首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant yield within and between four cultivars of perennial ryegrass infected with ryegrass mosaic virus (RMV) was closely related to symptom severity. Distribution of symptom severity was continuous in four perennial ryegrass and four Italian ryegrass cultivars infected with a severe RMV isolate, and also in another perennial ryegrass cultivar infected with a severe isolate of the virus, a mild one and one of intermediate severity. Symptom expression was polygenically inherited in both Italian (cv. RvP) and perennial (cv. S.24) ryegrass. Both additive and non-additive genetic variation was present in RvP, but the variation in S.24 was additive only. No significant maternal inheritance was present in either species.  相似文献   

2.
After exposure to infection in the field, the proportion of plants showing distinct symptoms of ryegrass mosaic virus (RMV) was less in perennial than in Italian ryegrass. The perennial ryegrass cv. Mascot had a smaller proportion of plants with symptoms than cv. S.23. Far milder symptoms were induced in test plants by RMV from naturally infected perennial ryegrass plots than from Italian ryegrass plots. Within perennial ryegrass, RMV from cv. Mascot caused milder symptoms than that from cv. S.23. Severe RMV isolated from Italian ryegrass cv. Trident (RMVT) became milder after one passage through cv. Mascot, although not as mild as RMV obtained from field plots of cv. Mascot (RMVM). Families from two highly resistant perennial ryegrass clones and two randomly selected clones of cv. S.23 crossed in all possible combinations varied in symptom severity when inoculated with RMVT but not when inoculated with RMVM. Families inoculated with RMVT also yielded virus which varied in the severity of symptoms induced in test plants, families with severe symptoms yielding severer virus. Thus, much of the variation in the resistance of these clones could be attributed to infection with RMV of differing severity. Resistance was controlled by several genes which were mainly additive in their effect.  相似文献   

3.
In Lemtal Italian and S.24 perennial ryegrass plants, two isolates of ryegrass mosaic virus (RMV) suppressed the amount of crown rust emerging on leaves inoculated with Puccinia coronata uredospores by up to 75% compared with the amount on virus-free plants. Severity of rust infection on barley yellow dwarf virus (BYDV) infected plants generally did not differ significantly from that on virus-free plants. When both RMV and BYDV were present, rust was restricted in Lemtal plants to a level intermediate between those occurring on plants infected by either virus alone, and in S.24 plants to a level below that obtained with either virus alone. The mean water soluble carbohydrate (WSC) content of Lemtal plants was reduced more than 20% by RMV, but was not significantly altered by BYDV. In S.24 plants the WSC content was increased by 10% by RMV and by 60% by BYDV. Rust reduced the WSC content of healthy and virus-infected plants, the reduction being positively correlated with the level of rust on the sampled leaves. In plants of Lemtal, but not of S.24, the degree of rust infection was positively correlated with the WSC content of leaves from rust-free control plants.  相似文献   

4.
Perennial ryegrass plants collected from fields and Italian ryegrass plants grown from seed were selected for resistance to infection by ryegrass mosaic virus (RMV) by repeated manual inoculation. Two of 108 perennial ryegrass plants and one of 150 Italian ryegrass plants were symptomless after seven and nine inoculations respectively. These three plants were propagated vegetatively. Plants of the two perennial ryegrass clones showed no symptoms after further manual inoculations with the initial isolate of RMV, or with an inoculum from infected plants collected from several fields, or after inoculation by viruliferous mites. Electron microscopy and back tests indicated that the plants were virus free. Some plants of the selected Italian ryegrass clone became infected after a further inoculation with mites or sap, but fewer than similarly inoculated unselected plants.  相似文献   

5.
Ryegrass mosaic virus (RMV) was reliably detected in both perennial (S24) and Italian (S22) ryegrass, by enzyme-linked immunosorbent assay (ELISA) when plants had been infected for 8 wk. ELISA detected more infections in field-grown perennial ryegrass cv. Premo than either visual assessment or electron microscopy. However, with plants of Italian ryegrass cultivars only recently infected with RMV, positive reactions were more difficult to separate from the reactions of RMV-free plants, which varied considerably with cultivar, some giving high absorbance values. Immunosorbent electron microscopy showed that the RMV antiserum also contained antibodies to ryegrass seed-borne virus (RGSV), suggesting that these high values were caused by RGSV infection in the material tested.  相似文献   

6.
The perennial ryegrass cv. Endura is particularly resistant to infection with two ryegrass mosaic virus isolates, RMV-Roth and RMV-Sax. A few plants appeared immune to RMV-Roth but were infected by RMV-Sax. Two plants that developed only mild symptoms after infection with RMV-Roth contained few virus particles, but passage through these resistant plants caused no detectable change in the virulence of RMV-Roth towards S 22 Italian ryegrass. In offsets derived from one of these resistant plants, RMV-Sax caused severe symptoms and attained a high virus concentration but it was unable to infect if the plant was already infected with RMV-Roth.  相似文献   

7.
8.
We studied the effects of fungal endophyte infection of meadow ryegrass (Lolium pratense=Festuca pratensis) on the frequency of the barley yellow dwarf virus (BYDV). The virus is transferred by aphids, which may be deterred by endophyte-origin alkaloids within the plant. In our experiment, we released viruliferous aphid vectors on endophyte-infected and endophyte-free plants in a common garden. The number of aphids and the percentage of BYDV infections were lower in endophyte-infected plants compared to endophyte-free plants, indicating that endophyte infection may protect meadow ryegrass from BYDV infections.  相似文献   

9.
Mixing the ryegrass mosaic virus (RMV) resistant perennial ryegrass (Lolium perenne) cv. Endura with the susceptible Italian ryegrass (L. multiflorum) cv. RvP decreased infection of RvP wth RMV from 37% when grown alone to 22% when mixed. However, Endura yielded less than RvP and there was no yield benefit from mixing the two cultivars. Mixing red clover (Trifolium pratense) cv. Hungaropoly with RvP had no detectable effect on RMV incidence in RvP but did decrease the incidence of red clover necrotic mosaic virus in Hungaropoly from 9% to 1% and of white clover mosaic virus from 53-5% to 41%. The yield of the mixture was equal to that of RvP grown alone but given nitrogen fertiliser. The numbers of eriophyid mites, including Abacarus hystrix the vector of RMV, on ryegrass leaves were similar in pure and mixed swards. It is concluded that with herbage crops, the common practice of sowing mixtures of species may help control virus diseases.  相似文献   

10.
Six mixed species, perennial pastures at two locations, A (four pastures) and B (two pastures), were sampled at regular intervals over periods of 10 to 22 months. The predominant plant species present were white clover (Trifolium repens), perennial ryegrass (Lolium perenne) and kikuyu grass (Pennisetum clandestinum). To determine the extent to which incidences of viruses transmitted in different ways change in the same pastures over time, samples of each plant species were taken at random on every visit and tested for virus presence. To help identify factors that might explain changes in virus incidence, records were also made of aphid presence, pasture management practices, grazing regimes, sward height and the relative proportions of different plant species within the swards. Samples of white clover were tested for presence of Alfalfa mosaic virus (AMV) and White clover mosaic virus (WCMV), ryegrass for Barley yellow dwarf virus (BYDV) and Ryegrass mosaic virus (RyMV), and kikuyu grass for BYDV and potyvirus infection. AMV and WCMV were detected in white clover, and BYDV and RyMV in ryegrass at both locations but often with wide incidence fluctuations for the individual viruses. AMV incidences in white clover ranged from 0% to 19% at A, and from 27% to 100% at B. WCMV incidences in white clover fluctuated between 9% and 46% at B, but never exceeded 1% at A. RyMV incidences in ryegrass fluctuated between 3% and 34% at A, and 19% and 73% at B. BYDV incidences in ryegrass ranged from 0% to 6% at A and 4% to 17% at B. In kikuyu grass, an unknown potyvirus and BYDV were detected twice (1% incidence) and once (4% incidence) respectively at B, and the unknown potyvirus only once (2% infection) at A. During repeated trapping of aphids in four pastures (two each at A and B), numbers of aphids caught varied widely between trapping dates and between individual pastures on the same trapping date. The species caught were Acyrthosiphon kondoi, A. pisum, Aphis craccivora, Rhopalosiphum padi and Therioaphis trifolii. Except in summer, when only T. trifolii was caught, A. craccivora was the most abundant. The trends in incidence for each virus within each pasture were compared with those from the other pastures sampled over identical periods to determine whether there was any commonality. For RyMV in ryegrass, overall incidence trends within the different pastures at both locations resembled each other during the same sampling periods. Within pastures at the same location there was commonality in incidence trends for RyMV and BYDV in ryegrass, but with AMV in white clover periods of similarity were rare even when pastures were adjacent and managed identically. Unravelling the individual effects of alterations in season, vector numbers, mowing, intermittent heavy grazing and pasture species composition on virus incidence proved difficult due to complex interactions between these and other factors influencing new spread or declining virus occurrence.  相似文献   

11.
The Yd2 gene for "resistance" to barley yellow dwarf virus (BYDV) has been widely used in barley ( Hordeum vulgare ). We have tested Australian isolates of BYDV of varying severity against barley genotypes with and without the Yd2 gene and report here a positive relationship between symptoms and virus levels determined by ELISA. Cultivar Shannon is the result of backcrossing the resistant line CI 3208 to cultivar Proctor, a susceptible line. It appears to be intermediate in reaction to BYDV between Proctor and CI 3208, although it carries the major gene, Yd2. Unlike the whole plant studies, no significant differences were observed with regard to the ability of protoplasts derived from these various genotypes to support BYDV replication. It is therefore demonstrated for the first time that the Yd2 gene is not among the small number of resistance genes which are effective against virus replication in isolated protoplasts.  相似文献   

12.
The barley yellow dwarf virus (BYDV) epidemics, which occurred predominantly in northern Germany in 1988–90 and caused unusual yield losses of wheat, prompted our study on interactions of BYDV and Fusarium culmorum. At the late stages of plant development (EC 55/65) infections with BYDV resulted in a lower yield reduction of wheat plants than infections with F. culmorum. Combined infections at flowering resulted in severer yield reduction, indicating additive effects of the two pathogens. However, if wheat infected by BYDV at stage EC 25/35 was secondarily inoculated with the fungus at EC 55/65 the yield was less reduced than in combined infections at EC 55/65. Our results proved that the susceptibility of wheat plants to F. culmorum is increased when infection by BYDV takes place during the late stages of growth. These results correspond to observations during 3 years of the epidemic in Germany. In these years BYDV was spread mainly during the late spring, resulting in a severe secondary infection by the fungus. From the results of these investigations it may be concluded that during the years of BYDV epidemic the yield of wheat was reduced to an economically important extent because of the fungal infection, which was favoured by the virus infection.  相似文献   

13.
Symptom severity of eighteen populations of Italian ryegrass infected artificially in the glasshouse and naturally in the field with ryegrass mosaic virus (RMV) was strongly correlated. A smaller proportion of plants of the more tolerant populations showed symptoms in the field, but this was probably due to an association of tolerance with increasing incidence of symptomless infection rather than with resistance to infection. Under sward conditions, the yield of a sensitive genotype was reduced by 27% and that of two more tolerant ones by 15 and 13 %. The percentage dry matter yield loss of the most sensitive genotype was similar in all cuts, despite the appearance of extensive necrosis at the time of one cut. With the more tolerant genotype the yield loss varied from 7 to 25 % according to cut. Over the period of the experiment RMV infection did not increase plant mortality.  相似文献   

14.
The growth of simulated swards of Italian and perennial ryegrass, artificially infected with ryegrass mosaic virus (RMV) or RMV-free, was investigated. During the build up of RMV infection, dry-matter yield was usually decreased in infected swards, and the effect was confirmed when single vegetative regrowths of swards were investigated in detail. The primary cause of lower yields in RMV-infected swards appears to be a decrease in net canopy photosynthesis (maximum decrease about 50%) and an associated increase in dark respiration (maximum increase about 50%). The decrease in net canopy photosynthesis is due primarily to a lowered rate of net photosynthesis of constituent leaves within the canopy. A secondary effect of RMV infection is to decrease tillering (maximum decrease about 30%) which results in a change in canopy structure and in particular a lower leaf area index. In the present experiments, lower light utilization by the swards is less important than the decrease in leaf photo-synthetic efficiency in lowering yield.  相似文献   

15.
Polygenic resistance to ryegrass mosaic virus (RMV) was transferred from perennial to Italian ryegrass cv. Tribune by repeated cycles of backcrossing, polycrossing and selection. The resulting synthetic variety (Bb 2113) was highly resistant to infection by RMV whereas the Italian ryegrass cultivars Tribune, RvP, Bartolini, Augusta, Wilo and Dalita all were highly susceptible. Leaf width and length of Bb 2113 was similar to that of cv. Tribune and, like Tribune, Bb 2113 had awned florets. In a field trial, Bb 2113 had a similar persistency rating and number of inflorescences in the regrowth to cv. Tribune but produced 11% less dry matter. The results emphasise the need for a more efficient means of transferring small numbers of genes from one species of Lolium to another than backcrossing provides.  相似文献   

16.
The content of Barley yellow dwarf virus (BYDV) in roots and leaves of barley seedling plants differing in their level of resistance was assessed by quantitative ELISA 1–42 days after inoculation with the strain of BYDV (PAV). High virus accumulation in roots and low concentration in leaves was characteristic of the period 9–15 days after inoculation. In leaves, the differences in virus content between resistant and susceptible genotypes became significant after 15 days and resistance to virus accumulation was better expressed 30–39 days after inoculation. Roots of resistant materials exhibited evident retardation of virus accumulation and the greatest difference in virus content between resistant and susceptible plants was detected 9 days after inoculation. By these criteria, the selected winter and spring barley cultivars and lines (in total 44 materials) fell in to five groups according to field reactions and the presence or absence of the Yd2 resistance gene. There were highly significant and positive relations between ELISA values and 5‐year field data on symptomatic reactions and grain‐yield reductions due to infection. Using the described method, resistant and moderately resistant genotypes (both Yd2 and non‐Yd2) were significantly differentiated from susceptible genotypes. The possible use of this method in screening for BYDV resistance is discussed.  相似文献   

17.
The adverse effect of lodging on grass seed yield may be attributed,in part, to assimilate limitation during the seed filling period.This investigation examined plant dry matter assimilate partitioningand seed yield as affected by lodging in three species thatare closely related but phenotypically different: tall fescue(Festuca arundinacea Schreber.), Italian ryegrass (Lolium multiflorumLam.), and perennial ryegrass (L. perenne L.). Studies wereperformed in field plots at Corvallis, Oregon, USA. Seed yieldcomponents (seed number per inflorescence, seed yield per inflorescence,and single seed mass) and leaf, stem (lower, middle, and peduncle)and seed inflorescence dry mass were measured just prior toanthesis to seed maturity. Dry mass and water soluble carbohydrates(WSC) were determined for shoot components. The reduction indry mass and WSC in leaves and stem components following anthesiswas often greater in lodged plants compared to upright plants.The relatively low seed yield depression in lodged tall fescuesuggested a higher compensation potential for partitioning reserveassimilate from leaves and stems to support seed growth anddevelopment. This potential does not appear to be present tothe same degree in Italian ryegrass and to an even lesser extentin perennial ryegrass. These findings suggest that the potentialto compensate for reduced assimilate supply during the periodof high assimilate demand by seeds may be attributed, in part,to the total assimilate reserve accumulated prior to photoassimilatereduction caused by the lodged condition. Copyright 2000 Annalsof Botany Company Tall fescue, Festuca arundinacea Schreber., Italian ryegrass, Lolium multiflorum Lam., perennial ryegrass, L. perenne L., assimilate partitioning, source–sink  相似文献   

18.
Barley varieties were most tolerant to infection with barley yellow dwarf virus (BYDV) when they grew rapidly, whether the rate of growth was determined by manipulation of the environment or by the innate genetic constitution of the host. A specific, incompletely dominant gene conditioning a high level of tolerance to the virus in certain rapidly growing genotypes in which it occurred naturally, failed to do so when transferred to slower growing genotypes. However, reintroduction into genotypes capable of rapid growth led to full restoration of the gene's effectiveness. Virus-free aphids recovered BYDV less readily from quick- than from slow-growing genotypes, all homozygous for the tolerance gene.  相似文献   

19.
The disease response and magnitude of genetic variability of 85 mulberry genotypes of different agroclimatic origin was studied against powdery mildew caused by Phyllactinia corylea. It was observed that there was a wide variation of disease severity among the test genotypes. Australian and France originating genotypes were found to be highly resistant to mildew followed by of Thai and Italian origin. Genotype wise, the lowest mildew disease severity was recorded in Thailand [lobed]) followed by M. malticaulis, M. australis and Italian. Genetic analysis of disease severity revealed that the estimate of phenotypic coefficient of variation (PCV) and genotypic coefficient of variation (GCV) were high and that PCV was greater than GCV. High estimate of heritability coupled with high genetic advance showed that the mildew disease resistant trait is governed by an additive gene action. Hence the highly resistant mulberry genotypes identified may be exploited through hybridisation followed by selection under epiphytotic conditions for the improvement of disease resistant traits in mulberry.  相似文献   

20.
Perennial ryegrass (Lolium perenne L.) and Italian ryegrass (Lolium multiflorum Lam.) are important temperate forage grasses which are closely related, generating fertile interspecific hybrids. All groups are represented by multiple cultivars in the commercial pasture seeds market. Due to the close taxonomic relationship between the two species, differentiation based on morphophysiological criteria is not always readily achievable. In addition, an obligate outbreeding reproductive habit produces high levels of individual heterozygosity and intrapopulation diversity, which presents problems for discrimination between cultivars. Molecular genetic marker polymorphism provides an effective means of addressing these challenges. An iterative process of resequencing from loci distributed across the perennial ryegrass genome was used to identify single nucleotide polymorphism (SNP) markers, which were then validated and formatted in a highly multiplexed (384-plex) assay system. SNP genotyping was then performed across samples of 48–192 individuals from a total of 27 ryegrass cultivars (19 of perennial ryegrass, seven of Italian ryegrass and one hybrid cultivar). SNP markers from perennial ryegrass exhibited a high level of transfer to Italian ryegrass. Data analysis permitted quantification of intra- and inter-species diversity, as well as discrimination between cultivars within each species, including diploid and autotetraploid cultivars of perennial ryegrass. Lower levels of SNP-based diversity were detected in Italian ryegrass than in perennial ryegrass. A neighbour-joining tree based on genetic distance analysis located a hybrid cultivar to an intermediate position between the two species-specific cultivar groups. The resulting catalogue of ryegrass cultivars will provide support for the processes of cultivar accreditation and quality assurance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号