscarine (Mus) ACh receptor (mAChR) also inhibits it by 36%.However,if guard cell protoplasts are treated with d-Tub and Atr together, the inward K+ current is inhibited by 60%-75%. Tetraethylammonium chloride (TEA), a strong inhibitor of K+ channels has no effect on the inward K+ current regulated by ACh, suggesting that there are inward K+ channels modulated by AChRs on the membrane of the guard cell protoplasts. These data demonstrate an ACh-regulated mechanism for stomatal movement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号